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Integrating human brain proteomic data with genome-wide
association study findings identifies novel brain proteins in
substance use traits
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Despite the identification of a growing number of genetic risk loci for substance use traits (SUTs), the impact of these loci on protein
abundance and the potential utility of relevant proteins as therapeutic targets are unknown. We conducted a proteome-wide
association study (PWAS) in which we integrated human brain proteomes from discovery (Banner; N= 152) and validation
(ROSMAP; N= 376) datasets with genome-wide association study (GWAS) summary statistics for 4 SUTs. The 4 samples comprised
GWAS of European-ancestry individuals for smoking initiation [Smk] (N= 1,232,091), alcohol use disorder [AUD] (N= 313,959),
cannabis use disorder [CUD] (N= 384,032), and opioid use disorder [OUD] (N= 302,585). We conducted transcriptome-wide
association studies (TWAS) with human brain transcriptomic data to examine the overlap of genetic effects at the proteomic and
transcriptomic levels and characterize significant genes through conditional, colocalization, and fine-mapping analyses. We
identified 27 genes (Smk= 21, AUD= 3, CUD= 2, OUD= 1) that were significantly associated with cis-regulated brain protein
abundance. Of these, 7 showed evidence for causality (Smk: NT5C2, GMPPB, NQO1, RHOT2, SRR and ACTR1B; and AUD: CTNND1). Cis-
regulated transcript levels for 8 genes (Smk= 6, CUD= 1, OUD= 1) were associated with SUTs, indicating that genetic loci could
confer risk for these SUTs by modulating both gene expression and proteomic abundance. Functional studies of the high-
confidence risk proteins identified here are needed to determine whether they are modifiable targets and useful in developing
medications and biomarkers for these SUTs.

Neuropsychopharmacology (2022) 47:2292–2299; https://doi.org/10.1038/s41386-022-01406-1

INTRODUCTION
Substance use traits (SUTs), including smoking initiation (Smk),
alcohol use disorder (AUD), cannabis use disorder (CUD), and
opioid use disorder (OUD), are highly prevalent and leading
causes of morbidity and mortality [1–3]. An estimated 40–60% of
the risk of SUTs is attributable to genetic factors [4–6]. Recent
large-scale genome-wide association studies (GWAS) of SUTs
have implicated underlying biological systems [7–10]. Despite
the growing success of GWAS in identifying associated risk
polymorphisms, many of the identified variants are intronic or
intergenic [11] and exert only small phenotypic effects,
suggesting that they are mediated by the regulation of
transcription.
Recent efforts to understand how genetic variation influences

gene transcription and contributes to disease have led to the
development of analytic frameworks such as functional summary-
based imputation (FUSION) [12], S-PrediXcan [13], summary data-
based Mendelian randomization (SMR) [14], and Coloc [15]. These
frameworks utilize a transcriptome-wide association study (TWAS)
approach, integrating external gene expression reference data
and GWAS results to prioritize genes whose cis-regulated
expression is associated with disease phenotypes.

To facilitate the identification of genes with cis-regulated
expression profiles, TWASs have been conducted for cigarette
smoking [11], cocaine dependence [11], problematic alcohol use
(PAU) [8], and OUD [10]. Although these TWASs shed light on
potential mechanisms through which genetic loci associated with
SUTs exert their effects, the evidence they provide of expression
quantitative trait loci (eQTL) effects are at the level of messenger
RNA (mRNA), rather than protein abundance. Genetic variation can
influence protein abundance by altering the rate and stability of
gene expression [16], though it is an empirical question whether
the identified genetic loci exert their effects on SUTs by
modulating protein abundance in the brain. The importance of
this question lies in the fact that proteins, as the final products of
gene expression, are the main functional components of cells and
biological processes [17], and comprise most drug targets and
biomarkers [17, 18].
The current study examines whether loci identified through

GWAS contribute to the pathogenesis of SUTs by modulating
protein abundance. We applied an integrative proteome-wide
association study (PWAS) approach that combines genetic data
from 4 large GWASs of SUTs [7–10] with 2 independent human brain
proteomic datasets (Banner [19] and ROSMAP [20]) derived from
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brain dorsolateral prefrontal cortex (dPFC). To compare the effects of
risk variants at both the proteomic and transcriptomic levels, we also
performed TWAS using the CommonMind Consortium (CMC) dPFC
[21] and Genotype-Tissue Expression (GTEx) v7 frontal cortex [22]
datasets. See Fig. 1 for a study overview.

