Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Temporal imprecision of phase coherence in schizophrenia and psychosis—dynamic mechanisms and diagnostic marker

Abstract

Schizophrenia (SCZ) is a complex disorder in which various pathophysiological models have been postulated. Brain imaging studies using EEG/MEG and fMRI show altered amplitude and, more recently, decrease in phase coherence in response to external stimuli. What are the dynamic mechanisms of such phase incoherence, and can it serve as a differential-diagnostic marker? Addressing this gap in our knowledge, we uniquely combine a review of previous findings, novel empirical data, and computational-dynamic simulation. The main findings are: (i) the review shows decreased phase coherence in SCZ across a variety of different tasks and frequencies, e.g., task- and frequency-unspecific, which is further supported by our own novel data; (ii) our own data demonstrate diagnostic specificity of decreased phase coherence for SCZ as distinguished from major depressive disorder; (iii) simulation data exhibit increased phase offset in SCZ leading to a precision index, in the millisecond range, of the phase coherence relative to the timing of the external stimulus. Together, we demonstrate the key role of temporal imprecision in phase coherence of SCZ, including its mechanisms (phase offsets, precision index) on the basis of which we propose a phase-based temporal imprecision model of psychosis (PTP). The PTP targets a deeper dynamic layer of a basic disturbance. This converges well with other models of psychosis like the basic self-disturbance and time-space experience changes, as discussed in phenomenological and spatiotemporal psychopathology, as well as with the models of aberrant predictive coding and disconnection as in computational psychiatry. Finally, our results show that temporal imprecision as manifest in decreased phase coherence is a promising candidate biomarker for clinical differential diagnosis of SCZ, and more broadly, psychosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intertrial phase coherence (ITPC) in two tasks and sensory modalities.
Fig. 2: Intertrial phase coherence (ITPC) decrease in deviant stimuli from an auditory oddball is specific to schizophrenia (SCZ) and not found in depression (MDD).
Fig. 3: Intertrial phase coherence (ITPC) is behaviorally relevant.
Fig. 4: Computational simulation of varying phase offsets in individual trials and their relationship to intertrial phase coherence (ITPC) computed over all trials.
Fig. 5: Precision index (PI) in three different datasets and tasks.

Similar content being viewed by others

References

  1. McCutcheon RA, Marques TR, Howes OD. Schizophrenia—an overview. JAMA Psychiatry. 2020;77:201–10. https://doi.org/10.1001/jamapsychiatry.2019.3360.

    Article  PubMed  Google Scholar 

  2. Amadeo MB, Esposito D, Escelsior A, Campus C, Inuggi A, Silva BPD, et al. Time in schizophrenia: a link between psychopathology, psychophysics and technology. Transl Psychiatry. 2022;12. https://doi.org/10.1038/s41398-022-02101-x.

  3. Turetsky BI, Dress EM, Braff DL, Calkins ME, Green MF, Greenwood TA, et al. The utility of P300 as a schizophrenia endophenotype and predictive biomarker: clinical and socio-demographic modulators in COGS-2. Schizophr Res. 2015;163:53–62. https://doi.org/10.1016/j.schres.2014.09.024.

    Article  PubMed  Google Scholar 

  4. Northoff G, Gomez-Pilar J. Overcoming rest-task divide-abnormal temporospatial dynamics and its cognition in schizophrenia. Schizophr Bull. 2021;47:751–65. https://doi.org/10.1093/schbul/sbaa178.

    Article  PubMed  Google Scholar 

  5. Thune H, Recasens M, Uhlhaas PJ. The 40-Hz auditory steady-state response in patients with schizophrenia. JAMA Psychiatry. 2016;73:1145 https://doi.org/10.1001/jamapsychiatry.2016.2619.

