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Evidence from “big data” for the default-mode hypothesis of
ADHD: a mega-analysis of multiple large samples
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We sought to identify resting-state characteristics related to attention deficit/hyperactivity disorder, both as a categorical diagnosis
and as a trait feature, using large-scale samples which were processed according to a standardized pipeline. In categorical analyses,
we considered 1301 subjects with diagnosed ADHD, contrasted against 1301 unaffected controls (total N= 2602; 1710 males
(65.72%); mean age= 10.86 years, sd= 2.05). Cases and controls were 1:1 nearest neighbor matched on in-scanner motion and key
demographic variables and drawn from multiple large cohorts. Associations between ADHD-traits and resting-state connectivity
were also assessed in a large multi-cohort sample (N= 10,113). ADHD diagnosis was associated with less anticorrelation between
the default mode and salience/ventral attention (B= 0.009, t= 3.45, p-FDR= 0.004, d= 0.14, 95% CI= 0.004, 0.014), somatomotor
(B= 0.008, t= 3.49, p-FDR= 0.004, d= 0.14, 95% CI= 0.004, 0.013), and dorsal attention networks (B= 0.01, t= 4.28, p-
FDR < 0.001, d= 0.17, 95% CI= 0.006, 0.015). These results were robust to sensitivity analyses considering comorbid internalizing
problems, externalizing problems and psychostimulant medication. Similar findings were observed when examining ADHD traits,
with the largest effect size observed for connectivity between the default mode network and the dorsal attention network
(B= 0.0006, t= 5.57, p-FDR < 0.001, partial-r= 0.06, 95% CI= 0.0004, 0.0008). We report significant ADHD-related differences in
interactions between the default mode network and task-positive networks, in line with default mode interference models of
ADHD. Effect sizes (Cohen’s d and partial-r, estimated from the mega-analytic models) were small, indicating subtle group
differences. The overlap between the affected brain networks in the clinical and general population samples supports the notion of
brain phenotypes operating along an ADHD continuum.
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INTRODUCTION
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelop-
mental disorder characterized by age-inappropriate inattention,
hyperactivity and impulsivity [1]. Its pathophysiology is unknown,
although widely considered to involve alterations in the interplay
of large-scale brain networks [2–4]. Such networks can be defined
according to synchronized fluctuations in low frequency blood-
oxygen-level-dependent signal examined in the absence of an
external cognitive task [2, 5, 6]. The most prominent models in the
literature implicate ADHD-related abnormalities in interactions
between the default mode network and task-positive networks
[2, 3, 7, 8]. The default mode network consists of interconnected
midline regions including anterior/ventromedial prefrontal cortex,
the posterior cingulate and precuneus, and inferolateral parietal,
middle and medial temporal regions [5, 9]. This network shows
attenuated activity during externally-oriented attention, is acti-
vated during rest, attentional lapses and spontaneous mind‐
wandering, is putatively involved in self-referential and internally-
oriented cognitions, and shows antagonistic relationships with
task-positive networks implicated in externally-directed attention
and cognition [5, 9–11]. Default mode network interference

models of ADHD propose that greater positive connectivity and/
or less negative connectivity between the default mode and task-
positive networks interferes with the performance of the latter
during tasks requiring executive control and effortful attention
[2, 3, 7]. These network alterations are suggested to underlie the
increased instances of attention lapses, behavioral/cognitive
instability and mind-wandering observed in ADHD [2, 3, 7, 8].
This model arose initially from a series of studies that reported

increased connectivity/decreased anti-correlation between the
default mode network and task positive networks in individuals
with ADHD, relative to unaffected controls [8, 12–16]. However,
these findings were not always replicated [17–19]. Furthermore, a
wide range of significant associations involving regions and
networks outside of the default mode network have been
reported, again with inconsistency (see Cortese and colleagues
[20] for a systematic review). These discrepant findings are likely
due in part to the typically small sample sizes, which can inflate
type-I and type-II errors [20, 21].
To detect more consistent themes, several meta-analyses have

