Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Synergistic psychedelic - NMDAR modulator treatment for neuropsychiatric disorders

Abstract

Modern research data suggest a therapeutic role for serotonergic psychedelics in depression and other neuropsychiatric disorders, although psychotomimetic effects may limit their widespread utilization. Serotonergic psychedelics enhance neuroplasticity via serotonin 2 A receptors (5HT2AR) activation and complex serotonergic-glutamatergic interactions involving the ionotropic glutamate receptors, tropomyosin receptor kinase B (TrkB) and the mammalian target of rapamycin (mTOR). N-methyl-d-aspartate receptors (NMDAR) channel antagonists, i.e. ketamine, and glycine modulatory site full and partial agonists, i.e., D-serine (DSR) and D-cycloserine (DCS), share some of these mechanisms of action and have neuroplastic and antidepressant effects. Moreover, procognitive effects have been reported for DSR and DCS and 5HT2AR-NMDAR interactions modulate neuronal excitability in prefrontal cortex and represent a target for new antipsychotics. We hypothesize that the synchronous administration of a psychedelic and a NMDAR modulator may increase the therapeutic impact of each of the treatment components and allow for dose adjustments and improved safety. We propose to initially focus research on the acute concurrent administration of psilocybin and DSR or DCS in depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the hypothesized mechanisms of action of combined serotonergic psychedelic—NMDAR modulator treatment.

Similar content being viewed by others

References

  1. Nutt D, Carhart-Harris R. The current status of psychedelics in psychiatry. JAMA Psychiatry. 2021;78:121–2.

    Article  PubMed  Google Scholar 

  2. Wolf G, Singh S, Blakolmer K, Lerer L, Lifschytz T, Heresco-Levy U, et al. Could psychedelic drugs have a role in the treatment of schizophrenia? Rationale and strategy for safe implementation. Mol Psychiatry. 2023;28:44–58.

    Article  PubMed  Google Scholar 

  3. Calder AE, Hasler G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology. 2023;48:104–12.

    Article  PubMed  Google Scholar 

  4. Hunt DL, Castillo PE. Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol. 2012;22:496–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Popik P, Holuj M, Nikiforuk A, Kos T, Trullas R, Skolnick P. 1-Aminocyclopropanecarboxylic acid (ACPC) produces procognitive but not antipsychotic-like effects in rats. Psychopharmacol. 2015;232:1025–38.

    Article  CAS  Google Scholar 

  6. Hashimoto K, Malchow B, Falkai P, Schmitt A. Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch psychiatry Clin Neurosci. 2013;263:367–77.

    Article  PubMed  Google Scholar 

  7. Chan SY, Matthews E, Burnet PW. ON or OFF?: modulating the N-methyl-D-aspartate receptor in major depression. Front Mol Neurosci. 2017;9:169.

    Article  PubMed  PubMed Central  Google Scholar 

  8. De Gregorio D, Enns JP, Nuñez NA, Posa L, Gobbi G. d-Lysergic acid diethylamide, psilocybin, and other classic hallucinogens: mechanism of action and potential therapeutic applications in mood disorders. Prog Brain Res. 2018;242:69–96.

    Article  PubMed  Google Scholar 

  9. Aleksandrova LR, Phillips AG. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends Pharmacol Sci. 2021;42:929–42.

    Article  CAS  PubMed  Google Scholar 

  10. Lambe EK, Aghajanian GK. Hallucinogen-induced UP states in the brain slice of rat prefrontal cortex: role of glutamate spillover and NR2B-NMDA receptors. Neuropsychopharmacology. 2006;31:1682–9.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang C, Marek GJ. AMPA receptor involvement in 5-hydroxytryptamine2A receptor-mediated pre-frontal cortical excitatory synaptic currents and DOI-induced head shakes. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32:62–71.

    Article  Google Scholar 

  12. Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci. 2021;118:e2022489118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnston JN, Kadriu B, Allen J, Gilbert JR, Henter ID, Zarate CA Jr. Ketamine and serotonergic psychedelics: An update on the mechanisms and biosignatures underlying rapid-acting antidepressant treatment. Neuropharmacology. 2023;226:109422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C, Enkavi G, et al. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat Neurosci. 2023;26:1032–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Durrant AR, Heresco-Levy U. D-Serine in neuropsychiatric disorders: new advances. Adv. Psychiatry 2014;2014:1–16.

