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Matrix metalloproteinase 9 (MMP-9) activity, hippocampal
extracellular free water, and cognitive deficits are associated
with each other in early phase psychosis
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Increasing evidence points toward the role of the extracellular matrix, specifically matrix metalloproteinase 9 (MMP-9), in the
pathophysiology of psychosis. MMP-9 is a critical regulator of the crosstalk between peripheral and central inflammation,
extracellular matrix remodeling, hippocampal development, synaptic pruning, and neuroplasticity. Here, we aim to characterize the
relationship between plasma MMP-9 activity, hippocampal microstructure, and cognition in healthy individuals and individuals with
early phase psychosis. We collected clinical, blood, and structural and diffusion-weighted magnetic resonance imaging data from
39 individuals with early phase psychosis and 44 age and sex-matched healthy individuals. We measured MMP-9 plasma activity,
hippocampal extracellular free water (FW) levels, and hippocampal volumes. We used regression analyses to compare MMP-9
activity, hippocampal FW, and volumes between groups. We then examined associations between MMP-9 activity, FW levels,
hippocampal volumes, and cognitive performance assessed with the MATRICS battery. All analyses were controlled for age, sex,
body mass index, cigarette smoking, and years of education. Individuals with early phase psychosis demonstrated higher MMP-9
activity (p < 0.0002), higher left (p < 0.05) and right (p < 0.05) hippocampal FW levels, and lower left (p < 0.05) and right (p < 0.05)
hippocampal volume than healthy individuals. MMP-9 activity correlated positively with hippocampal FW levels (all participants and
individuals with early phase psychosis) and negatively with hippocampal volumes (all participants and healthy individuals). Higher
MMP-9 activity and higher hippocampal FW levels were associated with slower processing speed and worse working memory
performance in all participants. Our findings show an association between MMP-9 activity and hippocampal microstructural
alterations in psychosis and an association between MMP-9 activity and cognitive performance. Further, more extensive
longitudinal studies should examine the therapeutic potential of MMP-9 modulators in psychosis.

Neuropsychopharmacology (2024) 49:1140–1150; https://doi.org/10.1038/s41386-024-01814-5

INTRODUCTION
Increasing evidence points toward the role of the extracellular
matrix in the pathophysiology of psychosis [1]. Suggested
pathways include dysregulations of matrix metalloproteinase 9
(MMP-9) [2], the largest and most complex matrix metalloprotei-
nase in the central nervous system [3]. MMP-9 is an extracellular-
acting zinc-dependent protease [3] that is primarily expressed in
the hippocampus, choroid plexus, and prefrontal cortex [4, 5]. It is
an essential regulator of the extracellular matrix, neuronal growth,
and plasticity, including hippocampal and dendritic development,
synaptic pruning, and neuroplasticity [6, 7]. In addition, MMP-9 has
emerged as a regulator of the neuroinflammatory response and
the crosstalk between peripheral inflammation and neuroinflam-
mation. MMP-9 is secreted by neurons and activated immune cells

[8, 9], can interact with cytokines and chemokines [3], and has
been characterized as a major inflammatory mediator [10].
Upregulation of MMP-9 is further associated with blood-brain
barrier disruptions, e.g., degradation of the capillary basement
membrane and tight junction proteins [11]. This degradation
leads, in turn, to extravasation of leukocytes into the brain
parenchyma [10, 12] and penetration of inflammation into the
central nervous system [13], which does not happen without
MMP-9 presence [14].
Studies from different fields examined the role of MMP-9 in

psychosis. A translational study showed the consequences of
MMP-9 upregulation during the peripubertal stage. MMP-9
upregulation led to increased neuroinflammation and oxidative
stress and impaired maturation of interneurons [15]. Postmortem
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studies in humans demonstrated an upregulation of MMP-9 [5, 16]
and increased MMP-9 in the cerebrospinal fluid of individuals with
psychosis [17]. While analyses examining the association between
MMP-9 gene polymorphisms and psychosis risk are inconclusive
[18], several clinical studies reported peripheral MMP-9 upregula-
tion in individuals with psychosis [19, 20]. A recent meta-analysis
demonstrated higher MMP-9 levels in individuals with
schizophrenia-spectrum disorders compared to healthy indivi-
duals. MMP-9 levels were not elevated in psychiatric control
conditions, and the study also did not observe a difference
between individuals with first-episode psychosis versus non-first-
episode psychosis [2]. Another study indicated that MMP-9 might
be a good marker to discriminate individuals with psychosis from
healthy individuals [21], and a recent one examined the potential
of modifiable factors such as smoking and medication on this
upregulation [22].
Furthermore, clinical findings demonstrated an association