attempted quantitative summaries of published findings, most of
which have reported connectivity between candidate regions
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(‘seeds’) and the remaining brain (‘voxels’) [20, 22, 23]. However,
these meta-analyses have also reached different conclusions. For
example, one meta-analysis reported hyperconnectivity between
the fronto-parietal network and the default mode network and
between the fronto-parietal network and other task-positive
networks in individuals with ADHD relative to unaffected controls
[22], while a second reported abnormal connectivity within the
default mode network [23]. A third meta-analysis reported no
significant convergence in implicated brain regions between
studies [20]. The discrepant findings likely reflect the different
search strategies, different meta-analytic approaches, and the
reliance on published seed-to-voxel resting-state data, which are
not suited to retrospective meta-analyses due to the highly
heterogenous region-of-interest definitions in the different papers
[20]. Moreover, as these meta-analyses relied on the published
literature, they were susceptible to publication bias and highly
limited in their ability to assess potentially important subject-level
confounds such as in-scanner motion, medication status and
comorbid emotional and behavioral problems.
Here, we aimed to overcome the limitations of prior meta-

analyses of published data by examining resting-state connectivity
in patients with ADHD and unaffected controls through a mega-
analysis of multiple large datasets which were processed using the
same standardized preprocessing pipeline [24–27]. To explore
diagnostic signals, we used data from the ADHD-200 [28], Healthy
Brain Network (HBN) [29], Adolescent Brain Cognitive Develop-
ment (ABCD) [30], and Neurobehavioral Clinical Research (NCR)
[31] cohorts. All of these cohorts provide sufficient data to make a
diagnosis of the presence of ADHD. The large size of our sample
allows this investigation to closely match cases with unaffected
controls on features that have all been shown to act as potential
confounds in prior research, including age, gender, in-scanner
motion and minutes of useable data, medication and comorbid
emotional and behavioral problems [25, 32–35].
Furthermore, since research findings suggest that ADHD may

exist at the extreme end of a continuum of ADHD traits in the
general population [27, 36, 37], we also examined associations
between resting-state connectivity and ADHD-traits assessed
using the Child Behavior Checklist DSM-Oriented ADHD (CBCL-
ADHD) subscale (N= 10,113) [38]. This analysis included data from
the large National Consortium on Alcohol and Neurodevelopment
in Adolescence (NCANDA) [39] and Human Connectome Project-
Development (HCP-D) [40] cohorts. Based on previous theoretical
models, we hypothesized that both the diagnosis of ADHD and
ADHD-traits would be associated with alterations in default mode
connectivity [2, 3, 7]. However, given the inconsistencies in the
findings from the existing ADHD resting-state literature and meta-
analyses, we also tested for potential ADHD-related alterations in
network metrics outside of those involving the default mode
network [20].

MATERIALS AND METHODS
Samples
We included data from the ADHD-200, HBN, ABCD, NCR, NCANDA and
HCP-D datasets [28–31, 40–47]. Details on ADHD diagnostic methods for
each study are given in the Supplement, along with narrative summaries of
each study’s recruitment methods, protocols, assent/consent procedures
and image acquisition parameters. All studies had IRB/ethical approval and
acquired informed assent and/or consent using IRB approved procedures
(see Supplement).
The ADHD-200, HBN, ABCD and NCR datasets included youths with

ADHD diagnoses as well as unaffected controls. Each of the sites from the
NCANDA dataset had only a small number of individuals with ADHD
diagnoses, and diagnostic information was not available for HCP-D. We
therefore included these datasets in the analyses examining associations
with the CBCL-ADHD scale, but not in the case-control comparisons.
In the case-control comparison, 1:1 nearest neighbor matching without

replacement was conducted using the MatchIt::matchit function in R [48].