    Article  PubMed  Google Scholar 

  6. Javitt DC, Siegel SJ, Spencer KM, Mathalon DH, Hong LE, Martinez A, et al. A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology. Neuropsychopharmacology. 2020;45:1411–22. https://doi.org/10.1038/s41386-020-0697-9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dias EC, Voorhis ACV, Braga F, Todd J, Lopez-Calderon J, Martinez A, et al. Impaired fixation-related theta modulation predicts reduced visual span and guided search deficits in schizophrenia. Cereb Cortex. 2020;30:2823–33. https://doi.org/10.1093/cercor/bhz277.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hamilton HK, Boos AK, Mathalon DH. Electroencephalography and event-related potential biomarkers in individuals at clinical high risk for psychosis. Biol Psychiatry. 2020;88:294–303. https://doi.org/10.1016/j.biopsych.2020.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ludwig S, Spitzer B, Jacobs AM, Sekutowicz M, Sterzer P, Blankenburg F. Spectral EEG abnormalities during vibrotactile encoding and quantitative working memory processing in schizophrenia. NeuroImage Clin. 2016;11:578–87. https://doi.org/10.1016/j.nicl.2016.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Roach BJ, Ford JM, Loewy RL, Stuart BK, Mathalon DH. Theta phase synchrony is sensitive to corollary discharge abnormalities in early illness schizophrenia but not in the psychosis risk syndrome. Schizophr Bull. 2021;47:415–23. https://doi.org/10.1093/schbul/sbaa110.

    Article  PubMed  Google Scholar 

  11. Valt C, Quarto T, Tavella A, Romanelli F, Fazio L, Arcara G, et al. Reduced magnetic mismatch negativity: a shared deficit in psychosis and related risk. Psychol Med. 2023;53:6037–45. https://doi.org/10.1017/s003329172200321x.

  12. Koshiyama D, Miyakoshi M, Tanaka-Koshiyama K, Joshi YB, Sprock J, Braff DL, et al. Abnormal phase discontinuity of alpha- and theta-frequency oscillations in schizophrenia. Schizophr Res. 2021;231:73–81. https://doi.org/10.1016/j.schres.2021.03.007.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wolff A, Gomez-Pilar J, Zhang J, Choueiry J, de la Salle S, Knott V, et al. It’s in the timing: reduced temporal precision in neural activity of schizophrenia. Cereb Cortex. 2022;32:3441–56. https://doi.org/10.1093/cercor/bhab425.

    Article  PubMed  Google Scholar 

  14. Karanikolaou M, Limanowski J, Northoff G. Does temporal irregularity drive prediction failure in schizophrenia? temporal modelling of ERPs. Schizophrenia. 2022;8. https://doi.org/10.1038/s41537-022-00239-7.

  15. Ford JM, Mathalon DH, Heinks T, Kalba S, Faustman WO, Roth WT. Neurophysiological evidence of corollary discharge dysfunction in schizophrenia. Am J Psychiatry. 2001;158:2069–71.

    Article  CAS  PubMed  Google Scholar 

  16. Nelson B, Lavoie S, Gawęda Ł, Li E, Sass LA, Koren D, et al. The neurophenomenology of early psychosis: an integrative empirical study. Conscious Cogn. 2020;77:102845. https://doi.org/10.1016/j.concog.2019.102845.

    Article  CAS  PubMed  Google Scholar 

  17. Nelson B, Whitford TJ, Lavoie S, Sass LA. What are the neurocognitive correlates of basic self-disturbance in schizophrenia?: Integrating phenomenology and neurocognition. Part 1 (Source monitoring deficits). Schizophr Res. 2014;152:12–19. https://doi.org/10.1016/j.schres.2013.06.022.

    Article  CAS  PubMed  Google Scholar 

  18. Maia TV, Frank MJ. An integrative perspective on the role of dopamine in schizophrenia. Biol Psychiatry. 2017;81:52–66. https://doi.org/10.1016/j.biopsych.2016.05.021.

    Article  CAS  PubMed  Google Scholar 

  19. Balu DT. The NMDA Receptor and Schizophrenia. From pathophysiology to treatment. Adv Pharmacol. 2016;76:351–82. https://doi.org/10.1016/bs.apha.2016.01.006.

