Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural variability in three major psychiatric disorders

Abstract

Across the major psychiatric disorders (MPDs), a shared disruption in brain physiology is suspected. Here we investigate the neural variability at rest, a well-established behavior-relevant marker of brain function, and probe its basis in gene expression and neurotransmitter receptor profiles across the MPDs. We recruited 219 healthy controls and 279 patients with schizophrenia, major depressive disorder, or bipolar disorders (manic or depressive state). The standard deviation of blood oxygenation level-dependent signal (SDBOLD) obtained from resting-state fMRI was used to characterize neural variability. Transdiagnostic disruptions in SDBOLD patterns and their relationships with clinical symptoms and cognitive functions were tested by partial least-squares correlation. Moving beyond the clinical sample, spatial correlations between the observed patterns of SDBOLD disruption and postmortem gene expressions, Neurosynth meta-analytic cognitive functions, and neurotransmitter receptor profiles were estimated. Two transdiagnostic patterns of disrupted SDBOLD were discovered. Pattern 1 is exhibited in all diagnostic groups and is most pronounced in schizophrenia, characterized by higher SDBOLD in the language/auditory networks but lower SDBOLD in the default mode/sensorimotor networks. In comparison, pattern 2 is only exhibited in unipolar and bipolar depression, characterized by higher SDBOLD in the default mode/salience networks but lower SDBOLD in the sensorimotor network. The expression of pattern 1 related to the severity of clinical symptoms and cognitive deficits across MPDs. The two disrupted patterns had distinct spatial correlations with gene expressions (e.g., neuronal projections/cellular processes), meta-analytic cognitive functions (e.g., language/memory), and neurotransmitter receptor expression profiles (e.g., D2/serotonin/opioid receptors). In conclusion, neural variability is a potential transdiagnostic biomarker of MPDs with a substantial amount of its spatial distribution explained by gene expressions and neurotransmitter receptor profiles. The pathophysiology of MPDs can be traced through the measures of neural variability at rest, with varying clinical-cognitive profiles arising from differential spatial patterns of aberrant variability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A general overview of the main preprocessing pipeline and analyzing framework.
Fig. 2: Results of Group-PLSC.
Fig. 3: Results of Symptom-PLSC and spatial associations between SDBOLD aberrant patterns and Neurosynth meta-analytic cognitive terms.
Fig. 4: Associations between spatial patterns of bootstrap ratios of SDBOLD aberrant patterns and densities of neurotransmitter receptors.
Fig. 5: Results of Gene-PLSC and enrichments analyses.

Similar content being viewed by others

Data availability

Microarray data can be downloaded and preprocessed with abagen toolbox (https://github.com/rmarkello/abagen). Pre-calculated meta-analytic cognition-relevant activation map of Neurosynth can be downloaded from BrainStat toolbox (https://github.com/MICA-MNI/BrainStat). Neurotransmitter receptor density maps were downloaded with neuromap toolbox (https://netneurolab.github.io/neuromaps/index.html).

Code availability

All codes for analysis can be used or downloaded online from following website: for PLSC (https://github.com/danizoeller/myPLS/), for spatial correlation tests (https://netneurolab.github.io/neuromaps/index.html) and for gene enrichment analysis with GOrilla (http://cbl-gorilla.cs.technion.ac.il/). We also provide the fully documented codes in GitHub (https://github.com/weiwei-wch/SDBOLD_MP) of all the analyzes for replication.

References

  1. Liang YS, Wang Y, Wang YY, Ni K, Gooding DC, Chan RCK. Social anhedonia across mental disorders: A validation study of the Anticipatory and Consummatory Interpersonal Pleasure Scale. Psych J 2020;9:160–62.

    PubMed  Google Scholar 

  2. Stein F, Lemmer G, Schmitt S, Brosch K, Meller T, Fischer E, et al. Factor analyses of multidimensional symptoms in a large group of patients with major depressive disorder, bipolar disorder, schizoaffective disorder and schizophrenia. Schizophr Res. 2020;218:38–47.

    PubMed  Google Scholar 

  3. Cross-Disorder Group of the Psychiatric Genomics C. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–79.

    Google Scholar 

  4. Brainstorm C, Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, et al. Analysis of shared heritability in common disorders of the brain. Science. 2018;360:eaap8757.

