Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of a novel alternative splicing isoform of the Hippo kinase STK3/MST2 with impaired kinase and cell growth suppressing activities

Abstract

Mammalian Ste-20-like Kinases 1 and 2 (MST1/2) are core serine-threonine kinases of the Hippo pathway regulating several cellular processes, including cell cycle arrest and cell death. Here, we discovered a novel alternative splicing variant of the MST2 encoding gene, STK3, in malignant cells and tumor datasets. This variant, named STK3∆7 or MST2∆7 (for mRNA or protein, respectively), resulted from the skipping of exon 7. MST2∆7 exhibited increased ubiquitylation and interaction with the E3 ubiquitin-protein ligase CHIP compared to the full-length protein (MST2FL). Exon 7 in STK3 encodes a segment within the kinase domain, and its exclusion compromised MST2 interaction with and phosphorylation of MOB, a major MST1/2 substrate. Nevertheless, MST2∆7 was capable of interacting with MST1 and MST2FL. Unlike MST2FL, overexpression of MST2∆7 did not lead to increased cell death and growth arrest. Strikingly, we observed the exclusion of STK3 exon 7 in 3.2–15% of tumor samples from patients of several types of cancer, while STK3∆7 was seldomly found in healthy tissues. Our study identified a novel STK3 splicing variant with loss of function and the potential to disturb tissue homeostasis by impacting on MST2 activities in the regulation of cell death and quiescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of a new variant of STK3.
Fig. 2: MST2Δ7 is more ubiquitylated than MST2FL and interacts with CHIP-E3 ligase.
Fig. 3: MST2Δ7 overexpression resulted in decreased MOB1 phosphorylation.
Fig. 4: Cells overexpressing MST2Δ7 lose their ability to trigger cell death and quiescence.
Fig. 5: STK3Δ7 is expressed in tumor samples and tumor cell lines and displays potential clinical implications.

Similar content being viewed by others

Data availability

All data related to this study are available in the main figures and supplementary material.

Code availability

Code used for image quantification can be found at https://github.com/brunicardoso/e-signal-lab. Code used for bioinformatics analysis can be made available upon request.

References

  1. Gokhale R, Pfleger CM. The power of drosophila genetics: the discovery of the hippo pathway. Methods Mol Biol. 2019;1893:3–26.

    Article  CAS  PubMed  Google Scholar 

  2. Kodaka M, Hata Y. The mammalian Hippo pathway: regulation and function of YAP1 and TAZ. Cell Mol Life Sci. 2015;72:285–306.

    Article  CAS  PubMed  Google Scholar 

  3. Ding R, Weynans K, Bossing T, Barros CS, Berger C. The Hippo signalling pathway maintains quiescence in Drosophila neural stem cells. Nat Commun. 2016;7:10510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang D, He J, Huang B, Liu S, Zhu H, Xu T. Emerging role of the Hippo pathway in autophagy. Cell Death Dis. 2020;11:880.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Saucedo LJ, Edgar BA. Filling out the Hippo pathway. Nat Rev Mol Cell Biol. 2007;8:613–21.

    Article  CAS  PubMed  Google Scholar 

  6. Ni L, Zheng Y, Hara M, Pan D, Luo X. Structural basis for Mob1-dependent activation of the core Mst–Lats kinase cascade in Hippo signaling. Genes Dev. 2015;29:1416–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    Article  CAS  PubMed  Google Scholar 

  8. Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, et al. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TrCP E3 ligase. J Biol Chem. 2010;285:37159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cui J, Zhou Z, Yang H, Jiao F, Li N, Gao Y, et al. MST1 suppresses pancreatic cancer progression via ROS-induced pyroptosis. Mol Cancer Res. 2019;17:1316–25.

    Article  CAS  PubMed  Google Scholar 

  10. Liu X-F, Han Q, Yang M, Lin X-Y, Han Y-C, et al. Article MST1 inhibits cell proliferation and invasion of non-small-cell lung cancer by regulating YAP phosphorylation and Hippo pathway. Int J Clin Exp Pathol. 2018;11:2613–20.