  20. Gilmour G, Dix S, Fellini L, Gastambide F, Plath N, Steckler T, et al. NMDA receptors, cognition and schizophrenia—Testing the validity of the NMDA receptor hypofunction hypothesis. Neuropharmacology. 2012;62:1401–12. https://doi.org/10.1016/j.neuropharm.2011.03.015.

    Article  CAS  PubMed  Google Scholar 

  21. Friston KJ, Brown HR, Siemerkus J, Stephan KE. The dysconnection hypothesis (2016). Schizophr Res. 2016;176:83–94. https://doi.org/10.1016/j.schres.2016.07.014.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 2009;35:509–27. https://doi.org/10.1093/schbul/sbn176.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry. 2006;59:929–39. https://doi.org/10.1016/j.biopsych.2005.10.005.

    Article  CAS  PubMed  Google Scholar 

  24. Corlett PR, Horga G, Fletcher PC, Alderson-Day B, Schmack K, Powers AR. Hallucinations and strong priors. Trends Cogn Sci. 2019;23:114–27. https://doi.org/10.1016/j.tics.2018.12.001.

    Article  PubMed  Google Scholar 

  25. Friston KJ. Does predictive coding have a future? Nat Neurosci. 2018;21:1019–21. https://doi.org/10.1038/s41593-018-0200-7.

    Article  CAS  PubMed  Google Scholar 

  26. Griffin JD, Fletcher PC. Predictive processing, source monitoring, and psychosis. Annu Rev Clin Psychol. 2017;13:265–89. https://doi.org/10.1146/annurev-clinpsy-032816-045145.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Heinz A, Murray GK, Schlagenhauf F, Sterzer P, Grace AA, Waltz JA. Towards a unifying cognitive, neurophysiological, and computational neuroscience account of schizophrenia. Schizophr Bull. 2019;45:1092–100. https://doi.org/10.1093/schbul/sby154.

    Article  PubMed  Google Scholar 

  28. Sterzer P, Adams RA, Fletcher P, Frith C, Lawrie SM, Muckli L, et al. The predictive coding account of psychosis. Biol Psychiatry. 2018;84:634–43. https://doi.org/10.1016/j.biopsych.2018.05.015.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Canavier CC. Phase-resetting as a tool of information transmission. Curr Opin Neurobiol. 2015;31:206–13. https://doi.org/10.1016/j.conb.2014.12.003.

    Article  CAS  PubMed  Google Scholar 

  30. Lakatos P, Gross J, Thut G. A new unifying account of the roles of neuronal entrainment. Curr Biol. 2019;29:R890–905. https://doi.org/10.1016/j.cub.2019.07.075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Buzsaki G. Rhythms of the Brain.; 2006. https://doi.org/10.1093/acprof:oso/9780195301069.001.0001.

  32. Sanders TH. Phase discontinuities underlie increased drowsiness and diminished sleep quality in older humans. bioRxiv. Published online 2019. https://doi.org/10.1101/696658.

  33. Diepen RMV, Mazaheri A. The Caveats of observing inter-trial phase-coherence in cognitive neuroscience. Sci Rep. 2018;8. https://doi.org/10.1038/s41598-018-20423-z.

  34. Bolt T, Anderson ML, Uddin LQ. Beyond the evoked/intrinsic neural process dichotomy. Netw Neurosci. 2018;2:1–22. https://doi.org/10.1162/netn_a_00028.

    Article  PubMed  PubMed Central  Google Scholar 

  35. David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ. Dynamic causal modeling of evoked responses in EEG and MEG. NeuroImage. 2006;30:1255–72. https://doi.org/10.1016/j.neuroimage.2005.10.045.

    Article  PubMed  Google Scholar 

  36. Fitzgerald K, Todd J. Making sense of mismatch negativity. Front Psychiatry. 2020;11. https://doi.org/10.3389/fpsyt.2020.00468.

  37. Javitt DC, Lee M, Kantrowitz JT, Martinez A. Mismatch negativity as a biomarker of theta band oscillatory dysfunction in schizophrenia. Schizophr Res. 2018;191:51–60. https://doi.org/10.1016/j.schres.2017.06.023.