Groups were matched on age, sex, in-scanner motion and site. Details for
this matched sample are given in Table 1. Inclusion/exclusion criteria are
given in the Supplement. In brief, subjects were aged ≥6 years and ≤19
with an IQ > 70. For the categorical analysis, both ADHD and non-ADHD
subjects were excluded if they met criteria for possible psychosis or bipolar
disorder. Further, to be eligible as an unaffected control, subjects had to
have minimal ADHD symptoms and not be on psychostimulant medica-
tion. Other medications were allowed for both groups, including anti-
depressants (ADHD group N= 29; matched controls= 17), anti-psychotics
(ADHD group N= 12; matched controls= 2) and anti-convulsant medica-
tions (ADHD group N= 4; matched controls= 4). Emotional and behavioral
problems were assessed using the CBCL and are reported for both groups
in Table 1. In the analysis examining associations between the ADHD-CBCL
scale and resting-state connectivity, we used N= 10,113 subjects from the
HBN, ABCD, NCR, NCANDA and HCP-D datasets who provided useable
resting-state data and the required covariate data.

Resting-state connectivity
Details on MRI acquisition are provided in the Supplement. Preprocessing
was performed using a well validated and standardized 36-parameter plus
despiking pipeline [24], implemented in fMRIPrep and xcpEngine [24, 49].
Runs with mean-RMS ≤ 0.3 were concatenated using fslmerge to create a
single time-series per subject [50, 51]. This mean-RMS threshold is stricter
than the ones adopted in some previous studies of ADHD [52–55], but
similar to thresholds used to remove runs with gross motion in recent
developmental fMRI studies adopting the same 36-parameter plus
despiking pipeline [24, 25]. We examined resting-state connectivity within
and between resting-state networks using the Schaefer 400 ROI
parcellation, which has been mapped to the 7 networks described by
Yeo [6, 56]. These networks include the default mode network, task-
positive networks including the dorsal attention network, frontoparietal
network and salience/ventral attention network, primary motor and visual
networks and a limbic network. Given that the limbic network consists of
very ventral portions of orbitofrontal cortex and temporal lobe, which
often suffer from signal loss and poor coverage, we excluded this network
from our analyses. Time courses from all voxels within a 5-mm spherical
radius around each of the ROIs were averaged and then correlated with
each other, thereby creating an ROI-to-ROI connectivity matrix for each
subject. These matrices were Fisher-z transformed. We then calculated
within and between network connectivity for each of the networks. Within
network connectivity for each network was defined as the average Fisher-z
score for connections involving two regions from that network. Between
network connectivity was calculated for each pairwise combination of
networks (e.g., default mode network to dorsal attention network) by
averaging all the Fisher-z scores of inter-network connections involving the
relevant networks.

Modeling approach
The mega-analysis was performed using the lmerTest (version 3.1-3)
software package [57] for R (version 4.0.2; http://www.r-project.org). Our
mega-analytic approach was adapted from recent consortia-based mega-
analyses including the Enhancing Neuro Imaging Genetics Through Meta-
Analysis (ENIGMA) and REST-meta-MDD studies, and has been associated
with increased statistical power relative to traditional meta-analytic
methods while also allowing for the consideration of subject-level
covariates [26, 27, 58, 59]. For the case-control comparison, the model
included ADHD group (ADHD= 1 and non-ADHD= 0) as the predictor
variable of interest. Although subjects were nearest-neighbor matched on
age, sex, motion and site, we took a double-adjustment approach to
control for potential residual associations between covariates and the
network metrics by retaining covariates in the models [60]. Nested random
intercepts were included for family ID and site and cohort [59]. This model
was applied to each of the connectivity metrics, with multiple comparison
correction performed using the Benjamini-Hochberg method [61]. A similar
modeling approach examined CBCL-ADHD t-scores as the predictor
variable of interest. Effect sizes were estimated based on the t-values
from the linear mixed effects models. See Supplement for model syntax.

