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Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain
network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific
depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis
factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing
speed performance of n= 284 acutely depressed, n= 177 partially and n= 198 fully remitted patients, and n= 743 healthy
controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network
associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and
processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing
speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a
significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association
was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association
between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with
decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural
brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and
highlight the involvement of genetic-immunological processes in its pathomechanisms.
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INTRODUCTION
Major depressive disorder (MDD) is considered one of the most
prevalent and debilitating mental illnesses worldwide, with a lifetime
prevalence of approximately 10.8% [1]. Impairments in processing
speed (i.e., the ability to quickly acquire, process, and respond to
information) are among the core features of acute MDD [2, 3] and
have been associated with less favorable clinical trajectories [4] and
poor treatment response [5]. Moreover, reduced processing speed is
a major predictor of poor psychosocial functioning with adverse

consequences for work, family, friends, and health [2, 4]. As most
cognitive domains depend on rapid information transfer [6],
dysfunctions in processing speed can lead to impairments in several
other cognitive domains, such as attention, concentration, and
memory [7, 8]. Some of these cognitive deficits persist even after
remission [9] and may promote vulnerability to relapses [10]. Given
all these findings, it is of particular clinical and scientific interest to
understand the pathogenic mechanisms underlying reduced
processing speed in MDD.
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A promising way to gain more insights into these mechanisms
is to study the neurobiological correlates of processing speed.
Cognitive processes are thought to arise from a multitude of
interacting brain regions rather than from individual brain regions
alone [11, 12]. The human connectome, i.e., the network of all
brain regions and their white matter (WM) connections, can be
examined using diffusion-weighted imaging and network analyses
[13]. Applying these methods, neuroimaging studies in healthy
individuals have revealed robust associations between brain
structural connectivity and cognitive performance, including
processing speed [14–16], thus linking intact network connectivity
to healthy cognitive functioning. Conversely, disruptions in
network connectivity have been demonstrated in several mental
disorders, including MDD [17–20], with deficits most pronounced
in acutely depressed individuals [18]. These findings lead to the
assumption that MDD-related alterations may also affect those
brain networks associated with cognitive performance. Indeed,
Gruber and colleagues [21] previously identified a structural
subnetwork of frontotemporal fiber tracts that was positively
related to processing speed. Within this network, the researchers
further demonstrated associations between connectivity strength,
processing speed, and depression severity, indicating that
alterations in subnetwork-specific connectivity may provide a
structural basis for impaired processing speed in MDD. However,
despite recent advances in network neuroscience, little is known
about the biological mechanisms preceding these brain structural
alterations.
Brain structural connectivity, processing speed, and depression

have been associated with dysregulations of the immune system
[22–26], characterized by chronic production and expression of
chemokines, acute phase proteins, and proinflammatory cyto-
kines. Along with interleukin-1β and interleukin-6, tumor necrosis
factor-α (TNF-α) is considered one of the key proinflammatory
cytokines that has been linked to a number of somatic and mental
diseases [27]. This is supported, for example, by studies reporting
elevated TNF-α levels in peripheral blood and cerebrospinal fluid
of MDD patients [28, 29], and anti-depressant effects of drug-
induced TNF-α synthesis inhibition [30]. TNF-α interacts with the
brain in a complex, bidirectional manner via cellular, neuronal, or
endocrine pathways, where it can trigger neurotoxic processes,
including inhibition of growth factors [31] or disruption of WM
microstructure [32, 33]. While these immunological processes can
be caused by exposure to environmental stressors (e.g., childhood
maltreatment or negative life events) [34, 35], there is also
evidence linking genetic variation to immunological dysregulation
in MDD [36]. For example, twin studies have shown that the
association between depression and increased immune activation
can be attributed, at least in part, to shared genetic factors
involved in the regulation of inflammatory processes [37, 38].
Furthermore, 34 of the 269 genes associated with depression in a
genome-wide association study (GWAS) by Howard and collea-
gues [39] were found to be implicated in immunological
processes, with some of them exhibiting cytokine-related features
[40]. Likewise, there is evidence supporting a link between the
polymorphism 308 (G/A) in the TNF-α gene and the risk of
developing MDD [41, 42], as well as between polygenic scores for
TNF-α blood levels and specific depressive symptoms [43]. So far,
however, none of these studies have analyzed the associations
with structural network connectivity and processing speed.
The main goal of the present study was to investigate the