METHODS
Genome-wide association studies summary statistics
We selected the largest GWASs of SUTs available as of July 2021; all were of
European ancestry (EUR) to match the proteomic datasets. Summary statistics
were derived from n= 1,232,091 for Smk [7]; n= 313,959 for AUD [8];
n= 384,032 for CUD [9]; and n= 302,585 for OUD [10]. Sample demographics
and methods for phenotyping, data processing, and statistical analyses from
the original articles [7–10] are summarized in Supplementary Table 1.

Human brain pQTL data
We obtained human brain proteomic data from the study by Wingo et al.
[23, 24], in which human protein abundance was quantified in the
dorsolateral pre-frontal cortex (dPFC) of post-mortem brain tissues from 152
(Banner dataset) [19] and 376 (ROSMAP dataset) [20] EUR participants.
Characterizing genetic control of the proteome in these human brain
datasets identified 1,139 and 1,475 protein quantitative trait loci (pQTL) (i.e.,
protein weights) in the Banner and ROSMAP datasets, respectively [23, 24],
which were downloaded from https://doi.org/10.7303/syn23627957. Sam-
ple demographics, proteomic sequencing, quality control, and normal-
ization from Wingo et al. [23, 24] are summarized in Supplementary Table 1.

Proteome-wide association analysis
To identify proteins whose genetically regulated expression is associated with
SUTs, we performed PWAS analyses by integrating GWAS summary statistics
of SUTs and pQTLs from discovery (Banner) and validation (ROSMAP)
datasets using the FUSION pipeline (http://gusevlab.org/projects/fusion/) [12].

FUSION employs 5-fold predictive models (top1, GBLUP, LASSO, Elastic Net,
BSLMM) to compute the combined effect of single nucleotide polymorph-
isms (SNPs) on protein expression weights. The model with the largest cross-
validation R2 was selected for downstream analyses. PWAS association
statistics were Bonferroni corrected based on the number of proteins in the
analysis (see footnote in Table 1 and Supplementary Table 3).

Human eQTL data
Human brain transcriptome data, used as expression reference panels,
were obtained from the CMC [21] and GTEx frontal cortex v7 [12, 22]. The
CMC dataset, which consists of transcriptomic profiles for gene-level (eQTL,
n= 452) and intron-level (splicing–sQTL, n= 452) expression [21] in dPFC
and GTEx frontal cortex weights (eQTL, n= 118) were downloaded from
the FUSION website (http://gusevlab.org/projects/fusion/) [12].
To examine the association between the cis component of gene expression

and SUTs, we performed a transcriptome-wide association analysis (TWAS)
using the FUSION package [12]. TWAS was performed using gene and splicing
expression profiles measured in adult dPFC and gene expression profiles from
frontal cortex. For both PWAS and TWAS, we applied the default parameters
in FUSION. To explore whether there was significant enrichment in the genes
identified in the PWAS and TWAS, we created proteome-wide significant
(PWS) and transcriptome-wide significant (TWS) gene sets. For each gene set,
we created a 2-by-2 table to compare the number of listed genes belonging
to the gene set to the number of non-members and tested the significance of
over-representation using a binomial approximation (p< 0.05) [25].

Colocalization of PWAS and TWAS associations
To explore plausible causal relationships between GWAS variants and
proteome- or transcriptome-wide associations, we performed colocaliza-
tion analysis using the coloc R package (version 3.2-1) [15] in FUSION [12].
We used the FUSION parameter (-coloc_P 0.05) for inclusion of nominally
significant proteins/genes (at p < 0.05) and performed colocalization based
on the GWAS and pQTL (ROSMAP and Banner) [23, 24], eQTL (CMC and
GTEx) [21, 22] and sQTL (CMC) [21] data. A posterior colocalization
probability (PP) of 80% was used to denote a shared causal signal.

Conditional analysis and TWAS fine mapping
Conditional analyses were performed for PWS and TWS genes using FUSION
[12] to determine whether multiple gene-trait associations within given risk
loci are independent after adjusting for the predicted expression of other
genes in the region. Genes that overlapped within the 1.5-Mb boundary
were merged into a single locus. This allowed us to estimate the extent to
which functional associations identified in the PWAS/TWAS explain the
GWAS signals within the same locus. The “variance explained” was
calculated using the formula: R2= 1-χ2 conditioned GWAS association / χ2

unconditioned GWAS association [12, 26]. To identify genes within regions
of association that are likely causal, we performed TWAS fine-mapping using
FOCUS [27]. A posterior inclusion probability (PIP) > 0.5 indicated which
genes within a region are most likely causal.