Sensitivity analyses
Comorbid psychiatric problems were most consistently assessed across
studies using the parent-rated CBCL, available for all but the ADHD-200
cohorts [38]. We therefore used the internalizing broadband subscale from
the CBCL to control for internalizing problems including anxiety and
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depression. This involved using scores on this scale as an additional
variable in the matching algorithm for the case-control analysis, and as an
additional covariate in the statistical models. To rule out the confounding
influence of non-ADHD externalizing problems, in a sensitivity analysis we
matched groups based on the CBCL subscales for conduct disorder and
oppositional defiant disorder and included scores on these scales as extra
covariates. As in-scanner motion has significant effects on estimates of
resting-state connectivity [24], we repeated the primary analyses using a
strict motion threshold of mean-RMS ≤ 0.15 which retained only subjects
with no or only very minimal in-scanner motion (half the original threshold
of mean-RMS ≤ 0.3). We re-ran case-control analyses while excluding
subjects with past-ADHD (ADHD in full remission). Finally, we performed
analyses excluding ADHD subjects taking psychostimulants, or for whom
medication status was unclear. There are presently unresolved “known
issues” with the ADHD diagnoses included in ABCD release 3.0 [62]. To
maximize the sample size, and following other recent work [62], we initially
applied a broad definition of ADHD to subjects in the ABCD dataset.
Nonetheless, to confirm that effect sizes were not underestimated due to
the potential inclusion of subjects with subclinical ADHD presentations, we
also performed sensitivity analyses applying stricter ADHD diagnostic
criteria for subjects in the ABCD study. The KSADS-COMP algorithm
required that symptoms cause interference in at least one setting (e.g,
home, social or school functioning), which is in line with current DSM-5
criteria. However, it did not assess the presence of symptoms in two or
more contexts, as required by DSM-5 [1]. We therefore used item-level data

from the KSADS-COMP to ensure that ADHD symptoms caused difficulties
for the subject in at least two contexts (See Supplement). Note that since
the items were intended to assess interference associated with symptoms
rather than their mere presence, this is arguably a stricter requirement than
current DSM-V criteria [1]. Sensitivity analyses were performed on network
metrics that were significant in the primary models and examined whether
models retained statistical significance (uncorrected p < 0.05) and similar
effect sizes.

RESULTS
Details on the matched sample of N= 1301 ADHD cases and
N= 1301 unaffected controls are given in Table 1. Following
correction for multiple comparisons, mixed effects mega-analytic
models indicated significant group differences in resting-state
connectivity between the default mode network and the dorsal
attention network (B= 0.01, t= 4.28, p-FDR < 0.001, d= 0.17, 95%
CI= 0.006, 0.015), between the default mode network and the
salience/ventral attention network (B= 0.009, t= 3.45, p-FDR=
0.004, d= 0.14, 95% CI= 0.004, 0.014), and between the default
mode network and somatomotor network (B= 0.008, t= 3.49,
p-FDR= 0.004, d= 0.14, 95% CI= 0.004, 0.013). These networks
showed a stronger anti-correlation in unaffected controls than in

Table 1. Characteristics of N= 1301 subjects with ADHD and N= 1301 matched unaffected controls included in the case-control analysis, as well as
N= 10,113 subjects included in the analyses of ADHD-traits.

Non-ADHD ADHD CBCL sample

Variable Mean (sd) or
count (%)

Mean (sd) or
count (%)

Stat p sig es Mean (sd) or
count (%)

Age, years 10.86 (2.05) 10.86 (2.05) t= 0.00 ~1 d= 0.00 10.74 (1.89)

Subtype — — — — — — —

Combined Type — 370 (28.44%) — — — — 392 (4.07%)

Hyperactive/
Impulsive Type

— 70 (5.38%) — — — — 90 (0.93%)

Inattentive Type — 519 (39.89%) — — — — 528 (5.49%)

ADHD-NOS — 103 (7.92%) — — — — 116 (1.2%)

past-ADHD/ADHD in
partial remission

— 239 (18.37%) — — — — 314 (3.26%)