    Article  PubMed  Google Scholar 

  38. Rentzsch J, Shen C, Jockers-Scherübl MC, Gallinat J, Neuhaus AH. Auditory mismatch negativity and repetition suppression deficits in schizophrenia explained by irregular computation of prediction error. PLoS ONE. 2015;10. https://doi.org/10.1371/journal.pone.0126775.

  39. Grent-‘t-Jong T, Gajwani R, Gross J, Gumley AI, Krishnadas R, Lawrie SM, et al. 40-Hz auditory steady-state responses characterize circuit dysfunctions and predict clinical outcomes in clinical high-risk for psychosis participants: a magnetoencephalography study. Biol Psychiatry. 2021;90:419–29. https://doi.org/10.1016/j.biopsych.2021.03.018.

    Article  PubMed  Google Scholar 

  40. Kim S, Jang SK, Kim DW, Shim M, Kim YW, Im CH, et al. Cortical volume and 40-Hz auditory-steady-state responses in patients with schizophrenia and healthy controls. NeuroImage Clin. 2019;22. https://doi.org/10.1016/j.nicl.2019.101732.

  41. Koh Y, Shin KS, Kim JS, Choi JS, Kang DH, Jang JH, et al. An MEG study of alpha modulation in patients with schizophrenia and in subjects at high risk of developing psychosis. Schizophr Res. 2011;126:36–42. https://doi.org/10.1016/j.schres.2010.10.001.

    Article  PubMed  Google Scholar 

  42. Shin KS, Kim JS, Kim SN, Hong KS, O’Donnell BF, Chung CK, et al. Intraindividual neurophysiological variability in ultra-highrisk for psychosis and schizophrenia patients: Single-trial analysis. npj Schizophrenia. 2015;1. https://doi.org/10.1038/npjschz.2015.31.

  43. Thoenes S, Oberfeld D. Meta-analysis of time perception and temporal processing in schizophrenia: differential effects on precision and accuracy. Clin Psychol Rev. 2017;54:44–64. https://doi.org/10.1016/j.cpr.2017.03.007.

    Article  PubMed  Google Scholar 

  44. Griskova-Bulanova I, Hubl D, Swam C, van, Dierks T, Koenig T. Early- and late-latency gamma auditory steady-state response in schizophrenia during closed eyes: does hallucination status matter? Clin Neurophysiol. 2016;127:2214–21. https://doi.org/10.1016/j.clinph.2016.02.009.

    Article  PubMed  Google Scholar 

  45. Oribe, Hirano N, Re Y, del E, Seidman LJ, Mesholam-Gately RI, et al. Progressive reduction of auditory evoked gamma in first episode schizophrenia but not clinical high risk individuals. Schizophr Res. 2019;208:145–52. https://doi.org/10.1016/j.schres.2019.03.025.

    Article  PubMed  Google Scholar 

  46. Roach BJ, Ford JM, Mathalon DH. Gamma band phase delay in schizophrenia. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:131–139. https://doi.org/10.1016/j.bpsc.2018.08.011.

    Article  PubMed  Google Scholar 

  47. Sugiyama S, Ohi K, Kuramitsu A, Takai K, Muto Y, Taniguchi T, et al. The auditory steady-state response: electrophysiological index for sensory processing dysfunction in psychiatric disorders. Front Psychiatry. 2021;12. https://doi.org/10.3389/fpsyt.2021.644541.

  48. Tada M, Nagai T, Kirihara K, Koike S, Suga M, Araki T, et al. Differential alterations of auditory gamma oscillatory responses between pre-onset high-risk individuals and first-episode schizophrenia. Cereb Cortex. 2016;26:1027–35. https://doi.org/10.1093/cercor/bhu278.