  16. Cheng Y-J, Lin C-H, Lane H-Y. Ketamine, benzoate, and sarcosine for treating depression. Neuropharmacology 2022;223:109351.

  17. Miller OH, Moran JT, Hall BJ. Two cellular hypotheses explaining the initiation of ketamine’s antidepressant actions: Direct inhibition and disinhibition. Neuropharmacology. 2016;100:17–26.

    Article  CAS  PubMed  Google Scholar 

  18. Kang H-K, Hyun C-G. Anti-inflammatory effect of d-(+)-cycloserine through inhibition of NF-κB and MAPK signaling pathways in LPS-induced RAW 264.7 macrophages. Nat Prod Commun. 2020;15:1934578X20920481.

    CAS  Google Scholar 

  19. Kurita K, Ohta H, Shirakawa I, Tanaka M, Kitaura Y, Iwasaki Y, et al. Macrophages rely on extracellular serine to suppress aberrant cytokine production. Sci Rep. 2021;11:1–14.

    Article  Google Scholar 

  20. Rolland B, Jardri R, Amad A, Thomas P, Cottencin O, Bordet R. Pharmacology of hallucinations: several mechanisms for one single symptom? BioMed Res Int. 2014;2014:307106.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dall’Olio R, Gaggi R, Bonfante V, Gandolfi O. The non-competitive NMDA receptor blocker dizocilpine potentiates serotonergic function. Behav Pharmacol. 1999;10:63–71.

    Article  PubMed  Google Scholar 

  22. Dall’Olio R, Gandolfi O, Gaggi R. D-cycloserine, a positive modulator of NMDA receptors, inhibits serotonergic function. Behav Pharmacol. 2000;11:631–7.

    Article  PubMed  Google Scholar 

  23. Nakao K, Singh M, Sapkota K, Fitzgerald A, Hablitz JJ, Nakazawa K. 5-HT2A receptor dysregulation in a schizophrenia relevant mouse model of NMDA receptor hypofunction. Transl Psychiatry. 2022;12:168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McClure-Begley TD, Roth BL. The promises and perils of psychedelic pharmacology for psychiatry. Nat Rev Drug Discov. 2022;21:463–73.

    Article  CAS  PubMed  Google Scholar 

  25. Holze F, Ley L, Müller F, Becker AM, Straumann I, Vizeli P, et al. Direct comparison of the acute effects of lysergic acid diethylamide and psilocybin in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology. 2022;47:1180–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stroebel D, Paoletti P. Architecture and function of NMDA receptors: an evolutionary perspective. J Physiol. 2021;599:2615–38.

    Article  CAS  PubMed  Google Scholar 

  27. Geoffroy C, Paoletti P, Mony L. Positive allosteric modulation of NMDA receptors: mechanisms, physiological impact and therapeutic potential. J Physiol. 2022;600:233–59.

    Article  CAS  PubMed  Google Scholar 

  28. Dodd S, Norman TR, Eyre H, Stahl SM, Phillips A, Carvalho AF, et al. Psilocybin in Neuropsychiatry: a review of its pharmacology, safety and efficacy. CNS Spectrums 2022;28:1–36.

  29. Vollenweider FX, Kometer M. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci. 2010;11:642–51.

    Article  CAS  PubMed  Google Scholar 

  30. Shao L-X, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron. 2021;109:2535–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ly C, Greb A, Cameron L, Wong J, Barragan E, Wilson P, et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 2018;23:3170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Catlow BJ, Song S, Paredes DA, Kirstein CL, Sanchez-Ramos J. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp Brain Res. 2013;228:481–91.

    Article  CAS  PubMed  Google Scholar 

  33. Carhart-Harris R, Giribaldi B, Watts R, Baker-Jones M, Murphy-Beiner A, Murphy R, et al. Trial of psilocybin versus escitalopram for depression. N Engl J Med. 2021;384:1402–11.

    Article  CAS  PubMed  Google Scholar 

  34. Goodwin GM, Aaronson ST, Alvarez O, Arden PC, Baker A, Bennett JC, et al. Single-dose psilocybin for a treatment-resistant episode of major depression. N Engl J Med. 2022;387:1637–48.