  5. Zanelli J, Reichenberg A, Morgan K, Fearon P, Kravariti E, Dazzan P, et al. Specific and generalized neuropsychological deficits: a comparison of patients with various first-episode psychosis presentations. Am J Psychiatry. 2010; 167:78–85.

    PubMed  Google Scholar 

  6. Gong Q, Scarpazza C, Dai J, He M, Xu X, Shi Y, et al. A transdiagnostic neuroanatomical signature of psychiatric illness. Neuropsychopharmacology. 2019;44:869–75.

    PubMed  Google Scholar 

  7. Ma Q, Tang Y, Wang F, Liao X, Jiang X, Wei S, et al. Transdiagnostic Dysfunctions in Brain Modules Across Patients with Schizophrenia, Bipolar Disorder, and Major Depressive Disorder: A Connectome-Based Study. Schizophr Bull. 2020;46:699–712.

    PubMed  Google Scholar 

  8. Romer AL, Elliott ML, Knodt AR, Sison ML, Ireland D, Houts R, et al. Pervasively Thinner Neocortex as a Transdiagnostic Feature of General Psychopathology. Am J Psychiatry. 2021;178:174–82.

    PubMed  Google Scholar 

  9. Buckholtz JW, Meyer-Lindenberg A. Psychopathology and the human connectome: toward a transdiagnostic model of risk for mental illness. Neuron. 2012;74:990–1004.

    CAS  PubMed  Google Scholar 

  10. Harris KD, Thiele A. Cortical state and attention. Nat Rev Neurosci. 2011;12:509–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nomi JS, Bolt TS, Ezie CEC, Uddin LQ, Heller AS. Moment-to-Moment BOLD Signal Variability Reflects Regional Changes in Neural Flexibility across the Lifespan. J Neurosci. 2017;37:5539–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Garrett DD, Kovacevic N, McIntosh AR, Grady CL. Blood oxygen level-dependent signal variability is more than just noise. J Neurosci. 2010;30:4914–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Garrett DD, Samanez-Larkin GR, MacDonald SW, Lindenberger U, McIntosh AR, Grady CL. Moment-to-moment brain signal variability: a next frontier in human brain mapping? Neurosci Biobehav Rev. 2013;37:610–24.

    PubMed  PubMed Central  Google Scholar 

  14. Garrett DD, Kovacevic N, McIntosh AR, Grady CL. The importance of being variable. J Neurosci. 2011;31:4496–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Armbruster-Genc DJ, Ueltzhoffer K, Fiebach CJ. Brain Signal Variability Differentially Affects Cognitive Flexibility and Cognitive Stability. J Neurosci. 2016;36:3978–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dai R, Huang Z, Tu H, Wang L, Tanabe S, Weng X, et al. Interplay between Heightened Temporal Variability of Spontaneous Brain Activity and Task-Evoked Hyperactivation in the Blind. Front Hum Neurosci. 2016;10:632.

    PubMed  PubMed Central  Google Scholar 

  17. Good TJ, Villafuerte J, Ryan JD, Grady CL, Barense MD. Resting State BOLD Variability of the Posterior Medial Temporal Lobe Correlates with Cognitive Performance in Older Adults with and without Risk for Cognitive Decline. eNeuro. 2020;7:ENEURO.0290-19.2020.

  18. Zhang C, Beste C, Prochazkova L, Wang K, Speer SPH, Smidts A, et al. Resting-state BOLD signal variability is associated with individual differences in metacontrol. Sci Rep. 2022;12:18425.

    PubMed  PubMed Central  Google Scholar 

  19. Zanella F, Monachesi B, Grecucci A. Resting-state BOLD temporal variability in sensorimotor and salience networks underlies trait emotional intelligence and explains differences in emotion regulation strategies. Sci Rep. 2022;12:15163.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Basalyga G, Salinas E. When response variability increases neural network robustness to synaptic noise. Neural Comput. 2006;18:1349–79.

    PubMed  Google Scholar 

  21. Faisal AA, Selen LP, Wolpert DM. Noise in the nervous system. Nat Rev Neurosci. 2008;9:292–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Waschke L, Kloosterman NA, Obleser J, Garrett DD. Behavior needs neural variability. Neuron 2021;109:751–66.

    CAS  PubMed  Google Scholar 

  23. Tognoli E, Kelso JA. The metastable brain. Neuron 2014;81:35–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Boylan MA, Foster CM, Pongpipat EE, Webb CE, Rodrigue KM, Kennedy KM. Greater BOLD Variability is Associated With Poorer Cognitive Function in an Adult Lifespan Sample. Cereb Cortex. 2021;31:562–74.