reciprocal relationships between genetic predisposition to TNF-α
blood levels, brain structural connectivity, and processing speed in
a well-powered sample of patients with MDD and HC. To this end,
we first re-established previous findings of processing speed
deficits in MDD patients [2, 3] and their association with structural
brain connectivity [21]. We then extended these findings by
evaluating the involvement of genetic-immunological processes
in these associations using a polygenic score (PGS) for TNF-α

blood levels. PGS estimate an individual’s genetic susceptibility to
a certain trait or disease [44] and have been applied in various
clinical and scientific contexts, including genome-wide gene-by-
environment [45] and gene-by-gene interactions [46]. Based on
the literature outlined above, we expect TNF-α PGS to be
negatively associated with processing speed in MDD. In addition,
we hypothesize that the association between TNF-α PGS and
processing speed is mediated by connectivity strength in
processing speed-related networks. Given that TNF-α PGS [43],
structural connectome alterations [18, 21], and cognitive deficits
[21, 47] have been particularly linked to current depressive
symptomatology, we assume these associations to be most
pronounced in acutely depressed patients.

MATERIALS AND METHODS
Participants
Our study consisted of N= 659 patients with MDD and N= 743 HC drawn
from the ongoing Marburg-Münster Affective Disorders Cohort Study
(MACS, (see [48] for the study protocol and [49] for the quality assurance
protocol). Participants aged 18–65 years with West-European ancestry
were recruited from January 09, 2015 to May 11, 2018 via newspaper
advertisements or local psychiatric hospitals. MDD patients were included
in our analyses if they were diagnosed with an acute (MDDa, n= 284) or a
partially (MDDpr, n= 177) or fully remitted (MDDfr, n= 198) major
depressive disorder. HC were included if they did not report a lifetime
diagnosis of any psychiatric disorder. The Structured Clinical Interview for
DSM-IV-TR [50] was used by trained interviewers to validate the diagnosis
or lack thereof and to determine remission status (for more details see
Supplement 1). See Supplement 2 for details on exclusion criteria and
sample selection process and Supplement 3 for patients’ medication and
comorbidities. Sample characteristics are provided in Table 1. Study
procedures were approved by the Ethics Committees of the University of
Münster (2014-422-b-S) and Marburg (07/14) following the Declaration of
Helsinki. All participants signed informed consent before participation and
received financial compensation.

Assessment of processing speed and clinical characteristics
Processing speed was estimated based on the shared variance of five tests
from a neuropsychological test battery that assess performance via 1. the
time required to solve a certain task or 2. the number of items processed
within a given amount of time: the Letter Number Sequencing Test (LNST),
the Digit Symbol Substitution Test (DSST), the Trail Making Test (TMT-A &
TMT-B), the Corsi Block Tapping Test (forward and backward), and the d2
Attention Test [21] (see Supplement 4).
To adjust for clinical features of MDD, we included the number of prior

hospitalizations as a measure of cumulative illness severity and the
presence of comorbid mental illness reported by patients in the SCID-I
interview. In addition, the type and amount of current medication
adherence were assessed using the Medication Load Index (MedIndex)
[51]. The severity of current depressive symptomatology was measured in
all participants using the Hamilton Depression Rating Scale [52].