    Article  CAS  PubMed  Google Scholar 

  35. Mann JJ. Is psilocybin an effective antidepressant and what is its Mechanism of action? Cell Rep Med. 2023;4:100906.

  36. Mothet J-P, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci. 2000;97:4926–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wei I-H, Chen K-T, Tsai M-H, Wu C-H, Lane H-Y, Huang C-C. Acute amino acid D-serine administration, similar to ketamine, produces antidepressant-like effects through identical mechanisms. J Agric food Chem. 2017;65:10792–803.

    Article  CAS  PubMed  Google Scholar 

  38. Malkesman O, Austin DR, Tragon T, Wang G, Rompala G, Hamidi AB, et al. Acute D-serine treatment produces antidepressant-like effects in rodents. Int J Neuropsychopharmacol. 2012;15:1135–48.

    Article  CAS  PubMed  Google Scholar 

  39. Otte D-M, Barcena de Arellano ML, Bilkei-Gorzo A, Albayram Ö, Imbeault S, Jeung H, et al. Effects of chronic D-serine elevation on animal models of depression and anxiety-related behavior. PloS one. 2013;8:e67131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wolosker H, Balu DT. D-Serine as the gatekeeper of NMDA receptor activity: implications for the pharmacologic management of anxiety disorders. Transl Psychiatry. 2020;10:184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Orzylowski M, Fujiwara E, Mousseau DD, Baker GB. An overview of the involvement of d-serine in cognitive impairment in normal aging and dementia. Front Psychiatry 2021;12:1674.

  42. Sultan S, Gebara EG, Moullec K, Toni N. D-serine increases adult hippocampal neurogenesis. Front Neurosci. 2013;7:155.

    PubMed  PubMed Central  Google Scholar 

  43. Levin R, Dor-Abarbanel AE, Edelman S, Durrant AR, Hashimoto K, Javitt DC, et al. Behavioral and cognitive effects of the N-methyl-D-aspartate receptor co-agonist D-serine in healthy humans: initial findings. J Psychiatr Res. 2015;61:188–95.

    Article  PubMed  Google Scholar 

  44. Singh SP, Singh V. Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs. 2011;25:859–85.

    Article  CAS  PubMed  Google Scholar 

  45. Tsai GE, Lin P-Y. Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des. 2010;16:522–37.

    Article  CAS  PubMed  Google Scholar 

  46. Sehatpour P, Iosifescu DV, De Baun HM, Shope C, Mayer MR, Gangwisch J, et al. Dose-Dependent Augmentation of Neuroplasticity-Based Auditory Learning in Schizophrenia: A Double-Blind, Placebo-Controlled, Randomized, Target Engagement Clinical Trial of the NMDA Glutamate Receptor Agonist d-serine. Biol Psychiatry. 2023;94:164–73.

    Article  CAS  PubMed  Google Scholar 

  47. Hasegawa H, Masuda N, Natori H, Shinohara Y, Ichida K. Pharmacokinetics and toxicokinetics of d-serine in rats. J Pharm Biomed Anal. 2019;162:264–71.

    Article  CAS  PubMed  Google Scholar 

  48. Meftah A, Hasegawa H, Kantrowitz JT. D-Serine: a cross species review of safety. Front Psychiatry. 2021;12:726365.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kantrowitz JT, Malhotra AK, Cornblatt B, Silipo G, Balla A, Suckow RF, et al. High dose D-serine in the treatment of schizophrenia. Schizophr Res. 2010;121:125–30.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Caminero JA, Sotgiu G, Zumla A, Migliori GB. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect Dis. 2010;10:621–9.

    Article  CAS  PubMed  Google Scholar 

  51. Epstein IG, Nair K, Boyd LJ. The Treatment of Human Pulmonary Tuberculosis With Cycloserine:* Progress Report. Dis Chest. 1956;29:241–57.

    Article  CAS  PubMed  Google Scholar 

  52. Köser CU, Bryant JM, Becq J, Török ME, Ellington MJ, Marti-Renom MA, et al. Whole-genome sequencing for rapid susceptibility testing of M. tuberculosis. N. Engl J Med. 2013;369:290–2.

    Article  PubMed  Google Scholar 

  53. Hwang T, Wares D, Jafarov A, Jakubowiak W, Nunn P, Keshavjee S. Safety of cycloserine and terizidone for the treatment of drug-resistant tuberculosis: a meta-analysis. Int J Tuberculosis Lung Dis. 2013;17:1257–66.