Drug-gene interaction
We examined interactions of proteins identified in the PWAS with
prescription drugs using the Drug Gene Interaction Database (DGIdb)
v3.0 (https://www.dgidb.org) [28]. We categorized each identified pre-
scription drug using the Anatomical Therapeutic Chemical (ATC) classifica-
tions obtained from the Kyoto Encyclopedia of Genes and Genomics
(KEGG: https://www.genome.jp/kegg/drug/).

Protein-protein interaction
We used STRING database v11.0 [29] to assess whether PWAS genes were
enriched for direct protein-protein interactions (PPIs) with discovery and
validation PWS genes for Smk and AUD as input. STRING reports the
confidence level for observed PPI as follows: low confidence: <0.4; medium:
0.4–0.7; high: >0.7. We used a STRING cut-off score >0.4 to define PWS genes
within the observed PPI network as having the highest degree of network
connections and a whole genome reference model in STRING to determine
whether the number of identified PPIs was significantly enriched.

Comparison with previous literature
Using MAGMA gene-based association analysis and FUMA functional gene
mapping analysis [30], we explored whether the PWS and TWS genes for

Fig. 1 Overview of the study. GWAS summary statistics included in
the study were based on 4 substance use traits (SUT): smoking
initiation (Smk), alcohol use disorder (AUD), cannabis use disorder
(CUD) and opioid use disorder (OUD). For PWAS, human brain
proteomes from Banner (discovery) and ROSMAP (validation)
datasets were integrated with each set of GWAS summary statistics.
TWAS based on brain eQTL datasets from discovery (CommonMind
Consortium - CMC) and validation (Genotype-Tissue Expression -
GTEx) datasets was conducted for each SUT. TWAS splicing
expression analysis (CMC - sQTL) was also performed for all 4 traits.
N denotes the actual sample size of studies included in each
analysis. Colocalization analysis was based on nominally significant
proteins and transcripts for Smk and proteins for AUD. All significant
proteins (after Bonferroni correction) were used as input for drug-
gene interaction analysis for all 4 traits. Only proteome-wide
significant proteins for Smk and AUD were included for protein-
protein interaction analysis.
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the 4 SUTs were associated in the corresponding GWAS. For each GWS
independent lead SNP, we also determined whether any gene in the nearby
region (within a 1-Mb window) was associated with any SUT in the original
GWAS using other gene-based analyses (e.g., DEPICT, PASCAL). Lastly, we
compared our findings with other literature that (a) examined differentially
expressed genes/proteins in the postmortem dPFC of subjects with an SUT
[31–34] (b) predicted gene/protein expression in the dPFC (via TWAS and S-
PrediXcan) for the corresponding SUTs [8–11] or (c) were identified by
TWAS-hub (http://twas-hub.org/) [35]. Genes/proteins not previously
reported in the GWAS and PWAS/TWAS are considered “novel”.
For PWS and TWS genes that were detected in SUT GWAS and

associated TWAS, we explored associations with psychiatric and other
brain-related traits using the GWAS catalog (https://www.ebi.ac.uk/gwas/).
To determine whether there were shared regulatory architectures under-
lying susceptibility, we also compared our findings with PWAS and TWAS
of other psychiatric [12, 23, 24, 36–38] and neuroimaging traits [39].

RESULTS
PWAS identifies brain proteins related to genetic risk for Smk
and other SUTs
Using the FUSION pipeline to integrate pQTL and GWAS results to
identify proteins whose abundance is correlated with genetic risk
for the 4 SUTs [7–10], in the discovery stage (using the Banner

dataset) we identified 13 proteome-wide significant (PWS) genes
for Smk (Table 1, Fig. 2A) and 1 PWS gene each for AUD and CUD
(Supplementary Table 2; Fig. 1A). No gene was PWS for OUD in the
Banner dataset (Fig. 2A). Using the ROSMAP dataset, we identified
15 PWS genes for Smk (Table 1, Fig. 1B), 3 PWS genes for AUD
(Supplementary Table 2, Fig. 2B), and 1 PWS gene each for CUD
and OUD (Supplementary Table 2, Fig. 2B).
We next compared the PWS genes implicated in the discovery