MRI data acquisition and preprocessing
MRI data were collected using 3 T whole-body MRI scanners at two
scanning sites (Marburg: Tim Trio, Siemens, Erlangen, Germany; Münster:
Prisma, Siemens, Erlangen, Germany). Due to a body coil exchange in
Marburg, two dummy-coded variables (Marburg pre body-coil, Marburg
post body-coil) with Münster as reference category were included as
additional covariates in all analyses. See Supplement 5 for detailed
information on acquisition parameters and Supplement 6 for preproces-
sing steps. Anatomical connectome reconstruction was performed using
the CATO toolbox [53]. Hundred and fourteen nodes (i.e., cortical brain
regions, based on the Cammoun subdivision of Freesurfer’s Desikan-
Killiany atlas [54, 55]) were obtained from T1-weighted MRI, while edges
(i.e., the mean fractional anisotropy (FA) of a fiber tract connecting a pair of
nodes) were reconstructed from diffusion-weighted MRI. FA is an
established parameter of WM integrity that has been associated with
MDD and cognitive performance in previous neuroimaging studies
[18, 56–58]. FA can range from 0 to 1, with higher values indicating direct
diffusion and intact myelin [59]. Details on the reconstruction and quality
assurance procedures are provided in Supplements 7 and 8.
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Genetic methods
Genotyping was performed in the MACS cohort with the Illumina Infinium
PsychArray BeadChip, followed by quality control and imputation, as
described earlier [60–62]. Briefly, quality control and population sub-
structure analyses via multidimensional scaling (MDS) were conducted in
PLINK v1.90 [63]. Genotype data was imputed to the 1000 Genomes phase
3 reference panel using SHAPEIT and IMPUTE2 [64–66]. Participants who
were genetically related to other participants (π̂ � 12:5) in our sample
were excluded from downstream analyses. PGS for TNF-α blood levels
were computed using summary statistics from a recent GWAS by Ahola-Olli
and colleagues [67]. The GWAS sample was independent of the MACS
sample included in our study. For PGS calculation, single nucleotide
polymorphism weights were estimated using PRS-CS with default
parameters. The PRS-CS approach was chosen due to its advantages
regarding prediction accuracy between the observed and predicted traits
as compared to standard methods such as clumping and thresholding
[68, 69]. The global shrinkage parameter set to φ= 1e−6 [68, 70]. The
choice of the global shrinkage parameter was based on the assumption of
a relatively low polygenicity of blood cytokine levels, including TNF-α,
consistent with previous studies [43]. For analyses based on higher values
for the shrinkage parameter, see Supplement 9.

Statistical analyses
Demographic characteristics, clinical features, and factor structure of the
neuropsychological tests were analyzed using IBM SPSS Statistics (version
28.0; IBM Corporation). Neuroimaging data were analyzed using the
Network-based statistic toolbox (NBS [71]) implemented in Matlab 2019b
[72]. All statistical models were corrected for sex and age. Models including
neuroimaging data were further corrected for scanner settings. For
analyses involving TNF-α PGS, body-mass-index (BMI) [67] as well as the
first two ancestry components (C1, C2) extracted from the MDS analysis of
genotype data based on their relative variance (Supplement 10), were
added as covariates. If not otherwise stated, statistical tests were
conducted at a two-sided significance level of α= 0.05.
Before testing our hypotheses, we employed a principle component

analysis (PCA) to abstract from neuropsychological test scores to under-
lying cognitive domains. Given our focus on speed tests and based on our
previous work [21], we expected a one-factor structure reflecting the
underlying capacity of processing speed [6]. The number of factors to be
extracted was determined according to the Kaiser-Guttman criterion, the
Scree test, and parallel analysis [73]. Component scores were calculated
using a linear regression approach. All subsequent analyses were
performed with these component scores.
The first part of our analyses focuses on re-establishing processing

speed deficits in MDD patients and their relation to structural brain

connectivity across MDD and HC, as both results form the basis for our
subsequent analyses on the role of TNF-α PGS. Therefore, we first
calculated a general linear model (GLM) to examine whether the
diagnostic groups (HC, MDDa, MDDpr, MDDfr) differed in their processing
speed performance using the extracted component scores as dependent
variable. Following our previous findings linking cognition to structural
brain connectivity [21], we then used NBS to identify a network
associated with processing speed in the whole sample, while accounting
for diagnosis on top of the above-mentioned covariates. NBS estimates
family-wise error (FWE)-corrected regression models to test the associa-
tion between edge-wise connectivity strength, as measured by edge-wise
mean FA, and the processing speed scores. The significance of an
identified network was determined using a permutation test (5000
permutations, for more details, see Supplement 11). In case of significant
results, mean FA across all edges from the identified network was
extracted to SPSS.
In the second part of our analyses, we sought to investigate the

association of TNF-α PGS with processing speed performance and
structural brain connectivity. For this purpose, we again calculated a
GLM, this time including diagnosis and TNF-α PGS as independent
variables and processing speed as dependent variable. The main effect of
TNF-α PGS as well as its interaction with diagnosis were analyzed. Finally,
using a bootstrapping approach implemented in the SPSS macro PROCESS
(http://www.processmacro.org), we tested our mediation hypothesis with
TNF-α PGS as predictor variable (X), mean FA as mediator variable (M), and
processing speed as outcome variable (Y). Direct as well as indirect effects
were estimated. Significance is assumed if the 95% confidence interval
(95% CI) does not include zero.