    Article  PubMed  Google Scholar 

  49. Parker DA, Hamm JP, McDowell JE, Keedy SK, Gershon ES, Ivleva EI, et al. Auditory steady-state EEG response across the schizo-bipolar spectrum. Schizophr Res. 2019;209:218–26. https://doi.org/10.1016/j.schres.2019.04.014.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hamm JP, Ethridge LE, Shapiro JR, Stevens MC, Boutros NN, Summerfelt AT, et al. Spatiotemporal and frequency domain analysis of auditory paired stimuli processing in schizophrenia and bipolar disorder with psychosis. Psychophysiology. 2012;49:522–30. https://doi.org/10.1111/j.1469-8986.2011.01327.x.

    Article  PubMed  Google Scholar 

  51. Zhou TH, Mueller NE, Spencer KM, Mallya SG, Lewandowski KE, Norris LA, et al. Auditory steady-state response deficits are associated with symptom severity and poor functioning in patients with psychotic disorders. Schizophr Res. 2018;201:278–86. https://doi.org/10.1016/j.schres.2018.05.027.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Puvvada KC, Summerfelt A, Du X, Krishna N, Kochunov P, Rowland LM, et al. Delta Vs Gamma auditory steady-state synchrony in schizophrenia. Schizophr Bull. 2018;44:378–87. https://doi.org/10.1093/schbul/sbx078.

    Article  PubMed  Google Scholar 

  53. Lakatos P, Schroeder CE, Leitman DI, Javitt DC. Predictive suppression of cortical excitability and its deficit in schizophrenia. J Neurosci. 2013;33:11692–702. https://doi.org/10.1523/jneurosci.0010-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shin YW, Krishnan G, Hetrick WP, Brenner CA, Shekhar A, Malloy FW, et al. Increased temporal variability of auditory event-related potentials in schizophrenia and schizotypal personality disorder. Schizophr Res. 2010;124:110–18. https://doi.org/10.1016/j.schres.2010.08.008.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kirihara K, Rissling AJ, Swerdlow NR, Braff DL, Light GA. Hierarchical organization of gamma and theta oscillatory dynamics in schizophrenia. Biol Psychiatry. 2012;71:873–80. https://doi.org/10.1016/j.biopsych.2012.01.016.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Doege K, Jansen M, Mallikarjun P, Liddle EB, Liddle PF. How much does phase resetting contribute to event-related EEG abnormalities in schizophrenia? Neurosci Lett. 2010;481:1–5. https://doi.org/10.1016/j.neulet.2010.06.008.

    Article  CAS  PubMed  Google Scholar 

  57. Gomez-Pilar J, Poza J, Gómez C, Northoff G, Lubeiro A, Cea-Cañas BB, et al. Altered predictive capability of the brain network EEG model in schizophrenia during cognition. Schizophr Res. 2018;201:120–29. https://doi.org/10.1016/j.schres.2018.04.043.

    Article  PubMed  Google Scholar 

  58. Lundin NB, Bartolomeo LA, O’Donnell BF, Hetrick WP. Reduced electroencephalogram responses to standard and target auditory stimuli in bipolar disorder and the impact of psychotic features: analysis of event-related potentials, spectral power, and inter-trial coherence. Bipolar Disord. 2018;20:49–59. https://doi.org/10.1111/bdi.12561.

    Article  PubMed  Google Scholar 

  59. Stefano LAD, Schmitt LM, White SP, Mosconi MW, Sweeney JA, Ethridge LE. Developmental effects on auditory neural oscillatory synchronization abnormalities in autism spectrum disorder. Front Integr Neurosci. 2019;13. https://doi.org/10.3389/fnint.2019.00034.

  60. Edgar JC, Iv CLF, Berman JI, Chudnovskaya D, Liu S, Pandey J, et al. Auditory encoding abnormalities in children with autism spectrum disorder suggest delayed development of auditory cortex. Mol Autism. 2015;6. https://doi.org/10.1186/s13229-015-0065-5.

  61. Milne E. Increased intra-participant variability in children with autistic spectrum disorders: evidence from single-trial analysis of evoked EEG. Front Psychol. 2011;2. https://doi.org/10.3389/fpsyg.2011.00051.