and validation stages for Smk, AUD, and CUD. Of the 13 high-
confidence Smk PWS genes identified in the discovery dataset
(Table 1, Fig. 2A), 7 were PWS (NT5C2, GMPPB, NQO1, SRR, RHOT2,
ACTR1B, and BTN2A1) and 2 (BTN3A3 and WIPI2) were nominally
significant in the validation dataset (Table 1). The gene identified for
AUD in the discovery dataset (CTNND1) was also PWS in the
validation dataset (Supplementary Table 2) and the gene (GMPPB)
that was PWS in the discovery cohort for CUD was nearly PWS
(p= 3.83 × 10−5) in the validation dataset (Supplementary Table 2).
In addition to the validated genes, 12 SUT genes were PWS in

the ROSMAP dataset only, including 8 genes for Smk (Table 1,
Fig. 2B), 2 genes for AUD, and 1 gene each for CUD and OUD
(Supplementary Table 2, Fig. 2B). Of the 12 SUT risk genes
identified in the validation stage, 1 was nominally significant for

Fig. 2 PWAS identified 27 genes and replicated 6 genes for substance use traits. AManhattan plot for smoking initiation (Smk), alcohol use
disorder (AUD), cannabis use disorder (CUD) and opioid use disorder (CUD) in the discovery proteome dataset. B Manhattan plot for Smk,
AUD, CUD and CUD in the validation proteome dataset. Each dot on the x-axis denotes a gene and on the y-axis the strength of association
(-log10 p-value). Proteome-wide significance level for discovery dataset; Bonferroni corrected p < 4.36 × 10−5 and validation; Bonferroni
corrected p < 3.39 × 10−5. Validated genes are in bold letters.
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Smk (PRKCD, p= 3.94 × 10−2) (Tables 1) and 1 for AUD (SLC5A6,
p= 7.92 × 10−4) (Supplementary Table 2) in the discovery stage.
Thus, by combining 2 independent human brain proteomic and
SUT GWAS datasets, we identified 27 potential SUT risk loci
through their effects on brain proteomic abundance.

PWAS and TWAS overlap reveals high-confidence genes
associated with SUT risk
To identify SUT PWS risk genes with evidence of transcriptional
regulation, we examined the extent of overlap at the protein and
transcript levels. Specifically, we performed eQTL- and sQTL-based
TWAS, followed by an analysis of the overlap between the TWS
and PWS genes. For the discovery TWAS, we integrated SUT GWAS
summary statistics [7–10] and CMC dPFC eQTL datasets [21]. After
Bonferroni correction, we detected 48 genes (38 for Smk, 6 for
AUD, 2 for CUD, and 2 for OUD) whose cis-regulated expression
was significantly associated with SUTs (Supplementary Table 3,
Supplementary Fig. 1A–D). To validate these results, we also
conducted TWAS using the GTEx frontal cortex eQTL dataset [22],
which identified 50 genes (42 for Smk, 4 for AUD, 2 for CUD, and 2
for OUD) with TWS associations (Supplementary Table 3, Supple-
mentary Fig. 2A–D).
Notably, 12 risk genes for Smk (AS3MT, C10orf32, CPSF4, SFMBT1,

SRR, ITIH4, TYW5, GPX1, CCDC88B, HYAL3, CNTROB, and NAT6) from
the discovery stage also showed TWS associations in the
validation stage (Supplementary Table 3, Supplementary Fig. 2B).
For CUD, 2 TWS genes (HYAL3 and NAT6) were validated
(Supplementary Table 3, Supplementary Fig. 2B) while no TWS
gene was validated for AUD or OUD (Supplementary Table 3,
Supplementary Fig. 2C, D).
We next compared the validated TWS eQTL genes with PWS

genes (from both the discovery and validation stages) to identify
significant overlap in SUT risk genes. For Smk, 4 of 21 genes (SRR,
TYW5, C10orf32, and NAT6) that were PWS were confirmed by
TWAS (Table 1, Supplementary Fig. 3A) and shown to have
significant overlap (binomial test p= 3.58 × 10−6). NAT6, one of
the 2 PWS genes for CUD (Supplementary Table 2) was confirmed
by TWAS (Supplementary Table 3). We did not run the binomial
test for CUD due to the small number of genes. No PWS gene was
supported by TWAS for AUD (Supplementary Fig. 3B) or OUD
(Supplementary Tables 2 and 3).
At the level of splicing, we detected significant overlap between