RESULTS
Exploratory principal component analysis for
processing speed
As expected, exploratory PCA yielded a single-factor structure that
explained 51.05% of the variance of the cognitive tests, with factor
loadings ranging from 0.62 to 0.79 (Supplement 12).

Re-establishing processing speed deficits and their
association with structural brain connectivity
The diagnostic groups differed significantly in the processing
speed factor (F(3,1396)= 39.61, p < 0.001, partial η²= 0.078).
Bonferroni-corrected post hoc tests revealed that patients with
MDDa scored significantly worse than MDDfr (MD=−0.30,
p= 0.001) and HC (MD=−0.61, p < 0.001). HC scored

Table 1. Demographic and clinical characteristics of the sample.

Variable HC (n= 743) MDDfr (n= 198) MDDpr
(n= 177)

MDDa (n= 284) Statistic p-value Siga

Sex (male: female) 261:482
(35:65%)

52:146 (26:74%) 69:108 (39:61%) 104:180
(37:63%)

8.18 0.042 −

Age 33.95 ± 12.54 36.11 ± 12.94 36.30 ± 12.90 36.30 ± 13.47 3.64 0.012 −

BMI 24.13 ± 4.40 25.10 ± 5.11 26.43 ± 5.80 26.23 ± 6.04 17.68 <0.001 B, C

TNF-α PGS 36.10 ± 0.07 36.09 ± 0.08 36.09 ± 0.08 36.10 ± 0.07 0.80 0.500 −

Processing speed 0.26 ± 0.92 -0.12 ± 0.94 −0.25 ± 0.91 -0.43 ± 1.09 41.93 <0.001 A, B, C, E, F

HDRS-21 1.41 ± 2.10 3.40 ± 3.45 7.93 ± 5.67 14.44 ± 6.29 759.28 <0.001 A, B, C, D,
E, F

Hospitalizations − 1.03 ± 1.41 1.69 ± 2.14 1.88 ± 2.11 11.62 <0.001 D, E

Comorbidities (yes:
no)

− 67:131 (34:66%) 77:100 (43:57%) 146:138
(51:49%)

14.64 <0.001 E

Medication load − 0.60 ± 0.98 1.50 ± 1.44 1.84 ± 1.50 50.54 <0.001 D, E, F

Except for sex and comorbidities, mean values and standard deviations are shown. Test statistics and p values were derived from general linear models (GLM)
or Chi-square tests. Processing speed was calculated from five tests of a neuropsychological test battery using an exploratory principal component analysis.
TNF-α PGS Polygenic score for tumor necrosis factor-α, BMI Body mass index, HDRS-21 Hamilton Depression Rating Scale 21 (total score), HC healthy controls,
MDDfr patients with a fully remitted episode of major depressive disorder, MDDpr patients with a partially remitted episode of MDD, MDDa patients with an
acute episode of MDD.
aLetters indicate significant (i.e., p < .05) differences in Bonferroni corrected post-hoc tests between HC and MDDfr (A), HC and MDDpr (B), HC and MDDa (C),
MDDfr and MDDpr (D), MDDfr and MDDa (E), and MDDpr and MDDa (F).
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significantly higher compared with MDDpr (MD= 0.43,
p < 0.001) and MDDfr (MD= 0.31, p < 0.001). MDDfr and MDDpr
as well as MDDa and MDDpr did not differ from each other
(all ps � 0.185).
The NBS analysis conducted in the whole sample identified a

network of edges whose FA was significantly associated with
processing speed (NBS F-threshold= 4.0, 206 edges, 106 nodes,
pFWE < 0.001, partial η2= 0.052). Post-hoc analyses revealed a
positive association between processing speed and connectivity
strength (i.e., edge-wise FA) (NBS t-threshold=2.0, 121 edges, 89
nodes, pFWE < 0.001, partial η²=0.163, Fig. 1). The network
comprised a large proportion of fronto-parietal edges (22%)
(Supplement 13). See Supplement 14 for analyses based on
different NBS t-thresholds.