between higher MMP-9 levels and an increased risk for cognitive
impairments in psychosis [23, 24]. Notably, MMP-9 levels also
correlated with cognitive performance in other conditions, such
as attention-deficit/hyperactivity disorder [25], epilepsy [26], or
systemic lupus erythematous [27] and some studies suggested a
link between elevated MMP-9 levels and dementia [28, 29]. This
link is clinically interesting, given the current lack of treatment
for cognitive deficits in psychosis. Indeed, some preliminary
evidence indicated that MMP-9 inhibition might benefit psy-
chosis outcomes [30, 31]. While a recent monocycline trial (one
of the known, nonselective MMP-9 inhibitors) showed no
beneficial effects on clinical symptoms or inflammatory biomar-
kers [32], some other, more specific MMP-9 blockers are still
being tested.
While this accumulated evidence implies that MMP-9 upregula-

tion is related to brain health, only one study has directly
examined this link in humans. We demonstrated that peripheral
MMP-9 upregulation was associated with hippocampal volume
loss in individuals with psychosis [33]. The mean duration of illness
was eight years, and we did not examine the relationship with
cognition. The hippocampus is associated with cognitive func-
tions, such as working memory and processing speed [34, 35],
which are frequently impaired in psychosis [36, 37]. In addition,
hippocampal volume loss is among the most consistent imaging
findings in chronic psychosis [38]. However, the picture is less
evident in early phase psychosis [39, 40]. Volumetric measures are
crude measures influenced by many pathologies, making it
difficult to interpret findings biologically. However, it is hypothe-
sized that volume loss might reflect an accumulation of earlier
microstructural changes [41–43] and that identifying these
microstructural changes might allow earlier detection and
treatment of, e.g., individuals at risk for cognitive impairments.
Diffusion-weighted magnetic resonance imaging (MRI) is an in-

vivo method sensitive to microstructural brain changes [44]. While
it has been used to characterize white matter abnormalities and
their association with cognition in psychosis [45, 46], diffusion-
weighted MRI for gray matter is challenging. Traditional diffusion-
based indices are easily affected by partial volume effects and are
difficult to interpret in gray matter. The method of Free-Water
Imaging [47] overcomes some of those obstacles, as it allows the
quantifying of the extracellular free water fractional volume (FW),
which is more sensitive and biologically specific [48]. Several
studies have applied the method to study psychosis, including
individuals at risk for psychosis [49–52], early onset psychosis [53],
first episode psychosis [54, 55], and chronic psychosis [56–58]. In
large-scale cross-sectional and longitudinal studies, we demon-
strated an FW increase in white and gray matter in individuals with
early phase psychosis [53, 59–61].
The present study aims to build on these findings by applying

Free-Water Imaging to study the association between peripheral
MMP-9 activity, hippocampal microstructure, and cognition in 39

individuals with early phase psychosis and 44 healthy individuals.
We hypothesize that peripheral MMP-9 activity will be increased in
individuals with early phase psychosis and that this increase will
be associated with microstructural brain abnormalities. In addition,
we assume that hippocampal microstructural abnormalities will be
more pronounced than macrostructural deficits and will be related
to cognition.

MATERIALS AND METHODS
Participants recruitment
Individuals with psychosis were recruited from the Treatment and Early
Intervention in Psychosis Program (TIPP) [62], a 3-year specialized program
in the Department of Psychiatry at Lausanne University Hospital, Switzer-
land. All individuals were assessed within the first five years of disease
onset, and we refer to them as “individuals with early phase psychosis.”
Eligibility criteria for the program were: (I) age between 18 and 35; (II) living
in the catchment area; (III) meeting threshold criteria for psychosis, as
defined by the psychosis threshold subscale of the Comprehensive
Assessment of At-Risk Mental States (CAARMS) Scale [63]. Individuals were
not eligible and referred to other treatment programs if they had taken
antipsychotic medication for more than six months, had psychosis related
to intoxication or organic brain disease, or had an IQ below 70. Healthy
individuals were recruited from similar geographic and sociodemographic
areas through advertisement and assessed by the Diagnostic Interview for
Genetic Studies [64]. Healthy individuals were excluded if they had a major
mood, psychotic, or substance use disorder or had a first-degree relative
with a psychotic disorder. Neurological disorders and severe head trauma
were exclusion criteria for all participants.
We performed all assessments during a few consecutive days. For