    PubMed  Google Scholar 

  25. Garrett DD, Skowron A, Wiegert S, Adolf J, Dahle CL, Lindenberger U, et al. Lost Dynamics and the Dynamics of Loss: Longitudinal Compression of Brain Signal Variability is Coupled with Declines in Functional Integration and Cognitive Performance. Cereb Cortex. 2021;31:5239–52.

    PubMed  PubMed Central  Google Scholar 

  26. Thompson A, Schel MA, Steinbeis N. Changes in BOLD variability are linked to the development of variable response inhibition. Neuroimage 2021;228:117691.

    PubMed  Google Scholar 

  27. Zhang Y, Yang R, Cai X. Frequency-specific alternations in the moment-to-moment BOLD signals variability in schizophrenia. Brain Imaging Behav. 2021;15:68–75.

    PubMed  Google Scholar 

  28. Yun S, Jeong B. Aberrant EEG signal variability at a specific temporal scale in major depressive disorder. Clin Neurophysiol. 2021;132:1866–77.

    PubMed  Google Scholar 

  29. Kebets V, Favre P, Houenou J, Polosan M, Perroud N, Aubry JM, et al. Fronto-limbic neural variability as a transdiagnostic correlate of emotion dysregulation. Transl Psychiatry. 2021;11:545.

    PubMed  PubMed Central  Google Scholar 

  30. Martino M, Magioncalda P, Huang Z, Conio B, Piaggio N, Duncan NW, et al. Contrasting variability patterns in the default mode and sensorimotor networks balance in bipolar depression and mania. Proc Natl Acad Sci. 2016; 113:4824–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gonzalez-Castro TB, Hernandez-Diaz Y, Juarez-Rojop IE, Lopez-Narvaez ML, Tovilla-Zarate CA, Fresan A. The Role of a Catechol-O-Methyltransferase (COMT) Val158Met Genetic Polymorphism in Schizophrenia: A Systematic Review and Updated Meta-analysis on 32,816 Subjects. Neuromolecular Med. 2016;18:216–31.

    CAS  PubMed  Google Scholar 

  32. Wang M, Ma Y, Yuan W, Su K, Li MD. Meta-Analysis of the COMT Val158Met Polymorphism in Major Depressive Disorder: Effect of Ethnicity. J Neuroimmune Pharm. 2016;11:434–45.

    CAS  Google Scholar 

  33. Quednow BB, Ejebe K, Wagner M, Giakoumaki SG, Bitsios P, Kumari V, et al. Meta-analysis on the association between genetic polymorphisms and prepulse inhibition of the acoustic startle response. Schizophr Res. 2018;198:52–59.

    PubMed  Google Scholar 

  34. Lim M, Nascimento TD, Kim DJ, Ellingrod VL, DaSilva AF. Aberrant Brain Signal Variability and COMT Genotype in Chronic TMD Patients. J Dent Res. 2021;100:714–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large-scale automated synthesis of human functional neuroimaging data. Nat Methods. 2011;8:665–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Krishnan A, Williams LJ, McIntosh AR, Abdi H. Partial Least Squares (PLS) methods for neuroimaging: a tutorial and review. Neuroimage 2011;56:455–75.

    PubMed  Google Scholar 

  37. Chao RC-L, Manita J. DSM-IV-TR: Diagnostic and Statistical Manual of Mental Disorders. The Encyclopedia of Cross‐Cultural Psychology. 445–47.

  38. Annett M. Hand preference observed in large healthy samples: classification, norms and interpretations of increased non-right-handedness by the right shift theory. Br J Psychol. 2004;95:339–53.

    PubMed  Google Scholar 

  39. Gong Y. The usage of the Chinese version of the Wechsler Adult Intelligence Sale (WAIS-RC)-short from. J Hunan Med Univ. 1984;9:8.

    Google Scholar 

  40. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13:261–76.

    CAS  PubMed  Google Scholar 

  41. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978;133:429–35.

    CAS  PubMed  Google Scholar 

  43. Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ, et al. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb Cortex. 2018;28:3095–114.

    PubMed  Google Scholar 

  44. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Arnatkeviciute A, Fulcher BD, Fornito A. A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage. 2019;189:353–67.