Association between processing speed and TNF-α PGS
The GLM revealed no main effect of TNF-α PGS (p= 0.599).
However, we observed a significant TNF-α PGS × diagnosis
interaction effect (F(3,1389)= 4.40, p= 0.004, partial η²= 0.009),
which was driven by a negative association between TNF-α PGS
and processing speed in the MDDa group (B=−2.41, p= .008,
partial η²= 0.034; Bonferroni-corrected), whereas no association
was found in the MDDpr (p= 0.936), MDDfr (p > 0.999), and HC
group (p > 0.999) (Fig. 2).

Structural brain connectivity as a mediator of the association
between TNF-α PGS and processing speed
As we found a significant association between TNF-α PGS and
processing speed exclusively in patients suffering from acute
depression, the mediation model was tested only in the MDDa
subgroup. The analysis showed a significant negative association
between TNF-α PGS and processing speed (coeff=−2.45, 95%-CI
[−3.97, −0.93], SE= 0.77, t=−3.17, p= 0.002), as well as between
TNF-α PGS and mean FA (coeff=−0.04, 95% CI [−0.07, −0.01],
SE= 0.02, t=−2.52, p= 0.012). Furthermore, we observed a
significant negative indirect (mediated) effect of TNF-α PGS on
processing speed through mean FA (coeff=−0.80, 95% CI [−1.45,
−0.25], SE= 0.31). Lastly, the model yielded a significant direct
effect of TNF-α PGS on processing speed (coeff=−1.65, 95% CI
[−3.05, −0.24], SE= 0.71), indicating that the association between
TNF-α PGS and processing speed was only partially mediated by
mean FA (Fig. 3).

Robustness checks and exploratory analyses
Correction for influential data points, clinical characteristics within
patients, and additional MDS components yielded a comparable
pattern of results (Supplement 15). Furthermore, effects did not
differ by sex (Supplement 16). Leave-one-site-out cross validation
revealed good generalizability and prediction accuracy of the
mediation model to unknown data (Supplement 17).

DISCUSSION
To our knowledge, this is the first study to analyze the reciprocal
associations between PGS for TNF-α blood levels, brain structural
network connectivity, and processing speed in a well-powered
sample of MDD patients and HC. Employing state-of-the-art
network analyses, we re-established our previous findings on the
human connectome, showing a positive association between
brain network connectivity strength and processing speed in
patients with MDD and HC [21]. The present study extends these
findings by providing evidence for a genetic-immunological
mechanism that may underlie these structural links. More

Fig. 1 Network of white matter fiber tracts that are positively
associated with processing speed across diagnostic groups.
A Dorsal, lateral, and medial views of the network of white matter
fiber tracts in which connectivity strength, measured with edge-wise
fractional anisotropy (FA), was positively associated with processing
speed (z-score) across diagnostic groups. The network was identified
using the Network-based statistic (NBS) toolbox (NBS t-threshold=
2.0, pFWE < 0.001), while correcting for age, sex, and scanner site. See
Supplement 13 for details on participating anatomical brain regions.
Network plots were created using BrainNet Viewer. B Scatterplot
depicting the positive association between mean FA and processing
speed across patients with acute (MDDa), partially (MDDpr), and
fully remitted (MDDfr) major depressive disorder and healthy
controls (HC). A more positive processing speed score represents
higher processing speed performance.

Fig. 2 Interaction effect between TNF-α PGS and diagnosis on
processing speed. Note. The figure depicts the significant interac-
tion effect between polygenic score for tumor necrosis factor-α
(TNF-α PGS) and diagnosis on processing speed. Patients with acute
major depressive disorder (MDDa) showed a negative association
between TNF-α PGS and processing speed, whereas no association
was found in patients with a partially (MDDpr) or fully remitted
(MDDfr) depressive episode and healthy controls (HC). Processing
speed (z-score) was calculated from five tests of a neuropsycholo-
gical test battery using exploratory principal component analysis. A
more positive processing speed score represents higher processing
speed performance.
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specifically, we demonstrated a negative association between
TNF-α PGS and processing speed in patients suffering from acute
MDD, while no association was found in partially or fully remitted
patients and HC. Of note, this association was mediated, at least
partially, by structural brain connectivity. Although effect sizes
were small to moderate, they are consistent with effect sizes
found in previous neuroimaging [74] and genetic studies [75]. Our
results appear to be robust, as they remained unchanged when
clinical characteristics in the MDD sample were taken into account.
Overall, the current data suggest genetic-immunologic mechan-
isms to play a role in impaired processing speed in patients with
acute depression.
Corroborating previous findings [2, 3], we demonstrated slowed