individuals with early phase psychosis, a trained psychologist gave a
diagnosis based on the DSM-IV criteria and assessed symptom severity
using the Positive and Negative Syndrome Scale (PANSS) [65]. We
converted antipsychotic doses at the time of the study to chlorpromazine
equivalents (CPZ equivalents in mg) [66]. Cannabis and alcohol use were
evaluated with the Case Management Rating Scale (CMRS) [67].
Neurocognitive measures were assessed with the MATRICS Consensus
Cognitive Battery (MCCB) [68, 69], examining processing speed, sustained
attention, working memory, verbal learning, visual learning, and problem-
solving.
All subjects provided informed written consent following our institu-

tional guidelines (protocol approved by the local Ethics Committee,
Commission Cantonale d’Ethique de la Recherche sur l’Etre Humain – CER-
VD), and the Declaration of Helsinki.

MMP-9 activity
Blood was collected on EDTA-coated tubes and centrifuged at 3000 × g for
5 min, at 4 °C for plasma collection. Following the manufacturer’s protocol,
we measured MMP-9 activity in the plasma samples utilizing the DQ-
fluorescein-conjugated gelatin kit (EnzChek® Gelatinase/Collagenase Assay
Kit, Life Technology). Specifically, 100ul of plasma was mixed with 0.2 mg/
ml of DQ-fluorescein-conjugated gelatin, and the fluorescent signal
increase was measured every 15min over one hour with a Tecan machine.
We used the slope over one hour as the measure of MMP-9 activity for all
analyses. We analyzed the sample of individuals with early phase psychosis
and healthy individuals in batches of twenty per plate and added a
standard collagenase provided by the kit to each plate as an internal
control for interplate variability.

Image acquisition
MRI images were acquired on a 3-Tesla scanner (Magnetom TrioTim,
Siemens Medical Solutions) with a 32-channel head coil. Each scanning
session included a magnetization-prepared rapid acquisition gradient echo
(MPRAGE) T1w sequence and a spin-echo echo-planar imaging (SE-EPI)
diffusion-weighted sequence. The MPRAGE-T1w images were acquired
with echo time (TE)= 2.98ms, repetition time (TR)= 2300ms, inversion
time (TI)= 900ms, flip angle (FA)= 8°, field of view (FOV)= 160 × 240 ×
256mm3, and voxel size= 1 × 1 × 1.2 mm3. The DSI (q4half acquisition
scheme) sequence included one b0 acquisition and 128 diffusion-
weighted directions with maximum b-value= 8000 s/mm2, TE= 103ms,
TR= 5900ms, FOV= 211 × 211 × 114 mm3, and voxel size= 2.2 × 2.2 × 3
mm3. Acquisition times for MPRAGE-T1w and DSI sequences were 7 and
13min, respectively.
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Image processing
Structural T1-weighted and diffusion-weighted images were visually
inspected to guarantee the high quality of the data, and we excluded
cases with poor quality or incidental findings. All cases included in this
study passed this visual quality control check.
As previously described [70], for structural T1-weighted images, we

employed an automated tool, MRIQC1, to compute the signal-to-noise
ratio, contrast-to-noise ratio, entropy focus criterion, foreground-to-
background energy ratio, image smoothness, and percent artifact voxels.
Then, images were axis-aligned, centered, and processed using FreeSurfer
(v6.0.0, http://surfer.nmr.mgh.harvard.edu) to obtain right and left
hippocampal segmentation [71].
We employed an automatic image correction and processing workflow

for diffusion-weighted images, utilizing Mrtrix3 [72] and FSL [73]. We
performed the following steps: denoising, bias correction, intensity
normalization, head motion correction with gradient table rotation, eddy
current, and distortion correction. A registration-based approach using
Advanced Normalization Tools (ANTs) [74] was implemented to correct the
geometrical distortion along the phase-encoding direction. As previously
highlighted [70], we used QUAD (QUality Assessment for DMRI) to extract
quality control metrics, including total outliers, average absolute motion,
average relative motion, signal-to-noise ratio, and contrast-to-noise ratio.
Last, hippocampus segmentations were mapped to the diffusion-

weighted images using the spatial transformation computed during the
distortion correction. We fitted the Free-Water imaging model to the
diffusion-weighted images using a regularized non-linear fit [47]. As
previously shown, the Free-Water imaging model fits a bi-tensor model
[47, 75] to the diffusion-weighted images with the first compartment
modeling isotropic, unrestricted diffusion in the extracellular space (free
water, FW). We extracted averaged FW values for the left and right
hippocampus, following previous studies that applied this model to gray
matter [76, 77].