  62. Milne E, Gomez R, Giannadou A, Jones M. Atypical EEG in autism spectrum disorder: comparing a dimensional and a categorical approach. J Abnorm Psychol. 2019;128:442–52. https://doi.org/10.1037/abn0000436.

    Article  PubMed  Google Scholar 

  63. Port RG, Edgar JC, Ku M, Bloy L, Murray R, Blaskey L, et al. Maturation of auditory neural processes in autism spectrum disorder—a longitudinal MEG study. NeuroImage Clin. 2016;11:566–77. https://doi.org/10.1016/j.nicl.2016.03.021.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Noordt S, van, Wu J, Venkataraman A, Larson MJ, South M, et al. Inter-trial coherence of medial frontal theta oscillations linked to differential feedback processing in youth and young adults with autism. Res Autism Spectr Disord. 2017;37:1–10. https://doi.org/10.1016/j.rasd.2017.01.011.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang X, Wang S, Fan Y, Huang D, Zhang Y. Speech-specific categorical perception deficit in autism: an event-related potential study of lexical tone processing in Mandarin-speaking children. Sci Rep. 2017;7. https://doi.org/10.1038/srep43254.

  66. Yu L, Wang S, Huang D, Wu X, Zhang Y. Role of inter-trial phase coherence in atypical auditory evoked potentials to speech and nonspeech stimuli in children with autism. Clin Neurophysiol. 2018;129:1374–82. https://doi.org/10.1016/j.clinph.2018.04.599.

    Article  PubMed  Google Scholar 

  67. Edgar JC, Fisk CL, Liu S, Pandey J, Herrington JD, Schultz RT, et al. Translating adult electrophysiology findings to younger patient populations: difficulty measuring 40-Hz auditory steady-state responses in typically developing children and children with autism spectrum disorder. Dev Neurosci. 2016;38:1–14. https://doi.org/10.1159/000441943.

    Article  CAS  PubMed  Google Scholar 

  68. Kolesnik A, Ali JB, Gliga T, Guiraud J, Charman T, Johnson MH, et al. Increased cortical reactivity to repeated tones at 8 months in infants with later ASD. Transl Psychiatry. 2019;9. https://doi.org/10.1038/s41398-019-0393-x.

  69. Minkowski E. La schizophrénie. Psychopathologie des schizoides et des schizophrènes. Published online 1927.

  70. Arantes-Gonçalves F, Wolman A, Bastos-Leite AJ, Northoff G. Scale for space and time experience in psychosis: converging phenomenological and psychopathological perspectives. Psychopathology. 2022;55:132–42. https://doi.org/10.1159/000519500.

    Article  PubMed  Google Scholar 

  71. Gonzalez-Andrade A, Lopez-Luengo B, Alvarez M, Santiago-Ramajo S. Divided attention in schizophrenia: a dual task paradigm. Am J Psychol. 2021;134:187–200. https://doi.org/10.5406/amerjpsyc.134.2.0187.

    Article  Google Scholar 

  72. Martin B, Franck N, Giersch A. A reflection upon methods to explore timing in patients with schizophrenia. PsyCh J. 2019;8:82–9. https://doi.org/10.1002/pchj.268.

    Article  PubMed  Google Scholar 

  73. Martin AMS, Bartolomeo L, Howell J, Hetrick WP, Bolbecker AR, Breier A, et al. Auditory feature perception and auditory hallucinatory experiences in schizophrenia spectrum disorder. Eur Arch Psychiatry Clin Nuerosci. 2018;268:653–61. https://doi.org/10.1007/s00406-017-0839-1.

    Article  Google Scholar 

  74. Davalos DB, Kisley MA, Freedman R. Behavioral and electrophysiological indices of temporal processing dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci. 2005;17:517–25. https://doi.org/10.1176/jnp.17.4.517.

    Article  PubMed  Google Scholar 

  75. Umbricht D, Krljes S. Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res. 2005;76:1–23.

    Article  PubMed  Google Scholar 

  76. Horacek M, Kärgel C, Scherbaum N, Müller BW. The effect of deviance predictability on mismatch negativity in schizophrenia patients. Neurosci Lett. 2016;617:76–81. https://doi.org/10.1016/j.neulet.2016.02.010.