    PubMed  Google Scholar 

  46. Markello RD, Arnatkeviciute A, Poline JB, Fulcher BD, Fornito A, Misic B. Standardizing workflows in imaging transcriptomics with the abagen toolbox. Elife. 2021;10:e72129.

  47. Markello RD, Hansen JY, Liu ZQ, Bazinet V, Shafiei G, Suarez LE, et al. neuromaps: structural and functional interpretation of brain maps. Nat Methods. 2022;19:1472–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Markello RD, Hansen JY, Liu Z-Q, Bazinet V, Shafiei G, Suárez LE, et al. neuromaps: structural and functional interpretation of brain maps. bioRxiv. 2022:2022.01.06.475081.

  49. Zoller D, Padula MC, Sandini C, Schneider M, Scariati E, Van De Ville D, et al. Psychotic symptoms influence the development of anterior cingulate BOLD variability in 22q11.2 deletion syndrome. Schizophr Res. 2018;193:319–28.

    PubMed  Google Scholar 

  50. Abdi H, Williams LJ. Partial least squares methods: partial least squares correlation and partial least square regression. Methods Mol Biol. 2013;930:549–79.

    CAS  PubMed  Google Scholar 

  51. Kong R, Yang Q, Gordon E, Xue A, Yan X, Orban C, et al. Individual-Specific Areal-Level Parcellations Improve Functional Connectivity Prediction of Behavior. Cereb Cortex. 2021;31:4477–500.

    PubMed  PubMed Central  Google Scholar 

  52. Whitaker KJ, Vertes PE, Romero-Garcia R, Vasa F, Moutoussis M, Prabhu G, et al. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc Natl Acad Sci. 2016;113:9105–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinforma. 2009;10:48.

    Google Scholar 

  54. Alexander-Bloch AF, Shou H, Liu S, Satterthwaite TD, Glahn DC, Shinohara RT, et al. On testing for spatial correspondence between maps of human brain structure and function. Neuroimage 2018;178:540–51.

    PubMed  Google Scholar 

  55. Vasa F, Seidlitz J, Romero-Garcia R, Whitaker KJ, Rosenthal G, Vertes PE, et al. Adolescent Tuning of Association Cortex in Human Structural Brain Networks. Cereb Cortex. 2018;28:281–94.

    PubMed  Google Scholar 

  56. Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38:433–47.

    CAS  PubMed  Google Scholar 

  57. Zhou HX, Chen X, Shen YQ, Li L, Chen NX, Zhu ZC, et al. Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression. Neuroimage 2020;206:116287.

    PubMed  Google Scholar 

  58. Bao W, Gao Y, Cao L, Li H, Liu J, Liang K, et al. Alterations in large-scale functional networks in adult posttraumatic stress disorder: A systematic review and meta-analysis of resting-state functional connectivity studies. Neurosci Biobehav Rev. 2021;131:1027–36.

    PubMed  Google Scholar 

  59. Zovetti N, Rossetti MG, Perlini C, Maggioni E, Bontempi P, Bellani M, et al. Default mode network activity in bipolar disorder. Epidemiol Psychiatr Sci. 2020;29:e166.

    PubMed  PubMed Central  Google Scholar 

  60. Borserio BJ, Sharpley CF, Bitsika V, Sarmukadam K, Fourie PJ, Agnew LL. Default mode network activity in depression subtypes. Rev Neurosci. 2021;32:597–613.

    PubMed  Google Scholar 

  61. Yanagi M, Shirakawa O. Application of Near-Infrared Spectroscopy for Understanding Spontaneous Brain Activity During Resting State in Schizophrenia: A Mini Review. Front Psychiatry. 2021;12:704506.

    PubMed  PubMed Central  Google Scholar 

  62. Garrett DD, Epp SM, Perry A, Lindenberger U. Local temporal variability reflects functional integration in the human brain. Neuroimage 2018;183:776–87.

    PubMed  Google Scholar 

  63. Sheng J, Zhang L, Feng J, Liu J, Li A, Chen W, et al. The coupling of BOLD signal variability and degree centrality underlies cognitive functions and psychiatric diseases. Neuroimage 2021;237:118187.

    PubMed  Google Scholar 

  64. Wei Y, Chang M, Womer FY, Zhou Q, Yin Z, Wei S, et al. Local functional connectivity alterations in schizophrenia, bipolar disorder, and major depressive disorder. J Affect Disord. 2018;236:266–73.