TWS sQTL genes and PWS genes for Smk (binomial test:
p= 2.2 × 10−16; NT5C2, NQO1, and MCTP1) (Table 1, Supplemen-
tary Table 4). No overlapping genes were identified for AUD, CUD,
or OUD.
In summary, TWAS provided substantial evidence linking Smk to

expression changes in SRR, TYW5, C10orf32, and NAT6, and splicing
of NT5C2, NQO1, and MCTP1.

Colocalization of PWAS and TWAS genes
We explored whether there was a causal effect on SUTs of the
validated genes in the proteomic (7 for Smk and 1 for AUD) and
transcriptomic (7 for Smk and 2 for CUD) analyses. Colocalization
analysis showed strong causal evidence for Smk in 6 PWS genes
(NT5C2, GMPPB, NQO1, RHOT2, SRR, and ACTR1B) and 6 TWS eQTL
genes (AS3MT, TYW5, CCDC88B, CNTROB, SRR and C10orf32) (coloc
posterior probability (PP4)≥ 80%; Supplementary Tables 5 and 6).
We also found evidence of colocalization for the validated AUD PWS
gene (CTNND1) (Supplementary Table 8) and the CUD TWS (NAT6
and HYAL3) genes (PP4 ≥ 80%; Supplementary Table 9). Thus, the
same risk variants may drive the associations between SUTs and
both PWAS (for AUD and Smk) and TWAS eQTL (for CUD and Smk).
No TWS sQTL genes were causal for Smk (Supplementary Table 7).

Conditional analysis and TWAS fine mapping
To capture independent significant signals in the PWAS and TWAS,
we conducted conditional analyses using FUSION [12]. Of the 27

PWS genes, 25 were independently significant and 2 marginally
significant (Supplementary Table 10). Validated proteins with
strong colocalization evidence in Smk (NT5C2, GMPPB, NQO1,
RHOT2, SRR, and ACTR1B) and AUD (CTNND1) remained indepen-
dently associated. Conditional analyses also showed that expres-
sion changes in these 7 proteins explained most of the gene-trait
signals of their loci in both the discovery and validation datasets
(Supplementary Table 10).
We also observed multiple TWS genes residing within shared

loci in specific genomic regions: 30 in the eQTL discovery dataset
(23 for Smk, 4 for AUD, 1 for CUD and 2 for OUD), 31 in the eQTL
validation dataset (25 for Smk, 3 for AUD, 1 for CUD and 2 for
OUD) (Supplementary Table 11) and 28 in the sQTL dataset
(Supplementary Table 12). Of the 8 validated and colocalized TWS
genes (6 for Smk and 2 for CUD), 5 (4 for Smk and 1 for CUD) were
independently associated (Supplementary Table 12), including 2
(SRR and TWY5) with evidence of overlap at the proteomic level
(Table 1).
Using FOCUS [27] for TWAS fine-mapping, we identified 28

eQTLs and 13 sQTLs with PIP > 0.5 (Supplementary Table 13). Of
these, 3 genes (SRR, CNTROB, and CCDC88B) were supported by
colocalization analysis, confirming that they are likely causal for
SUT risk.

Drug-gene and Protein-protein interaction
To identify potential repurposing opportunities targeting risk-
related proteins, we queried all SUT risk genes (n= 27) detected
by PWAS for an interaction with prescription medications via
DGIdb. We observed 33 interactions involving 5 genes (SRR,
PRKCD, PLD1, NT5C2, and NQO1) (Fig. 3, Supplementary Table 14).
SRR, which showed significant associations with Smk in PWAS and
eQTL TWAS, was prioritized as a potential target of serine and
pyridoxal phosphate in the antimycobacterials and vitamins drug
classes, respectively. DGIdb also prioritized NQO1, a Smk risk gene
in the PWAS and sQTL TWAS analysis, as a target for 15 drug
interactions, including analgesics (acetaminophen) and antiepi-
leptics (cannabidiol).
Direct PPI was identified for 2 protein pairs (C10orf32 and

NT5C2, interaction score= 0.567; MAP1LC3A and WIPI2, interac-
tion score= 0.986) (Supplementary Table 15). However, these PPIs
were not significantly enriched (p= 0.33), possibly due to the
small number of proteins (N= 21) included in the PPI analysis or
the limited proteomic reference information in the STRING
database.