Gender (M) 855 (65.72%) 855 (65.72%) χ2 < 0.01 ~1 OR= 1.00 5045 (49.88%)

Minutes of data 12.73 (4.22) 12.64 (4.29) t=−0.54 0.59 d=−0.02 15.37(4.64)

Mean-RMS 0.17 (0.05) 0.17 (0.05) t=−0.06 0.95 d=−0.002 0.17 (0.05)

CBCL-ADHD 51.42 (2.9) 61.03 (7.4) t= 39.53 <0.001 *** d= 1.71 53.18 (5.64)

CBCL-Internalizing 47.84 (10.47) 55.28 (10.66) t= 16.39 <0.001 *** d= 0.70 48.54 (10.72)

CBCL-CD 51.99 (4.09) 56.33 (7.77) t= 16.19 <0.001 *** d= 0.70 52.81 (5.36)

CBCL-ODD 52.49 (4.23) 57.57 (7.73) t= 18.87 <0.001 *** d= 0.81 53.38 (5.42)

Race — — χ2= 9.25 0.06 V= 0.03

Asian 32 (2.89%) 17 (1.57%) — — — — 272 (2.74%)

Black/African American 119 (10.75%) 142 (13.12%) — — — — 1248 (12.51%)

Mixed 142 (12.83%) 158 (14.6%) — — — — 1213 (12.15%)

Other 61 (5.51%) 65 (6.01%) — — — — 529 (5.3%)

White 753 (68.02%) 700 (64.7%) — — — — 6716 (67.29%)

Ethnicity — — χ2= 1.57 0.21 OR= 0.87

Hispanic 205 (18.65%) 218 (20.9%) — — — 1955 (19.66%)

Non-Hispanic/Latino 894 (81.35%) 825 (79.1%) — — — 7985 (80.33%)

Note. For the case-control comparison there were N= 434 missing CBCL-ADHD, N= 434 missing CBCL-internalizing, N= 434 missing CBCL-CD, N= 434
missing CBCL-ODD, N= 413 missing race. N= 460 missing ethnicity. For the CBCL models, there were N= 494 missing diagnoses, N= 133 missing race,
N= 173 missing ethnicity.
ADHD attention deficit/hyperactivity disorder, ADHD-NOS attention deficit/hyperactivity disorder not otherwise specified, CBCL child behavior checklist, CBCL-
ADHD child behavior checklist attention deficit/hyperactivity disorder t-score, CBCL-Internalizing child behavior checklist internalizing t-score, CBCL-CD child
behavior checklist conduct disorder t-score, CBCL-ODD oppositional defiant disorder t-score, RMS root‐mean‐square.
*p < 0.05, **p < 0.01, ***p < 0.001.
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ADHD subjects. A relationship with increased positive connectivity
between the default mode network and the other major task
positive attention network, the frontoparietal network, was
observed at p < 0.05 uncorrected threshold but did not survive
FDR correction. Mean connectivity values are presented in
Supplementary Table 1. See Table 2 and Fig. 1 & 2. Results are
summarized for all models, including non-significant ones, in
Supplementary Table 2.

Effects of ADHD traits on functional connectivity
We next considered ADHD as a trait, incorporating data from
additional cohorts, to give a sample size of 10,113 (Table 1).
ADHD traits were associated with decreased anti-correlation
between the default mode network and the dorsal attention
network (B= 0.0006, t= 5.57, p-FDR < 0.001, partial r= 0.06, 95%

CI= 0.0004, 0.0008), between the default mode network and the
salience/ventral attention network (B= 0.0005, t= 4.06, p-FDR <
0.001, partial r= 0.04, 95% CI= 0.0002, 0.0007) and more positive
connectivity between the default mode network and the
frontoparietal network (B= 0.0004, t= 4.31, p-FDR= <0.001,
partial r= 0.04, 95% CI= 0.0002, 0.0005). Additional significant
associations are listed in Table 2. See Fig. 3 and Supplementary
Table 3 and Supplementary Figs. 1 and 2.