Statistical analyses
We conducted all statistical analyses using R. We tested that all analyses
met the assumptions for parametric tests with Shapiro and Bartlett tests.
Groups were matched for age, sex, BMI, and cigarette smoking. However,
given previously reported associations between these variables and our
variables of interest [78, 79], we still included them as covariates in our
analyses. Based on the number of conducted tests, all reported p-values
are corrected for multiple comparisons with Bonferroni correction.

Group comparisons of MMP-9 activity, hippocampal FW, and hippocampal
volumes. We conducted five linear regression models to compare (1)
MMP-9 activity, (2) left and right hippocampal FW, and (3) left and right
hippocampal volumes between individuals with early phase psychosis and
healthy individuals. The group was included as the independent variable,
and MMP-9 activity/ hippocampal FW levels/ hippocampal volumes were
included as dependent variables, respectively. Age, sex, BMI, cigarette
smoking, and years of education were included as covariates for MMP-9
activity. For FW comparisons, we included hippocampal volume as an
additional covariate. We included total intracranial volume as an additional
covariate for hippocampal volume comparisons. Indicated p-values are
corrected for five tests, with Bonferroni correction.

Association between MMP-9 activity, hippocampal FW, and
hippocampal volume. We performed six linear regression models to
evaluate the relationship between MMP-9 activity and left and right
hippocampal FW for 1) all participants, 2) healthy participants, and 3)
participants with early phase psychosis. Age, sex, BMI, cigarette smoking,
years of education, and hippocampal volume were included as covariates.
We repeated analyses to evaluate the relationship between MMP-9 activity
and left and right hippocampal volume for 1) all participants, 2) healthy
participants, and 3) participants with early phase psychosis. We included
age, sex, BMI, cigarette smoking, years of education, and total intracranial
volume as covariates. Indicated p-values are corrected for 12 tests, with
Bonferroni correction.

Association between MMP-9 activity, hippocampal FW, hippocampal volume,
and cognition. For individuals with early phase psychosis, we ran twenty-
five linear regressions with illness duration/CPZ equivalent/PANSS positive/
PANSS negative/PANNS general scores as the independent variable,
respectively, and MMP-9 activity/left hippocampal FW/right hippocampal
FW/left hippocampal volume/right hippocampal volume as the dependent

variable, respectively. Indicated p-values are corrected for 25 tests, with
Bonferroni correction. In case of a significant association, we repeated
analyses including age, sex, BMI, cigarette smoking, and years of education
as covariates. For hippocampal FW analyses, we also included hippocampal
volume as a covariate; for hippocampal volume analyses, we also included
total intracranial volume as a covariate.
Last, we computed 30 linear regressions in all participants with MMP-9

activity/left hippocampal FW/right hippocampal FW/ left hippocampal
volume/ right hippocampal volume as independent variables, respectively,
and the six MCCP subscales as dependent variables, respectively. Indicated
p-values are corrected for 30 tests, with Bonferroni correction.
In case of a significant association, we ran two sets of additional

analyses. First, we repeated analyses including age, sex, BMI, cigarette
smoking, and years of education as covariates. For hippocampal FW
analyses, we included hippocampal volume as a covariate; for hippocam-
pal volume analyses, we included total intracranial volume as a covariate.
Next, we split the sample into 2) healthy individuals and 3) individuals with
early phase psychosis and rerun analyses with the above covariates.
Furthermore, we included CPZ and illness duration as additional covariates
in the analyses for individuals with early psychosis. Indicated p-values are
corrected for 18 tests, with Bonferroni correction.

RESULTS
Demographic information
We included 39 individuals with early phase psychosis and 44
healthy individuals. As shown in Table 1, groups were matched for
age and sex. We did not observe any group differences for
cigarette and alcohol use, but individuals with early phase
psychosis were more likely to use cannabis and had fewer years
of education. For more demographic information, please see
Table 1.

Group comparisons: MMP-9 activity and hippocampal FW are
increased in individuals with early phase psychosis, and
hippocampal volumes are decreased in individuals with early
psychosis compared to healthy individuals
The linear regression analyses showed a significant increase in
MMP-9 activity in individuals with early phase psychosis compared
to healthy individuals (F(1, 83)= 19.56, p= 0.00018, B= 12.81,
Cohen’s d= 4.74, Fig. 1A, Supplementary Table 1). Furthermore,
individuals with early phase psychosis demonstrated increased FW
levels in the right (F(1, 83)= 5.65, p= 0.020, B= 0.026, Cohen’s
d= 2.45, Fig. 1B, Supplementary Table 1) and left hippocampus
(F(1, 83)= 4.08, p= 0.049, B= 0.014, Cohen’s d= 1.96, Fig. 1B,
Supplementary Table 1). The left and right hippocampal volume
were significantly decreased in individuals with early phase
psychosis (Left: F(1, 83)= 17.27, p= 0.00045, B=−235.61,
Cohen’s d=−3.00; Right: F(1, 83)= 5.12, p= 0.026, B=−156.21,
Cohen’s d=−1.55, Supplementary Fig. 1A, Supplementary
Table 1).