Comparison with previous literature
To ascertain novelty, we compared our findings with gene-based
analyses in the corresponding GWAS [7–10] and in MAGMA, as
implemented by FUMA [30]. Most (16/27) of the PWS genes were
identified by gene-level analysis (9/27), as independently GWS (or
within a 1-Mb boundary) (1/27), or both (6/27) (Supplementary
Table 16). The 11 genes uniquely identified by PWAS included 7
for Smk (SRR, GMPPB, C10orf32, RFT1, BTN3A3, WIPI2, and HEPB1), 2
for AUD (SLC5A6 and TYW5) and 2 for CUD (GMPBB and NAT6).
Similarly, 50 of the 83 TWAS eQTL associations for SUTs can be
detected in GWAS with 33 novel genes (Supplementary Table 16).
For TWAS sQTL, 12 novel SUT associations were identified, with 35
overlapping genes in the original GWAS (Supplementary Table 16).
Compared with previous studies of predicted gene expression

by smoking status [35] (TWAS FUSION), PAU [8] (S-PrediXcan),
alcohol consumption [11] (S-PrediXcan), CUD [9] (S-PrediXcan) and
OUD [10] (S-PrediXcan), our results overlapped with 33 genes (25
for Smk, 5 for AUD, 2 for CUD and 1 for OUD) (Supplementary
Table 17). Moreover, we identified novel genes for Smk (n= 42),
AUD (n= 5) and OUD (n= 3). None of the TWAS findings were
reported in the previous studies of altered gene expression in
individuals by current smoking status [31], or AUD [32, 33] or OUD
[34] diagnoses.

S. Toikumo et al.

2296

Neuropsychopharmacology (2022) 47:2292 – 2299



To detect shared regulatory effects beyond SUTs, we examined
the PWS and TWS genes for association with other psychiatric or
brain-related traits from published GWAS (using the GWAS
catalog), PWAS, and TWAS [12, 23, 24, 35–38]. Most of the top
SUT proteins (and genes) also harbor genetic risk loci for
psychiatric traits (including schizophrenia, neuroticism, depres-
sion, autism, and anxiety) and neurocognitive phenotypes
(Supplementary Table 18). Among the 27 PWS genes identified
in this study, 4 (ACTR1B, BTN3A3, BTN2A1 and TYW5) overlapped
with schizophrenia, 2 (CTNND1 and GMPPB) with depression, and 1
each with PTSD, neuroticism, amyotrophic lateral sclerosis,
attention deficit hyperactivity disorder, and bipolar disorder
(Supplementary Fig. 4, Supplementary Table 19). Further, 23
TWS genes were identified in 1 or more psychiatric traits and 8
were associated with 7 neuroimaging traits (Supplementary
Table 19). Thus, because SUT risk genes are commonly associated
with neuropsychiatric diseases they could play a role in effecting
changes in brain structure.

DISCUSSION
We sought to characterize the effects of genetic risk loci on the
proteomic architecture of 4 SUTs [7–10] using PWASs that

integrated human brain pQTL data [23, 24] with GWAS results.
We identified 27 SUT risk genes, of which 8 (CTNND1 for AUD and
NT5C2, GMPPB, NQO1, SRR, RHOT2, ACTR1B and BTN2A1 for Smk)
showed PWS associations in 2 independent brain proteomes.
Notably, of the 8 validated PWS genes, evidence for 6 (CTNND1 for
AUD and NT5C2, GMPPB, NQO1, SRR, and ACTR1B for Smk) was
consistent with a causal effect based on colocalization analysis,
with all genes reflecting independent associations. Moreover,
when adjusting for the effect of protein expression on GWAS
signal, SNP-trait associations were largely explained by PWAS
associations, suggesting that these genes could confer SUT risk by
modulating protein abundance in the brain.
Three of the potentially causal genes identified at the protein

level–SRR, NT5C2, and NQO1–showed significant associations with
Smk at the transcript level. TWAS also identified 12 additional
genes with evidence for eQTL validation, of which 2 (C10orf32 and
NAT6) showed PWS associations in 1 of the proteomic datasets for
Smk and 1 for CUD (NAT6 – an eQTL in the CUD GWAS [9])
(Table 1). The large number of PWS and TWS genes for Smk likely
reflects the large sample size (about quadruple that of the other
traits) and associated greater statistical power and number of GWS
loci in the Smk discovery GWAS [7]. Although the number of TWS
genes exceeds that for PWS genes identified for Smk, only about