Sensitivity analyses
We used the internalizing broadband subscale from the CBCL to
control for internalizing problems including anxiety and depres-
sion, which have been reported to be elevated in individuals with
ADHD and associated with alterations in resting-state connectivity
[58, 63]. The case-control differences remained significant. To rule

Table 2. Significant associations (p < 0.05) between resting-state connectivity and ADHD diagnosis (N= 2602) and between resting-state
connectivity and ADHD-traits (N= 10,113).

Network 1 Network 2 Β SE t 95% CI FDR p ES

Significant case-control differences (N= 2602)

Default mode Dorsal attention 0.01 0.002 4.28 0.006, 0.015 <0.001*** d= 0.17

Default mode Salience/ventral attention 0.009 0.003 3.45 0.004, 0.014 0.004** d= 0.14

Default mode Somatomotor 0.008 0.002 3.49 0.004, 0.013 0.004** d= 0.14

Significant associations with scores on the CBCL-ADHD scale (N= 10,113)

Default mode Dorsal attention 0.0006 0.0001 5.57 0.0004, 0.0008 <0.001*** r= 0.06

Default mode Frontoparietal 0.0004 0.00009 4.31 0.0002, 0.0005 <0.001*** r= 0.04

Dorsal attention Dorsal attention −0.0005 0.0001 −4.02 −0.0007, −0.0002 <0.001*** r=−0.04

Default mode Salience/ventral attention 0.0005 0.0001 4.06 0.0002, 0.0007 <0.001*** r= 0.04

Salience/ventral attention Somatomotor 0.0004 0.0001 3.56 0.0002, 0.0006 0.002** r= 0.04

Default mode Somatomotor 0.0003 0.0001 2.58 0.00007, 0.0005 0.035* r= 0.03

CBCL-ADHD child behavior checklist ADHD t-score; FDR false discovery rate.
*p < 0.05, **p < 0.01, ***p < 0.001.
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Fig. 1 Forest plots for brain network metrics that differed significantly (corrected p < 0.05) between N= 1301 ADHD cases and N= 1301
non-ADHD controls. The top line shows the effect size (Cohen’s d) and corresponding 95% confidence intervals for the main mega-analytic
model. The subsequent rows show the results of models performed within each cohort (NCR N= 122; HBN= 575; ADHD200-Peking N= 199;
ADHD200-NYU N= 182; ABCD N= 1524). Panel (A) shows the results for connectivity between the default mode network and the dorsal
attention network. Panel (B) shows the results for connectivity between the default mode network and the salience/ventral attention network.
Panel (C) shows the results for connectivity between the default mode network and somatomotor network.
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out the confounding influence of commonly comorbid non-ADHD
externalizing problems, we matched groups based on the CBCL
subscales for conduct disorder and oppositional defiant disorder
and included scores on these scales as extra covariates in our
mega-analytic models, with case-control differences remaining
significant.
As in-scanner motion has significant effects on estimates of

resting-state connectivity [24], we repeated the primary analyses
using a strict motion threshold of mean-RMS ≤ 0.15 (half the
original threshold) which retained only subjects with no or only
very minimal in-scanner motion, with the results remaining
significant. The case-control findings were robust to including
only psychostimulant-free subjects, which is important in light of
work showing a modulatory effect of psychostimulants on default
mode connectivity [64], and to excluding subjects with past-
ADHD. The findings held when considering a stricter definition of
ADHD in the ABCD cohort. Associations with CBCL scores were
also typically robust in these sensitivity analyses. See Supplemen-
tary Tables 4 and 5 for details.