    Article  CAS  PubMed  Google Scholar 

  77. Higuchi Y, Sumiyoshi T, Seo T, Miyanishi T, Kawasaki Y, Suzuki M. Mismatch negativity and cognitive performance for the prediction of psychosis in subjects with at-risk mental state. PLoS One. 2013;8. https://doi.org/10.1371/journal.pone.0054080.

  78. Tateno T, Higuchi Y, Nakajima S, Sasabayashi D, Nakamura M, Ueno M, et al. Features of duration mismatch negativity around the onset of overt psychotic disorders: a longitudinal study. Cereb Cortex. 2021;31:2416–24. https://doi.org/10.1093/cercor/bhaa364.

    Article  PubMed  Google Scholar 

  79. Lechner S, Northoff G. Prolonged intrinsic neural timescales dissociate from reduced phase coherence in schizophrenia. Brain Sci. 2023;13:695.

  80. Nordgaard J, Madeira L, Shinn AK, Cermolacce M. Editorial: Psychiatric diagnoses: current state and methodological issues. Front Psychiatry. 2023;14:1194755.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sandsten KE, Wainio-Theberge S, Nordgaard J, Kjaer TW, Northoff G, Parnas J. Relating self-disorders to neurocognitive and psychopathological measures in first-episode schizophrenia. Early Intervention Psych. 2022;16:1202–10.

    Article  Google Scholar 

  82. Northoff, Dr Georg. Neurowaves. 1st ed. McGill-Queen’s University Press; 2023.

  83. Northoff G, Hirjak D. Spatiotemporal Psychopathology – An integrated brain-mind approach and catatonia. Schizophrenia Research. 2024;263:151–9.

    Article  PubMed  Google Scholar 

  84. Northoff G, Hirjak D. Integrating subjective and objective—spatiotemporal approach to psychiatric disorders. Mol Psychiatry. 2023. 17 May 2023. https://doi.org/10.1038/s41380-023-02100-4.

  85. Stanghellini G, Ballerini M, Presenza S, Mancini M, Raballo A, Blasi S, et al. Psychopathology of Lived Time: Abnormal Time Experience in Persons With Schizophrenia. SCHBUL. 2015:sbv052.

  86. Stanghellini G, Fernandez AV, Ballerini M, Blasi S, Belfiore E, Cutting J, et al. Abnormal Space Experiences in Persons With Schizophrenia: An Empirical Qualitative Study. Schizophrenia Bulletin. 2020;46:530–9.

    Article  PubMed  Google Scholar 

  87. Hirjak D, Brandt GA, Peretzke R, Fritze S, Meyer-Lindenberg A, Maier-Hein KH, et al. Microstructural white matter biomarkers of symptom severity and therapy outcome in catatonia: Rationale, study design and preliminary clinical data of the whiteCAT study. Schizophrenia Research. 2024;263:160–8.

    Article  CAS  PubMed  Google Scholar 

  88. Sterzer P, Voss M, Schlagenhauf F, Heinz A. Decision-making in schizophrenia: A predictive-coding perspective. NeuroImage. 2019;190:133–43.

    Article  PubMed  Google Scholar 

  89. Stephan KE, Diaconescu AO, Iglesias S. Bayesian inference, dysconnectivity and neuromodulation in schizophrenia. Brain. 2016;139:1874–6.

    Article  PubMed  Google Scholar 

  90. Hirjak D, Northoff G. Navigating the evolving landscape of catatonia research. Schizophrenia Research. 2024;263:1–5.

    Article  PubMed  Google Scholar 

  91. Albrecht MA, Waltz JA, Cavanagh JF, Frank MJ, Gold JM. Increased conflict-induced slowing, but no differences in conflict-induced positive or negative prediction error learning in patients with schizophrenia. Neuropsychologia. 2019;123:131–40. https://doi.org/10.1016/j.neuropsychologia.2018.04.031.