    PubMed  PubMed Central  Google Scholar 

  11. Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell. 2009;16:425–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou D, Zhang Y, Wu H, Barryg E, Yin Y, Lawrence E, et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc Natl Acad Sci USA 2011;108:1312–20.

    Article  Google Scholar 

  13. Zhang H, Qu X, Han L, Di X. Mst2 overexpression inhibits thyroid carcinoma growth and metastasis by disrupting mitochondrial fitness and endoplasmic reticulum homeostasis. J Oncol. 2021;6:1262291.

    Google Scholar 

  14. Harvey KF, Pfleger CM, Hariharan IK. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell. 2003;114:457–67.

    Article  CAS  PubMed  Google Scholar 

  15. Lange AW, Sridharan A, Xu Y, Stripp BR, Perl AK, Whitsett JA. Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung. J Mol Cell Biol. 2015;7:35–47.

    Article  CAS  PubMed  Google Scholar 

  16. Wu S, Huang J, Dong J, Pan D. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with Salvador and warts. Cell. 2003;114:445–56.

    Article  CAS  PubMed  Google Scholar 

  17. Matsumoto H, Murakami Y, Kataoka K, Lin H, Connor KM, Miller JW et al. Mammalian STE20-like kinase 2, not kinase 1, mediates photoreceptor cell death during retinal detachment. Cell Death Dis. 2014. https://doi.org/10.1038/cddis.2014.218.

  18. Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther. 2022. https://doi.org/10.1038/s41392-022-01191-9.

  19. Rizki A, Weaver VM, Lee SY, Rozenberg GI, Chin K, Myers CA, et al. A human breast cell model of preinvasive to invasive transition. Cancer Res. 2008;68:1378–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fiore APZP, Rodrigues AM, Ribeiro-Filho HV, Manucci AC, de Freitas Ribeiro P, Botelho MCS, et al. Extracellular matrix stiffness regulates degradation of MST2 via SCF βTrCP. Biochim Biophys Acta Gen Subj. 2022;1866:130238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Praskova M, Khoklatchev A, Ortiz-Vega S, Avruch J. Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem J. 2004;381:453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol. 2008;18:311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee KK, Ohyama T, Yajima N, Tsubuki S, Yonehara S. MST, a physiological caspase substrate, highly sensitizes apoptosis both upstream and downstream of caspase activation. J Biol Chem. 2001;276:19276–85.

    Article  CAS  PubMed  Google Scholar 

  24. Graves JD, Gotoh Y, Draves KE, Ambrose D, Han DKM, Wright M, et al. Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO J. 1998;17:2224–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin Y, Khokhlatchev A, Figeys D, Avruch J. Death-associated protein 4 binds MST1 and augments MST1-induced apoptosis. J Biol Chem. 2002;277:47991–8001.

    Article  CAS  PubMed  Google Scholar 

  26. Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L, et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci USA 2010;107:1431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fiore APZP, Ribeiro P, de F, Bruni-Cardoso A. Sleeping beauty and the microenvironment enchantment: microenvironmental regulation of the proliferation-quiescence decision in normal tissues and in cancer development. Front Cell Dev Biol. 2018;6:59.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fiore APZP, Spencer VA, Mori H, Carvalho HF, Bissell MJ, Bruni-Cardoso A. Laminin-111 and the level of nuclear actin regulate epithelial quiescence via exportin-6. Cell Rep. 2017;19:2102–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003;30:256–68.

    Article  CAS  PubMed  Google Scholar 

  30. Kirchner P, Bourdenx M, Madrigal-Matute J, Tiano S, Diaz A, Bartholdy BA, et al. Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS Biol. 2019;17:e3000301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Makwana KM, Mahalakshmi R. Implications of aromatic-aromatic interactions: From protein structures to peptide models. Protein Sci. 2015;24:1920–33.

    Article  Google Scholar 

  32. Won GW, Park SH, Park J, Lee Y, Lee YH. Mammalian Hippo kinase pathway is downregulated by BCL-2 via protein degradation. Biochem Biophys Res Commun. 2019;512:87–92.