    Article  CAS  Google Scholar 

  54. Li Y, Wang F, Wu L, Zhu M, He G, Chen X, et al. Cycloserine for treatment of multidrug-resistant tuberculosis: a retrospective cohort study in China. Infect Drug Resist. 2019;12:721–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schade S, Paulus W. D-cycloserine in neuropsychiatric diseases: a systematic review. Int J Neuropsychopharmacol. 2016;19:1–7.

    Article  CAS  Google Scholar 

  56. Yaka R, Biegon A, Grigoriadis N, Simeonidou C, Grigoriadis S, Alexandrovich AG, et al. D‐cycloserine improves functional recovery and reinstates long‐term potentiation (LTP) in a mouse model of closed head injury. FASEB J. 2007;21:2033–41.

    Article  CAS  PubMed  Google Scholar 

  57. Na ES, De Jesús-Cortés H, Martinez-Rivera A, Kabir ZD, Wang J, Ramesh V, et al. D-cycloserine improves synaptic transmission in an animal mode of Rett syndrome. Plos one. 2017;12:e0183026.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wu H-F, Chen PS, Hsu Y-T, Lee C-W, Wang T-F, Chen Y-J, et al. D-cycloserine ameliorates autism-like deficits by removing GluA2-containing AMPA receptors in a valproic acid-induced rat model. Mol Neurobiol. 2018;55:4811–24.

    Article  CAS  PubMed  Google Scholar 

  59. Walker DL, Ressler KJ, Lu K-T, Davis M. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci. 2002;22:2343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sotres-Bayon F, Diaz-Mataix L, Bush DE, LeDoux JE. Dissociable roles for the ventromedial prefrontal cortex and amygdala in fear extinction: NR2B contribution. Cereb Cortex. 2009;19:474–82.

    Article  PubMed  Google Scholar 

  61. Yamamoto S, Morinobu S, Fuchikami M, Kurata A, Kozuru T, Yamawaki S. Effects of single prolonged stress and D-cycloserine on contextual fear extinction and hippocampal NMDA receptor expression in a rat model of PTSD. Neuropsychopharmacology. 2008;33:2108–16.

    Article  CAS  PubMed  Google Scholar 

  62. Silvestri AJ, Root DH. Effects of REM deprivation and an NMDA agonist on the extinction of conditioned fear. Physiol Behav. 2008;93:274–81.

    Article  CAS  PubMed  Google Scholar 

  63. Bertotto M, Bustos S, Molina V, Martijena I. Influence of ethanol withdrawal on fear memory: effect of D-cycloserine. Neuroscience. 2006;142:979–90.

    Article  CAS  PubMed  Google Scholar 

  64. Yu H, Wang Y, Pattwell S, Jing D, Liu T, Zhang Y, et al. Variant BDNF Val66Met polymorphism affects extinction of conditioned aversive memory. J Neurosci. 2009;29:4056–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Norberg MM, Krystal JH, Tolin DF. A meta-analysis of D-cycloserine and the facilitation of fear extinction and exposure therapy. Biol Psychiatry. 2008;63:1118–26.

    Article  CAS  PubMed  Google Scholar 

  66. Durrant AR, Heresco-Levy U. d-Cycloserine. In: Stolerman IP, Price LH (eds). Encyclopedia of Psychopharmacology. Springer Berlin Heidelberg: Berlin, Heidelberg, (2010), pp 1–5.

  67. Hofmann SG. D-cycloserine for treating anxiety disorders: making good exposures better and bad exposures worse. Depression anxiety. 2014;31:175.

    Article  CAS  PubMed  Google Scholar 

  68. Crane GE. Cyloserine as an antidepressant agent. Am J Psychiatry. 1959;115:1025–6.

    Article  CAS  PubMed  Google Scholar 

  69. Heresco-Levy U, Gelfin G, Bloch B, Levin R, Edelman S, Javitt DC, et al. A randomized add-on trial of high-dose D-cycloserine for treatment-resistant depression. Int J Neuropsychopharmacol. 2013;16:501–6.

    Article  CAS  PubMed  Google Scholar 

  70. Kantrowitz JT, Milak MS, Mao X, Shungu DC, Mann JJ. d-Cycloserine, an NMDA glutamate receptor glycine site partial agonist, induces acute increases in brain glutamate plus glutamine and GABA comparable to ketamine. Am J Psychiatry. 2016;173:1241–2.