DISCUSSION
In this study, we applied meta-analytic methods to examine
resting-state connectivity metrics associated with ADHD diagnosis
and ADHD-traits. Using both approaches, we found that ADHD
was associated with relatively more positive connectivity/
decreased negative connectivity between the default mode
network and task-positive networks. Significant associations had
consistently small effect sizes (ranging from d= 0.14 to d= 0.17
for case-control comparisons, and partial-r= 0.03 to partial-
r= 0.06 for relationships with CBCL-ADHD). These findings were
robust to sensitivity analyses which considered in-scanner motion,
medication exposure and comorbid internalizing and externaliz-
ing problems.
We report that ADHD was associated with stronger positive

connectivity/weaker anticorrelations between the default mode
and task-positive networks. The findings of more positive/
decreased negative connectivity between the default mode
network and dorsal and ventral attention networks is consistent

with numerous previous reports on individual cohorts [8, 12–16].
The dorsal attention network is comprised of bilateral intraparietal
sulcus and the frontal eye fields and enables top-down control
over spatial attention [6, 65, 66]. The salience/ventral attention
network, on the other hand, consists of portions of bilateral
inferior frontal gyrus/anterior insula, temporo-parietal junction
and posterior medial frontal cortex, and is commonly engaged
across tasks requiring externally-focused attention [67]. Network
segregation between the default mode and task-positive networks
is argued to act as a buffer against the disruption of attentional
processes by internally generated cognition [68], and has been
associated with better performance on attention and executive
function tasks [8, 69, 70], while positive connectivity or co-
activation of these networks has been associated with attention
lapses and mind-wandering [10, 69, 71, 72]. Attention deficits are
one of the key domains of impairment in ADHD, and previous
work using dorsal attention and salience/ventral attention
network-dependent attention paradigms has reported decreased
default mode network deactivation in individuals with ADHD
relative to controls, and impaired performance [35, 65]. Our results
are consistent with dominant models of network abnormalities
associated with the disorder, which propose an important role for
decreased default mode segregation in the cognitive and
behavioral impairments which characterize ADHD [2, 3, 7, 73].
The network findings were highly similar whether performing a

case-control comparison or examining ADHD as a continuous trait.
This is analogous to the findings of the ENIGMA-ADHD Working
Group, which reported that ADHD diagnosis and traits were
associated with similar patterns of smaller cortical surface area
[27], and provides further support for associations between ADHD
traits and brain phenotypes operating along a continuum and
independently of clinical diagnosis [27, 37]. These results are also
compatible with a large genetic literature, with numerous twin
studies and studies of common risk variants showing that the
same genetic risks contribute to both diagnosable ADHD and
dimensional ADHD traits in the population [36, 74].
We advance the literature by applying mega-analysis to ‘raw’

data, rather than integrating published data through meta-
analyses, as the latter is biased by reported signals that attained
thresholds for declaring significance within each study, and
cannot account for important subject-level confounders. By using
‘raw’ data from each cohort, we could use a standardized
preprocessing pipeline and uniform network parcellation. Further
our use of ‘raw’ data allowed us to focus on diagnostic signals that
hold when cases and controls were matched on critical
confounders. For instance, cases and controls were 1:1 matched
on in-scanner motion, and slightly larger effect sizes were
observed when applying an exceptionally strict motion threshold.
This is important considering the known effects of in-scanner
motion on estimates of resting-state connectivity and the
commonly observed correlations between ADHD diagnosis and
in-scanner motion [75]. Relatedly, as in previous work, ADHD was
associated with elevated internalizing and externalizing problems
[63]. However, our results were robust after further matching
subjects with available CBCL data on these symptom domains,
with modest increases in effect sizes. Finally, using a subgroup of
unmedicated subjects we were able to rule out the confounding
influence of psychostimulant medication on case-control
differences.
The effect sizes were small but in a similar range to those