    Article  CAS  PubMed  Google Scholar 

  33. Carafa V, Altucci L. Deregulation of cell death in cancer: recent highlights. Cancers. 2020;12:1–4.

    Article  Google Scholar 

  34. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  35. Dzobo K, Senthebane DA, Dandara C. The tumor microenvironment in tumorigenesis and therapy resistance revisited. Cancers. 2023;15:376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32:1267–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arshad Z, McDonald JF. Changes in gene-gene interactions associated with cancer onset and progression are largely independent of changes in gene expression. iScience. 2021;24:103522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bjørklund SS, Panda A, Kumar S, Seiler M, Robinson D, Gheeya J, et al. Widespread alternative exon usage in clinically distinct subtypes of invasive ductal carcinoma. Sci Rep. 2017;7:5568.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kahles A, Lehmann KVan, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, et al. Comprehensive analysis of alternative splicing across tumors from 8705 patients. Cancer Cell. 2018;34:211–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paik PK, Drilon A, Fan PD, Yu H, Rekhtman N, Ginsberg MS, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring met mutations causing exon 14 skipping. Cancer Discov. 2015;5:842–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rawat C, Heemers HV. Alternative splicing in prostate cancer progression and therapeutic resistance. Oncogene. 2024;43:1655–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018;173:400–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov. 2012;11:125–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hong D, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med. 2015;7:314ra185.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chi KN, Yu EY, Jacobs C, Bazov J, Kollmannsberger C, Higano CS, et al. A phase I dose-escalation study of apatorsen (OGX-427), an antisense inhibitor targeting heat shock protein 27 (Hsp27), in patients with castration-resistant prostate cancer and other advanced cancers. Ann Oncol. 2016;27:1116–22.

    Article  CAS  PubMed  Google Scholar 

  46. Skordis LA, Dunckley MG, Yue B, Eperon IC, Muntoni F. Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts. Proc Natl Acad Sci USA 2003;100:4114–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Russo LC, Tomasin R, Matos IA, Manucci AC, Sowa ST, Dale K, et al. The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signaling. J Biol Chem. 2021;297:101041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Antonio Manucci, Beatriz Moraes, Eduardo Moraes Rego Reis, and Nicolas Hoch for scientific discussions, advice on experiments and insightful inputs. The authors also wish to thank Celia Ludio for technical assistance.

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP #2014/10492–0 and #2019/26767–2). RT was initially funded by Instituto Serrapilheira and subsequently by a CAPES postdoctoral fellowship (88882.315500/2019–01). APZPF was a recipient of FAPESP postdoctoral fellowship (#2014/25832–1). AMR was supported by a PhD scholarship from CAPES (88882.332986/2019–01).

Author information

Authors and Affiliations

Authors

Contributions

AMR, APZPF, and AB-C conceptualized the work; AMR. APZPF, DS, RT, RJG, AB-C, and MP designed the experiments; PAFG and GADG designed and performed bioinformatics analysis. AMR, APZPF, RT, and AAT performed experiments; AMR, AB-C, and APZPF were responsible for data curation; AB-C and AMR wrote the manuscript; AB-C supervised the work; AB-C, MP, and DS acquired funding to support this work.

Corresponding author

Correspondence to Alexandre Bruni-Cardoso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Our research involved human material and human data used in accordance with the Declaration of Helsinki. The RNA samples utilized in the analysis presented in Fig. 5F were extracted from patient samples stored in the Biobank of the São Paulo Cancer Institute Octavio Frias de Oliveira (ICESP). Informed consent was obtained from all subjects. To use these samples, we obtained approval from the National Ethics Committee in Brazil (Comissão Nacional de Ética em Pesquisa; CAAE: 06373719.0.3001.0065).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, A.M., Paula Zen Petisco Fiore, A., Guardia, G.D.A. et al. Identification of a novel alternative splicing isoform of the Hippo kinase STK3/MST2 with impaired kinase and cell growth suppressing activities. Oncogene (2024). https://doi.org/10.1038/s41388-024-03104-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03104-2

Search

Quick links