processing speed in patients with MDD compared to HC. The
deficits were most pronounced in patients with acute MDD but still
detectable in partially or fully remitted patients, underscoring the
persistence of cognitive dysfunction in depression [9]. According to
established cognitive theories, processing speed serves as a basic
mental capacity that affects performance - and thus deficits - in
several other cognitive domains, such as attention, concentration,
and memory [7, 8]. Given the detrimental impact of persistent
cognitive dysfunction on disease outcomes [4] and psychosocial
functioning [2, 4], its effective and targeted treatment in the
context of antidepressant therapy is of high clinical relevance.
On a neuronal level, cognitive dysfunction in MDD has been

associated with alterations in the structural connectome [21], that
is, the network of all brain regions and their WM connections [13].
In line with this evidence, we identified a structural network,
whose WM fiber connections were positively associated with
processing speed in patients with MDD and HC. The network
comprised a large proportion of fronto-parietal fibers and hubs
(i.e., brain regions with the highest degree), such as the inferior
parietal cortex and parahippocampal gyrus, consistent with the
involvement of these brain areas in cognitive processes [76, 77].
Along with previous findings [18, 56], we propose that reduced FA,
as an indicator of decreased information exchange between these
brain areas and impaired network architecture, might provide a
structural basis for processing speed deficits in MDD and HC.
While previous network neuroscience has mainly focused on

the mere association between cognitive (dys-)function and
structural brain alterations, the present study adds a possible
biological mechanism for those alterations. More specifically, we
demonstrated a triad of genetic predisposition to TNF-α blood
levels, structural brain connectivity, and processing speed in
patients with acute MDD. TNF-α is a proinflammatory cytokine

that plays a critical role in the development and maintenance of
depressive symptoms, including cognitive dysfunction [28, 31].
According to established theories [78], chronically elevated levels
of proinflammatory cytokines, such as TNF-α, could lead to
prolonged hypothalamic–pituitary–adrenal (HPA) axis activation
via stimulating cortisol release and counteracting its negative
feedback functions. In fact, HPA axis dysfunction, including
hypercortisolemia, is a common feature of MDD that has been
linked to its pathophysiology [79, 80], including cognitive
dysfunction [79]. Cortisol and other glucocorticoids have been
found to alter oligodendrocyte function by inhibiting their
differentiation and myelogenesis [81]. These neurotoxic processes
might affect WM microstructure [82, 83], leading to alterations in
the structural connectome [84]. However, given the complexity of
the (bidirectional) relationship between cytokines and HPA-axis
[85], the cross-sectional nature of the current study, and the lack
of state-dependent immunological and endocrinological markers,
this conclusion remains speculative. Future longitudinal studies
should extend our findings by adding biological serum markers in
repeated-measures designs.
Nevertheless, the genetic perspective allows us to draw tentative

conclusions about the causal directions of the effects observed since
we can assume that, during periods of acute depression, TNF-α PGS
leads to changes in the brain and in processing speed and not vice
versa. Indeed, MDD is a multifactorial disorder that arises and is
maintained by a complex interaction between environmental and
genetic factors [86]. Increasing evidence from genetic research
suggests that certain cytokine polymorphisms, including TNF-α, may
be involved in the pathogenesis of MDD and related deficits
[40, 43, 87]. Consistent with this assumption, we showed that TNF-α
PGS is associated with impaired processing speed and that this
association is partially mediated by structural brain connectivity.
Notably, the effects appeared to be exclusive to patients suffering
from acute MDD, as no associations have been found in (partially)
remitted patients and HC. This might be explained by the fact that
acute patients showed a greater variance in their processing speed
performance compared with the other diagnostic groups. Similarly,
this finding could indicate that gene × environment interactions are
more likely to result in the observed cognitive deficits rather than
genetic mechanisms alone. Future studies should consider addi-
tional measures (e.g., questionnaires, serum cortisol) in their analyses
to evaluate the contribution of environmental factors, especially
stress-related factors, to this association.
While our analyses focus on TNF-α as a key proinflammatory