    PubMed  Google Scholar 

  65. Friederici AD, Gierhan SM. The language network. Curr Opin Neurobiol. 2013;23:250–4.

    CAS  PubMed  Google Scholar 

  66. Kepinska O, Lakke E, Dutton EM, Caspers J, Schiller NO. The perisylvian language network and language analytical abilities. Neurobiol Learn Mem. 2017;144:96–101.

    PubMed  Google Scholar 

  67. Pan Y, Dempster K, Jeon P, Theberge J, Khan AR, Palaniyappan L. Acute conceptual disorganization in untreated first-episode psychosis: a combined magnetic resonance spectroscopy and diffusion imaging study of the cingulum. J Psychiatry Neurosci. 2021;46:E337–46.

    PubMed  PubMed Central  Google Scholar 

  68. Supekar K, Cai W, Krishnadas R, Palaniyappan L, Menon V. Dysregulated Brain Dynamics in a Triple-Network Saliency Model of Schizophrenia and Its Relation to Psychosis. Biol Psychiatry. 2019;85:60–69.

    PubMed  Google Scholar 

  69. Menon V, Palaniyappan L, Supekar K Integrative Brain Network and Salience Models of Psychopathology and Cognitive Dysfunction in Schizophrenia. Biol Psychiatry. 2023;94:108-120.

  70. Wallwork RS, Fortgang R, Hashimoto R, Weinberger DR, Dickinson D. Searching for a consensus five-factor model of the Positive and Negative Syndrome Scale for schizophrenia. Schizophr Res. 2012;137:246–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Radanovic M, Sousa RT, Valiengo L, Gattaz WF, Forlenza OV. Formal Thought Disorder and language impairment in schizophrenia. Arq Neuropsiquiatr. 2013;71:55–60.

    PubMed  Google Scholar 

  72. Stein F, Buckenmayer E, Brosch K, Meller T, Schmitt S, Ringwald KG, et al. Dimensions of Formal Thought Disorder and Their Relation to Gray- and White Matter Brain Structure in Affective and Psychotic Disorders. Schizophr Bull. 2022;48:902-911.

  73. Palaniyappan L, Al-Radaideh A, Gowland PA, Liddle PF. Cortical thickness and formal thought disorder in schizophrenia: An ultra high-field network-based morphometry study. Prog Neuropsychopharmacol Biol Psychiatry. 2020;101:109911.

    PubMed  Google Scholar 

  74. Wei W, Zhang Y, Li Y, Meng Y, Li M, Wang Q, et al. Depth-dependent abnormal cortical myelination in first-episode treatment-naive schizophrenia. Hum Brain Mapp. 2020;41:2782–93.

    PubMed  PubMed Central  Google Scholar 

  75. Wei W, Yin Y, Zhang Y, Li X, Li M, Guo W, et al. Structural Covariance of Depth-Dependent Intracortical Myelination in the Human Brain and Its Application to Drug-Naive Schizophrenia: A T1w/T2w MRI Study. Cereb Cortex. 2022; 32:2373–84.

    PubMed  Google Scholar 

  76. Fountoulakis KN, Giannakopoulos P, Kovari E, Bouras C. Assessing the role of cingulate cortex in bipolar disorder: neuropathological, structural and functional imaging data. Brain Res Rev. 2008;59:9–21.

    PubMed  Google Scholar 

  77. Northoff G. How is our self altered in psychiatric disorders? A neurophenomenal approach to psychopathological symptoms. Psychopathology 2014;47:365–76.

    PubMed  Google Scholar 

  78. Horowski R, Loschmann PA. Classical dopamine agonists. J Neural Transm (Vienna). 2019;126:449–54.

    CAS  PubMed  Google Scholar 

  79. Lee SE, Lee Y, Lee GH. The regulation of glutamic acid decarboxylases in GABA neurotransmission in the brain. Arch Pharm Res. 2019;42:1031–39.

    CAS  PubMed  Google Scholar 

  80. Shah UH, Gonzalez-Maeso J. Serotonin and Glutamate Interactions in Preclinical Schizophrenia Models. ACS Chem Neurosci. 2019;10:3068–77.

    CAS  PubMed  Google Scholar 

  81. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharm Rev. 2011;63:182–217.