Fig. 3 Drug-gene interaction prioritized 5 genes. Chord diagram of proteome-wide significant genes for SUTs and the Anatomical
Therapeutic Chemical classification of drugs. Each gene is linked with drug classes and the width of each line is determined by the number of
drugs in each class known to interact with each gene.
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30% of PWS genes overlap at the transcript level. This has been
seen in prior PWASs of psychiatric disorders [23, 37] and supports
prior conclusions that mRNA transcript levels can explain one-
third to two-thirds of the variance in steady-state protein
abundance [40, 41]. Moreover, mRNA and protein abundance
levels are weakly correlated [42] and have different genetic
architectures [43]. Because gene expression is not a perfect proxy
for protein expression [42] studying brain proteins directly can
provide novel insights into the impact of genetic variation.
Our Smk PWAS prioritized SRR as an independent risk gene,

with causal effects both at the proteomic and transcriptomic level.
SRR encodes serine racemase, which converts L- to D-serine, a co-
activator of N-methyl-D-aspartate receptors (NMDAR), which is a
key component in glutamatergic synaptic signaling in the brain
[44, 45]. SRR variants were linked with prognosis in a small,
candidate-gene study of methamphetamine-induced psychosis
[46] and in a large GWAS of schizophrenia [47]. Deletion of SRR in
mice reduces the cortical level of D-serine [48] and reducing
NMDAR activation [49], which is associated with a reduced ability
to extinguish conditioned responses to amphetamine [50] and
cocaine-associated stimuli [51]. The association between smoking
initiation and reduced SRR protein and transcript expression seen
here could, through a shared risk variant, mediate the adaptive
processes involved in smoking initiation by altering NMDAR-
dependent neurotransmission.
Drug-gene interaction results identified pyridoxal phosphate

(PLP), in the vitamins drug class, as a cofactor for SRR, highlighting
preclinical evidence that the human SRR is PLP-dependent
[52–54]. As the metabolically active form of vitamin B6, PLP binds
to SRR and stimulates NMDAR signaling, which is involved in brain
metabolism and cellular antioxidant defense [52, 53, 55]. Although
a link between cigarette smoking and reduced vitamin B6 and PLP
levels has been previously documented [56–58], a mechanistic
role for SRR in this association is not established. Functional
studies that investigate SRR as a druggable gene target for PLP
enzyme activity following smoking exposure could elucidate
mechanistic pathways and enhance the development of novel
treatments for smoking.
This study should be interpreted in the context of limitations.

First, the small sample from which the brain proteome reference
dataset was derived contributed to an imbalance between pQTLs
and eQTLs/sQTLs, thus limiting our ability to capture the full
spectrum of genetic effects on the proteome and transcriptome.
This is reflected in the disparity between PWAS and TWAS results,
with larger samples in TWAS (CMC eQTL= 48/5419, GTEx eQTL=
50/3106, and CMC sQTL= 48/7771) providing greater statistical
power to detect gene expression than in the PWAS (Banner= 15/
1139; ROSMAP= 20/1475). Future PWAS of SUTs will require larger
brain proteome datasets to permit better pQTL detection. Second,
although we identified PWS and TWS genes and highlighted their
plausible mechanistic pathways, we could not pinpoint the causal
variants associated with these genes. Efforts are needed to map
the causal variants and functionally validate the described
pathways in the context of SUTs. Thirdly, only EUR were included
in the study due to the lack of available data for analyses in other
population groups, which limits the generalizability of our
findings. Future PWAS of SUTs that include diverse population
samples will require availability of greater reference data. Fourth,
our power varied greatly by trait, with Smk being by far the best
powered trait; the results reflect this disparity.
In conclusion, using PWAS, we identified 6 high-confidence

genes that modulate brain protein abundance, potentially altering
biological pathways linked to the pathogenesis of SUTs. These
genes, as potentially modifiable targets for the development of
medications and biomarkers for SUTs, warrant further investiga-
tion. Nonetheless, the approach applied here has considerable
potential to advance precision medicine efforts in diagnosing and
treating SUTs.
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