Association between MMP-9 activity, hippocampal FW, and
hippocampal volume: higher MMP-9 activity is related to
higher hippocampal FW volumes in early phase psychosis
We performed linear regression to evaluate the association
between MMP-9 activity and hippocampal FW. We observed a
positive association between MMP-9 activity and the left and right
hippocampal FW in all participants (left: F(1, 83)= 8.36, p= 0.0051,
B= 0.0011, Cohen’s d= 1.96; right: F(1,83)= 10.68, p= 0.0204;
B= 0.0014, Cohen’s d= 3.46). Furthermore, we saw a positive
association between MMP-9 activity and the left and right
hippocampal FW in individuals with early phase psychosis (left:
F(1, 39)= 7.91, p= 0.0091; B= 0.0015, Cohen’s d= 2.19; right: F(1,
39)= 6.68, p= 0.015; B= 0.0013, Cohen’s d= 4.11) but not in
healthy individuals (Fig. 2, Supplementary Table 2).
MMP-9 activity was negatively associated with the left and right

hippocampal volumes in all participants (left: F(1,83)= 17.77,
p= 0.00095; B=−8.29, Cohen’s d=−32.52; right: F(1,83)= 8.84,
p= 0.049; B=−5.96, Cohen’s d=−25.98) and with the left
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hippocampus in healthy individuals (left: F(1,44)= 5.81, p= 0.022;
B=−3.17, Cohen’s d=−17.43). The associations between MMP-9
activity and the right hippocampal volume in healthy individuals,
and left and right hippocampal volumes in individuals with
psychosis were not quite significant after Bonferroni-correction
(Supplementary Fig. 1B, Supplementary Table 2).

Association between MMP-9 activity, hippocampal FW,
hippocampal volume, and cognition: higher MMP-9 activity

and hippocampal FW are related to worse processing speed
and working memory
Linear regression models did not show an association between
illness duration, CPZ equivalent, or PANSS scores and MMP-9
activity, hippocampal FW, and hippocampal volume in individuals
with early phase psychosis (Supplementary Table 3).
Next, we performed linear regression analyses to examine the

association between MMP-9 activity/hippocampal FW/ hippocam-
pal volume and the six subscales of the MATRICS battery in all
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Table 1. Demographic information.

Healthy individuals
(n= 44)

Individuals with early phase
psychosis (n= 39)

Statistics

Age (years, mean ± std) 24.99 ± 5.33 25.17 ± 5.79 t= 0.39, df= 83, p= 0.98

Male/female 30/14 27/12 X2= 0.0064, df= 1,
p= 0.99

Cigarette users/non-users 20/24 21/18 X2= 0.60, df= 1, p= 0.36

Alcohol use, assessed with the Case
Management Rating Scale (CMRS)

No use: 12
Light: 32
Moderate: 0
Severe: 0

No use: 17
Light: 20
Moderate: 1
Severe: 1

X2= 4.95, df= 3, p= 0.18

Cannabis use, assessed with the Case
Management Rating Scale (CMRS)

No use: 41
Light: 3
Moderate: 0
Severe: 0

No use: 14
Light: 10
Moderate: 5
Severe: 0

X2= 8.95, df= 3,
p= 0.011*

Body mass index (BMI) 22.63 ± 2.49 23.89 ± 3.35 t= 1.94, df= 80, p= 0.06

Years of education (mean ± std) 15.70 ± 2.67 12.73 ± 3.28 t= 5.55, df= 83,
p= 0.00082*

Illness duration (years, mean ± std) NA 2.30 ± 2.70 NA

CPZ equivalent (mg, mean ± std) NA 344.01 ± 326.84 NA

Diagnostic NA Schizophrenia: 25
Schizophreniform disorder: 0
Schizoaffective disorder: 6
Major depression with psychotic
features: 2
Bipolar disorder with psychotic
features: 2
Brief psychotic episode: 4