cytokine linked to the development and persistence of MDD [27, 88],

Fig. 3 Brain structural connectivity mediates the association between polygenic score for tumor necrosis factor-α (TNF-α PGS) and
processing speed in acutely depressed patients. The figure depicts the mediation model with TNF-α PGS as a predictor variable, structural
brain connectivity (measured by mean fractional anisotropy) as a mediator variable, and processing speed as an outcome variable in acutely
depressed patients. A higher processing speed score represents higher processing speed performance. Unstandardized coefficients and
standard errors for each path of the mediation model are presented. Note that c represents the direct effect and c‘ the indirect effect. *
indicates significance at p < 0.05.
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we also recognize the involvement of other inflammatory markers in
depressive symptoms, including cognitive impairment. For instance,
previous studies have demonstrated associations between several
proinflammatory interleukins such as IL-6 and IL-1β and reduced
processing speed performance [89] and structural brain alterations
[25], making generalizations of our results to other inflammatory
markers likely. On the other hand, evidence also suggests the
specificity of inflammatory markers in depressive symptoms by
indicating that these associations are not universally applicable across
all cytokines [43, 90]. Therefore, future studies are warranted to clarify
the specificity of cytokines and their genetic predispositions
implicated in the complex interplay between structural brain
connectivity and processing speed performance in acute MDD.
The main strengths of the current study are the large and well-

characterized sample and the integration of multimodal, i.e., genetic,
cognitive, and magnetic imaging-derived brain network data.
Nonetheless, some limitations should be noted. As mentioned
above, our conclusions must be interpreted in light of the lack of
state-dependent immunologic measures and the cross-sectional
nature. In particular, mediation models imply causal relationships
between variables. As we analyzed both cognitive and imaging data
cross-sectionally, we cannot exclude the possibility of reverse causal
relationships or the influence of omitted variables [91]. Another
limitation arises from the operationalization of processing speed, as
the included neuropsychological tests might also tap into other
cognitive domains [92]. Regarding genetics, it must be acknowl-
edged that the calculation of PGS was based on a relatively small
GWAS consisting of Finns [67]. Since Finns have a Siberian ancestry
[93], this may have led to a divergence from the Western-European
ancestry of our MACS sample [43]. Further, our interpretations rely
on the assumption of low polygenicity of TNF-α blood levels. While
the interaction effect between diagnosis and TNF-α PGS on
processing speed became significant for two of the three tested
shrinkage parameters, mediation analysis yielded less consistent
results. This might limit the generalizability of our findings. Finally,
we did not directly measure TNF-α blood levels, nor did our PRS
consider environmental factors, which also play an important role in
the multifactorial nature of inflammation, depression, and cognitive
performance [23, 94]. For instance, in our previous work, we showed
that childhood maltreatment - one of the most important
environmental risk factors for depression - and polygenic risk for
MDD were independently associated with cognitive dysfunction
[95]. Although we acknowledge these limitations, our approach does
shed new light on a possible genetic pathway contributing to the
link between structural brain connectivity and processing speed.
This, in turn, might represent a starting point for future studies that
should replicate our findings and extend their analyses to include
serum markers of proinflammatory cytokines.
In conclusion, the current study provides evidence of a shared

link between genetic predisposition to TNF-α blood levels, altered
brain structural connectivity, and processing speed deficits in
patients suffering from acute depression. Based on genetic-
immunological, cognitive, and magnetic imaging-derived brain
network data, we demonstrated that TNF-α PGS is associated with
reduced processing speed in patients with acute MDD and that
this association is partially mediated by brain structural con-
nectivity. The current findings advance our understanding of
cognitive dysfunction in MDD and could provide novel targets for
the development of therapeutic interventions. Longitudinal
studies are required to further unravel the genetic, immunological,
environmental, and neural mechanisms of cognitive deficits and
their interaction in MDD.
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