    Article  PubMed  Google Scholar 

  92. Choueiry J, Blais CM, Shah D, Smith D, Fisher D, Labelle A, et al. Combining CDP-choline and galantamine, an optimized α7 nicotinic strategy, to ameliorate sensory gating to speech stimuli in schizophrenia. Int J Psychophysiol. 2019;145:70–82. https://doi.org/10.1016/j.ijpsycho.2019.02.005.

    Article  PubMed  Google Scholar 

  93. Jurcak V, Tsuzuki D, Dan I. 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. NeuroImage. 2007;34:1600–11. https://doi.org/10.1016/j.neuroimage.2006.09.024.

    Article  PubMed  Google Scholar 

  94. Jaworska N, Somma ED, Blondeau C, Tessier P, Norris S, Fusee W, et al. Auditory P3 in antidepressant pharmacotherapy treatment responders, non-responders and controls. Eur Neuropsychopharmacol. 2013;23:1561–69. https://doi.org/10.1016/j.euroneuro.2013.03.003.

    Article  CAS  PubMed  Google Scholar 

  95. Wolff A, Salle S de la, Sorgini A, Lynn E, Blier P, et al. Atypical temporal dynamics of resting-state shapes stimulus-evoked activity in depression—an EEG study on rest–stimulus interaction. Front Psychiatry. 2019;10. https://doi.org/10.3389/fpsyt.2019.00719.

  96. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.; 2004:9–21. http://www.sccn.ucsd.edu/eeglab/.

  97. Bigdely-Shamlo N, Mullen T, Kothe C, Su KM, Robbins KA. The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front Neuroinform. 2015;9:1–19. https://doi.org/10.3389/fninf.2015.00016.

    Article  Google Scholar 

  98. Winkler I, Haufe S, Tangermann M. Automatic classification of artifactual ICA-components for artefact removal in EEG signals. Behav Brain Funct. 2011;7. https://doi.org/10.1186/1744-9081-7-30.

  99. Winkler I, Brandl S, Horn F, Waldburger E, Allefeld C, Tangermann M. Robust artifactual independent component classification for BCI practitioners. J Neural Eng. 2014;11. https://doi.org/10.1088/1741-2560/11/3/035013.

  100. Carvalhaes C, de Barros JA. The surface Laplacian technique in EEG: theory and methods. Int J Psychophysiol. 2015;97:174–88. https://doi.org/10.1016/j.ijpsycho.2015.04.023.

  101. Einevoll, Destexhe GT, Diesmann A, Grün M, Jirsa S, Kamps V, et al. The scientific case for brain simulations. Neuron. 2019;102:735–44. https://doi.org/10.1016/j.neuron.2019.03.027.

    Article  CAS  PubMed  Google Scholar 

  102. Aghababaiyan K. Improving performance of neurons by adding colour noise. IET Nanobiotechnol. 2020;14:433–39. https://doi.org/10.1049/iet-nbt.2019.0280.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Baker DH, Richard B. Dynamic properties of internal noise probed by modulating binocular rivalry. PLoS Comput Biol. 2019;15. https://doi.org/10.1371/journal.pcbi.1007071.

  104. Erra RG, Arbotto M, Schurger A. An integration-to-bound model of decision-making that accounts for the spectral properties of neural data. Sci Rep. 2019;9. https://doi.org/10.1038/s41598-019-44197-0.

  105. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple. J R Stat Soc Ser B (Methodol).1995;57:289–300.

Download references

Author information

Authors and Affiliations

Authors

Contributions

AW and GN conceived of the presented idea. AW did the data analysis and performed the computations and modeling. GN wrote the sections regarding entrainment and clinical aspects, while AW wrote the methods and results. Both AW and GN wrote the introduction and discussion. Both authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Annemarie Wolff or Georg Northoff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolff, A., Northoff, G. Temporal imprecision of phase coherence in schizophrenia and psychosis—dynamic mechanisms and diagnostic marker. Mol Psychiatry 29, 425–438 (2024). https://doi.org/10.1038/s41380-023-02337-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02337-z

Search

Quick links