    Article  PubMed  Google Scholar 

  71. Nottage J, Gabay A, De Meyer K, Herrik K, Bastlund J, Christensen S, et al. The effect of ketamine and D-cycloserine on the high frequency resting EEG spectrum in humans. Psychopharmacology. 2023;240:59–75.

    Article  CAS  PubMed  Google Scholar 

  72. Kantrowitz JT, Halberstam B, Gangwisch J. Single-dose ketamine followed by daily D-cycloserine in treatment-resistant bipolar depression. J Clin Psychiatry. 2015;76:737–8.

    Article  PubMed  Google Scholar 

  73. Chen M-H, Cheng C-M, Gueorguieva R, Lin W-C, Li C-T, Hong C-J, et al. Maintenance of antidepressant and antisuicidal effects by D-cycloserine among patients with treatment-resistant depression who responded to low-dose ketamine infusion: a double-blind randomized placebo–control study. Neuropsychopharmacology. 2019;44:2112–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Danysz W, Parsons CG. Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev. 1998;50:597–664.

    CAS  PubMed  Google Scholar 

  75. Sheinin A, Shavit S, Benveniste M. Subunit specificity and mechanism of action of NMDA partial agonist D-cycloserine. Neuropharmacology. 2001;41:151–8.

    Article  CAS  PubMed  Google Scholar 

  76. Sartori SB, Maurer V, Murphy C, Schmuckermair C, Muigg P, Neumann ID, et al. Combined neuropeptide S and D-cycloserine augmentation prevents the return of fear in extinction-impaired rodents: advantage of dual versus single drug approaches. Int J Neuropsychopharmacol. 2016;19:pyv128.

    Article  PubMed  Google Scholar 

  77. Cole J, Sohn MN, Harris AD, Bray SL, Patten SB, McGirr A. Efficacy of adjunctive D-cycloserine to intermittent theta-burst stimulation for major depressive disorder: A randomized clinical trial. JAMA psychiatry. 2022;79:1153–61.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schatzberg AF, Mathew SJ. The why, when, where, how, and so what of so-called rapidly acting antidepressants. Neuropsychopharmacology 2023. https://doi.org/10.1038/s41386-023-01647-8. Online ahead of print.

  79. Xiao J, Provenza NR, Asfouri J, Myers J, Mathura RK, Metzger B, et al. Decoding depression severity from intracranial neural activity. Biol Psychiatry. 2023;94:445–53.

    Article  PubMed  Google Scholar 

  80. Scangos KW, State MW, Miller AH, Baker JT, Williams LM. New and emerging approaches to treat psychiatric disorders. Nat Med. 2023;29:317–33.

    Article  CAS  PubMed  Google Scholar 

  81. Goodwin GM, Croal M, Feifel D, Kelly JR, Marwood L, Mistry S, et al. Psilocybin for treatment resistant depression in patients taking a concomitant SSRI medication. Neuropsychopharmacology 2023;48:1492–99.

  82. Lerer B, Ben-Tal t, Pogodin I, Lifschytz T, Heresco-Levy U. Exploring the potential role of synergistic psychedelic – NMDA receptor modulator treatment for refractory neuropsychiatric disorders. ACNP 62nd Annual Meeting: Poster Abstracts. 2023.

Download references

Acknowledgements

Hadassah BrainLabs - Center for Psychedelic Research (https://cfpr.brainlabs.org.il/) was established with the support of Negev Labs.

Author information

Authors and Affiliations

Authors

Contributions

UH and BL have jointly put forward and conceptualized the hypotheses and concepts presented in this paper and prepared the manuscript

Corresponding authors

Correspondence to Uriel Heresco-Levy or Bernard Lerer.

Ethics declarations

Competing interests

UH is inventor in patents and patent applications for the use of NMDAR modulators in depression, autoimmune encephalopathies, inflammatory disorders and in conjunction with psychedelics in neuropsychiatric disorders. BL is inventor on a patent application for the use of NMDAR modulators in conjunction with psychedelics in neuropsychiatric disorders.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heresco-Levy, U., Lerer, B. Synergistic psychedelic - NMDAR modulator treatment for neuropsychiatric disorders. Mol Psychiatry 29, 146–152 (2024). https://doi.org/10.1038/s41380-023-02312-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02312-8

Search

Quick links