reported previously by the ENIGMA-ADHD mega-analyses of
alterations in structural brain phenotypes [26, 27, 59], as well as
recent mega-analyses and “big data” brain-wise association
studies of multiple psychiatric disorders and related behavioral
traits [58, 76–79]. Our findings support the notion that although
subtle, between-group differences in default mode connectivity
are detectable using large neuroimaging samples, atypical
connectivity is neither necessary nor sufficient for the
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development of ADHD [20]. Our mega-analytic effect sizes are
smaller than those observed in previous, smaller studies of ADHD
[12, 19, 20]. This is expected, as findings surviving significance in
underpowered studies, even if they are true positives, are likely to
be associated with inflated effect sizes [21, 30, 76]. However, we
only considered network-level metrics in the present work, as they
were deemed best suited to testing default mode interference
models of the disorder. Future studies may report larger effect
sizes for alternative resting-state metrics relevant to ADHD, such
as those assessed at the network-edge or voxel-level. Furthermore,
we combined data from multiple datasets with differing imaging
protocols, recruitment procedures and diagnostic tools. Studies of
more homogenous samples may be associated with larger effect
sizes, with the trade-off that the results may be less generalizable.
Moreover, recent work has suggested the utility of aggregating
disorder-related brain phenotypes into single cumulative value
estimates, which are analogous to polygenic risk scores for
common genetic variant risk [80, 81]. Relatedly, normative
modeling methods aggregate the overall number and size of
deviations from developmentally typical templates of brain
phenotypes regardless of sign, network or spatial location, with
initial results based on structural brain phenotypes pointing
towards ADHD being best characterized as a disorder of broadly

atypical brain development, rather than one of any particular set
of brain regions or networks [82]. In addition, several important
studies have shown promise in using multivariate predictive
modelling methods, including machine learning algorithms, to
aggregate distributed patterns from across the entire brain
associated with the cognitive, clinical or demographic phenotype
of interest, and to test how well such multivariate patterns predict
these phenotypes in unseen data [76, 83–86]. Considering the
small effect sizes at the level of individual brain phenotypes, these
methods based on cumulative risk scores and/or multivariate
prediction methods may offer better predictive power for
imaging-based classification of ADHD [76, 80, 86]. Finally,
longitudinal work using structural MRI has suggested ADHD to
be a disorder of abnormal neurodevelopmental trajectories
[37, 87]. Future work is needed in large samples to examine
whether detected effect sizes are larger for associations with
dynamic properties of functional brain maturation compared with
static estimates of resting-state connectivity [37, 53].
Further limitations must also be kept in mind. First, our cross-

sectional case-control design cannot speak to the direction of any
potential causal relationships between ADHD and default mode
connectivity, and work combining genomics, heritability and
longitudinal methods is required to delineate any causal
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relationships. Second, given the large sample size we were only
able to process the data using a single pipeline. Future work
should consider the effects of preprocessing pipelines by
adopting a multiverse approach [88]. Third, while applying motion
thresholds and controlling for mean-RMS was essential for
reducing motion-related noise and potential type-I errors resulting
from group differences in in-scanner motion, since ADHD
diagnosis and in-scanner motion have been reported to be
correlated and to share common genetic influences, these steps
may have reduced our statistical power to detect true between-
group differences [89]. Fourth, while we controlled carefully for
psychiatric comorbidities such as internalizing and externalizing
problems, which were well characterized across most included
datasets using the available CBCL scales, common neurodevelop-
mental comorbidities such as autism spectrum disorder have also
been associated with hyperconnectivity between the default
mode and task-positive networks. It is therefore possible that the
hyperconnectivity reported here may reflect a feature of
neurodevelopmental problems defined more broadly [14, 77].
In summary, we conducted the largest assessment to date of

resting-state connectivity alterations associated with ADHD
diagnosis and ADHD traits in the general population. The results
provided converging evidence for an association between ADHD
and connectivity between the default mode network and task
positive networks, which were in line with existing models of the
disorder and robust in numerous sensitivity analyses. Nonetheless,
the small effect sizes suggest the resting-state abnormalities may
at best form only a small part of the overall pathophysiology of
ADHD, and future work is required to confirm the causal
associations between brain functioning and ADHD symptoms
often assumed in current models in the literature.
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