NA

PANSS positive (mean ± std) NA 13.30 ± 4.92 NA

PANSS negative (mean ± std) NA 15.35 ± 6.11 NA

PANSS general (mean ± std) NA 34.33 ± 9.47 NA

std standard deviation, CPZ chlorpromazine equivalents, PANSS Positive and Negative Syndrome Scale.
*Indicates statistical significance.
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participants. Higher MMP-9 activity was related to slower
processing speed and worse working memory. In addition, higher
left hippocampal FW was significantly associated with worse
working memory performance. We did not observe an association
between MMP-9 activity, hippocampal FW, or hippocampal
volume and the other MATRICS subscales (Supplementary
Table 4).
The association between MMP-9 activity and processing speed

and working memory remained significant when controlling for
age, sex, BMI, cigarette smoking, and years of education. However,
it did not remain significant when splitting groups into healthy
individuals and individuals with early phase psychosis (Fig. 3,
Supplementary Table 5). The association between left hippocam-
pal FW and processing speed and working memory did not reach
significance when controlling for all covariates in all participants
but was significant for processing speed in healthy individuals
only (Fig. 4, Supplementary Table 6).

DISCUSSION
Individuals with early phase psychosis demonstrated higher
peripheral MMP-9 activity, higher hippocampal FW, and lower
hippocampal volumes than healthy individuals. Higher MMP-9
activity was associated with higher hippocampal FW in all
participants and individuals with early course psychoses and
lower hippocampal volume in all participants. In addition, MMP-9
activity and hippocampal FW were associated with slower
processing speed and poorer working memory performance in
all participants.

Group comparisons: MMP-9 activity and hippocampal FW are
increased in individuals with early phase psychosis, and

hippocampal volumes are decreased in individuals with early
psychosis compared to healthy individuals
In line with previous studies [2, 19, 20], individuals with early phase
psychosis presented with higher MMP-9 activity than healthy
individuals. Of note, it does not seem that MMP-9 activation is
specific for psychosis. While a recent meta-analysis did not report
MMP-9 elevations in other psychiatric conditions [2], others
implicated MMP-9 in, e.g., depression, bipolar disorder, or
posttraumatic stress disorder [80, 81]. Furthermore, higher MMP-9
levels have repeatedly been reported in neurological conditions,
including multiple sclerosis [82, 83], encephalomyelitis [84], and
dementia [28, 29]. Interestingly, MMP-9 has also been associated
with blood-brain barrier dysfunctions related to seizures [85], stroke
[86], and in animal models of brain injury and aging [12, 87, 88].
In our sample, FW was also significantly increased in the

hippocampus of individuals with early phase psychosis, and
hippocampal volumes were decreased. Animal [89] and post-
mortem studies [90, 91] demonstrated the crucial role of the
hippocampus in psychosis [92]. Volumetric imaging studies have
consistently shown smaller hippocampal volumes in individuals
with chronic psychosis [38, 93]. However, findings in early phase
psychosis are somewhat inconclusive [39, 40]. While our results
align with these patterns, longitudinal studies are needed to test if
hippocampal microstructural abnormalities indicated by increased
hippocampal FW predate macrostructural abnormalities.
While all imaging measures are indirect, there is evidence that

increased FW in the brain is associated with extracellular processes
such as neuroinflammation [47]. Several white matter studies and
one gray matter study demonstrated increased FW levels in
psychosis, mostly around disease onset [53, 59, 61]. In addition, an
animal model showed a link between FW increase and inflamma-
tion [94], and correlation studies in individuals with psychosis and
major depressive disorders reported an association between FW
levels and peripheral inflammation [95, 96].
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Previous studies reported an elevation of peripheral and central
inflammatory markers in individuals with recent-onset and chronic
psychosis [97, 98], and postmortem studies found activated
microglia and increased microglial density in the brains of mostly
older individuals with chronic psychosis [99, 100]. In addition,
imaging [101] and postmortem studies [100] indicated abnorm-
alities in the crosstalk between the peripheral and central immune
response in psychosis. Of note, animal models showed that
maternal immune activation affects the hippocampus of the
offspring at a morphological and electrophysiological level,
inducing a psychosis-related phenotype [102]. Furthermore,
several studies have suggested that the hippocampus might be
particularly vulnerable to neuroinflammation [103].

Association between MMP-9 activity, hippocampal FW, and
hippocampal volume
MMP-9 has emerged as a potential regulator of the crosstalk
between the peripheral and central inflammatory response.
Upregulation of MMP-9 has been associated with blood-brain
barrier disruptions, extravasation of leukocytes into the brain
parenchyma [10, 12], and central nervous system penetrating
inflammation [13]. In individuals with epilepsy or neuroinflamma-
tory diseases, increased blood and cerebrospinal fluid MMP-9
were associated with blood-brain barrier disruptions and leakage
[14, 104, 105]. In dementia, blood MMP-9 upregulation was a
driver of blood-brain barrier breakdown [106] and cognitive
impairments [107]. Interestingly, a longitudinal study in individuals
with mild cognitive impairment and Alzheimer’s disease reported
an association between high MMP-9 levels and declines in
cognitive function and hippocampal volumes [108]. The authors
speculate that MMP-9 is involved in the pathophysiology of
Alzheimer’s disease at an early stage, potentially through a
reduction in mature nerve growth factor [108].

Our finding of an association between higher MMP-9 activity
and higher hippocampal FW aligns with our previous study
(conducted on a different, older sample) in which we speculated
that MMP-9 might alter hippocampal structure based on its role in
neuroplasticity [33]. Although it is unclear to what extent
peripheral MMP-9 activity corresponds to their brain activity, it is
worth acknowledging previous studies demonstrating that MMP-9
is expressed in the hippocampus [5] and is critical for hippocampal
structure and function [109, 110]. Preclinical studies linked MMP-9
expression, blood-brain barrier dysfunction, neuroinflammation,
and the hippocampus. Specifically, animal models showed
maternal immune activation coupled with MMP-9 upregulation
in the hippocampus [111]. Moreover, in a mouse model of redox
dysregulation relevant to schizophrenia, MMP-9 induced a
feedforward loop between oxidative stress and neuroinflamma-
tion, leading to interneuron maturation impairments [15]. In a
mouse model for Congenital Muscular Dystrophy type 1D, blood-
brain barrier permeability increased with an MMP-9 increase in the
hippocampus [112]. Furthermore, several preclinical studies
reported that surgery is associated with the upregulation of
MMP-9, blood-brain barrier disruption, neuroinflammation, and
disturbed hippocampal function [11, 113]. One study suggested
that surgery-induced imbalance of MMPs might, in turn, induce
degradation of occluding and cause blood-brain barrier disrup-
tions in the hippocampus [113]. The other study discussed the role
of MMP-9-promoted nectin-3 cleavage in the hippocampus and
degradations of the blood-brain barrier capillary basement
membrane and tight junction proteins [11].
Based on above evidence one can speculate that increased

MMP-9 activity in individuals with psychosis might lead to
neuroinflammatory activation, blood-brain barrier disruptions, and
subsequent FW increase in the hippocampus, further studies are
warranted to study the link between MMP-9 and brain structure.

0 10 20 30 40 50
0

20

40

60

80

Pr
oc

es
si

ng
 s

pe
ed

 (T
-s

co
re

)

p-value = 0.0091
B = -0.23

0 10 20 30 40 50
0

20

40

60

80

W
or

ki
ng

 m
em

or
y 

(T
-s

co
re

)

p-value = 0.0025
B = -0.33

0 10 20 30 40
30

40

50

60

70

MMP-9 activity

p-value = 0.39
B = -0.078

0 10 20 30 40
0

20

40

60

80

MMP-9 activity

p-value = 0.20
B = -0.068

0 10 20 30 40 50
0

20

40

60

80 p-value = 0.72
B = -0.020

0 10 20 30 40 50
0

20

40

60

80 p-value = 0.50
B = -0.46

Everyone Healthy individuals Individuals with early phase 
psychosis 

Fig. 3 Negative association between peripheral matrix metalloproteinase 9 (MMP-9 activity; fluorescence signal in arbitrary unit) and
processing speed and working memory in all participants. The results did not remain significant when splitting the group into healthy
individuals and individuals with early phase psychosis. The reported statistics are controlled for age, sex, BMI, cigarette smoking, and years of
education. For individuals with early phase psychosis, the results are also controlled for the effects of illness duration and chlorpromazine
(CPZ) equivalents.

J. Seitz-Holland et al.

1145

Neuropsychopharmacology (2024) 49:1140 – 1150



Association between MMP-9 activity, hippocampal FW,
hippocampal volume, and cognition
We found that higher MMP-9 activity correlated with poorer
processing speed and working memory performance in all
participants, and higher left hippocampal FW correlated with
poorer working memory performance in all participants. Proces-
sing speed and working memory performance are core deficits in
psychosis [114] and are linked to real-world functioning [115].
Previous large-scale studies showed that processing speed might
be the most impaired cognitive domain in psychosis and that
deficits in processing speed might mediate other cognitive deficits
[45, 116].
While no previous studies directly examined the relationship

between MMP-9, brain structure, and cognitive performance in
psychosis, several studies in other conditions support our findings.
Clinical findings demonstrated an association between higher
MMP-9 levels and an increased risk for cognitive impairments [23].
Similar to the MMP-9 upregulation, the association with cognition
is also not specific to psychosis, suggesting a physiological link
between MMP-9 activity and cognition. Previous studies revealed
a correlation between higher MMP-9 levels and neurocognition in
attention-deficit/hyperactivity disorder [25], epilepsy [26], or
systemic lupus erythematous [27]. Other studies have demon-
strated higher plasma MMP-9 in individuals with dementia than in
healthy individuals [28, 29].
While no previous study examined the association between

higher FW and cognitive deficits in psychosis, a vast body of
literature demonstrated the relationship between extracellular FW
and cognitive performance in healthy aging [117, 118] and
neurodegenerative disorders [119–121] and suggested that FW
might be more sensitive than other imaging measures to capture
cognition disruption [122]. Our findings of an association between

hippocampal FW but not hippocampal volume with cognition
support this notion.
The link between MMP-9 and brain structure and function is

clinically interesting, given the potential of MMP-9 inhibition and
the lack of treatment for cognitive deficits in psychosis. Preclinical
studies demonstrated that postoperative brain outcome is
improved when treating animals with MMP inhibitors [87]. One
study showed that simvastatin prevented the up-regulation of
MMP-9, improved spatial memory impairment, and attenuated
hippocampal cell damage [123]. In our previous preclinical
findings, MMP-9 inhibition during the peripubertal stage blocked
the increased neuroinflammation and oxidative stress and rescued
normal interneuron maturation until adulthood [15]. Moreover,
the antioxidant and glutathione precursor N-acetyl cysteine
blocked MMP-9, allowed normal interneuron maturation [124],
restored brain structure, and improved processing speed
[125, 126]. Similarly, minocycline, an inhibitor of MMP-9, has been
related to better cognitive outcomes after a subarachnoid
hemorrhage [127] or in hypertensive small vessel disease [128].

Limitations and future directions. The main limitation of the
present study is the relatively small sample and the cross-sectional
design, which limits our ability to draw causal conclusions. Given
the sample size, we could not examine potentially relevant
variables that might modulate MMP-9 activation, such as alcohol
or cannabis use. Furthermore, we focused our analyses on the
hippocampus, given its role in psychosis [38] and the previously
reported link between MMP-9 levels and the hippocampus [109].
Future studies should examine whether the associations observed
here are specific to the hippocampus, and longitudinal studies are
needed to explore the chronological sequence of MMP-9
upregulations, microstructural and macrostructural abnormalities,
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and cognitive impairments. Furthermore, it is important to note
that some of the reported associations do not remain significant
when separating individuals into healthy individuals and indivi-
duals with psychosis. This lack of correlations in the subgroups
might be caused by a potential lack of power or the fact that
group differences drove correlations.
While we find robust group differences, it is most likely that

there is a subgroup of individuals for whom MMP-9 pathology is
particularly relevant. Previous studies suggested that only a
subgroup of individuals with psychosis demonstrate blood-brain
barrier disruptions [97], neuroinflammation [100], and related
cognitive impairments [129]. Larger, transdiagnostic studies are
needed to address MMP-9 sensitivity and specificity to psychosis
in order to examine if MMP-9 can be used as a peripheral
biomarker to identify vulnerable individuals or to monitor
treatment response.
Previous studies demonstrated the role of MMP-9 in the

degradation of the blood-brain barrier [11] and suggested that
peripheral MMP-9 is directly associated with central MMP-9 [130].
However, further multimodal studies are needed to validate this
assumption, examine the association between MMP-9 and other
peripheral and central markers of inflammation, and truly under-
stand the role of MMP-9 in the crosstalk between peripheral and
central inflammation in psychosis.

CONCLUSION
The present study is the first to report an association between
peripheral MMP-9 activity and extracellular hippocampal FW in
early phase psychosis. These findings tentatively support the idea
that a neuroinflammatory response, blood-brain barrier disrup-
tions, and altered crosstalk between peripheral and central
inflammation might characterize, in part, psychosis pathophysiol-
ogy. Additionally, since both FW and MMP-9 changes are related
to cognition in all participants, it might suggest this mechanism’s
critical role in cognitive deficits (albeit not necessarily specific to
psychosis). Our study warrants further investigations into the
treatment potential of MMP-9 modulators and inhibitors in
alleviating cognitive deficits that are associated with many
psychiatric disorders but are currently untreatable.
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