    CAS  PubMed  Google Scholar 

  82. Zhao L, Wang H, Zhang Y, Wei J, Ni P, Ren H, et al. Interaction Between Variations in Dopamine D2 and Serotonin 2A Receptor is Associated with Short-Term Response to Antipsychotics in Schizophrenia. Neurosci Bull. 2019;35:1102–05.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Tohen M, Baker RW, Altshuler LL, Zarate CA, Suppes T, Ketter TA, et al. Olanzapine versus divalproex in the treatment of acute mania. Am J Psychiatry. 2002;159:1011–7.

    PubMed  Google Scholar 

  84. Trivedi MH, Thase ME, Osuntokun O, Henley DB, Case M, Watson SB, et al. An integrated analysis of olanzapine/fluoxetine combination in clinical trials of treatment-resistant depression. J Clin Psychiatry. 2009;70:387–96.

    CAS  PubMed  Google Scholar 

  85. Alavash M, Lim SJ, Thiel C, Sehm B, Deserno L, Obleser J. Dopaminergic modulation of hemodynamic signal variability and the functional connectome during cognitive performance. Neuroimage 2018;172:341–56.

    CAS  PubMed  Google Scholar 

  86. Mansson KNT, Waschke L, Manzouri A, Furmark T, Fischer H, Garrett DD. Moment-to-Moment Brain Signal Variability Reliably Predicts Psychiatric Treatment Outcome. Biol Psychiatry. 2022;91:658–66.

    PubMed  Google Scholar 

  87. Yoo JH, Lee SY, Loh HH, Ho IK, Jang CG. Altered emotional behaviors and the expression of 5-HT1A and M1 muscarinic receptors in micro-opioid receptor knockout mice. Synapse 2004;54:72–82.

    CAS  PubMed  Google Scholar 

  88. Al-Hakeim HK, Zeki Al-Fadhel S, Al-Dujaili AH, Maes M. In major depression, increased kappa and mu opioid receptor levels are associated with immune activation. Acta Neuropsychiatr. 2020;32:99–108.

    PubMed  Google Scholar 

  89. Desormeaux C, Demars F, Davenas E, Jay TM, Lavergne F. Selective activation of D1 dopamine receptors exerts antidepressant-like activity in rats. J Psychopharmacol. 2020;34:1443–48.

    CAS  PubMed  Google Scholar 

  90. Wang Y, He W, Zhang H, Yao Z, Che F, Cao Y, et al. mGluR5 mediates ketamine antidepressant response in susceptible rats exposed to prenatal stress. J Affect Disord. 2020;272:398–408.

    CAS  PubMed  Google Scholar 

  91. Rana T, Behl T, Sehgal A, Mehta V, Singh S, Kumar R, et al. Integrating Endocannabinoid Signalling In Depression. J Mol Neurosci. 2021;71:2022–34.

    CAS  PubMed  Google Scholar 

  92. Straube B, van Kemenade BM, Kircher T, Schulke R. Transcranial direct current stimulation improves action-outcome monitoring in schizophrenia spectrum disorder. Brain Commun. 2020;2:fcaa151.

    PubMed  PubMed Central  Google Scholar 

  93. Xia M, Liu J, Mechelli A, Sun X, Ma Q, Wang X, et al. Connectome gradient dysfunction in major depression and its association with gene expression profiles and treatment outcomes. Mol Psychiatry. 2022;27:1384–93.

    CAS  PubMed  Google Scholar 

  94. Rajkowska G, O’Dwyer G, Teleki Z, Stockmeier CA, Miguel-Hidalgo JJ. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology. 2007;32:471–82.

    CAS  PubMed  Google Scholar 

  95. Zhang N, Niu Y, Sun J, An W, Li D, Wei J, et al. Altered Complexity of Spontaneous Brain Activity in Schizophrenia and Bipolar Disorder Patients. J Magn Reson Imaging. 2021;54:586–95.

    PubMed  Google Scholar 

  96. Kielar A, Deschamps T, Chu RK, Jokel R, Khatamian YB, Chen JJ, et al. Identifying Dysfunctional Cortex: Dissociable Effects of Stroke and Aging on Resting State Dynamics in MEG and fMRI. Front Aging Neurosci. 2016;8:40.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all of patients and health individuals and others who participated in this study. This work was partly supported by National Natural Science Foundation of China (grant number 81920108018 to TL. and PS, 82001410 to WW, and 82230046 to TL.), the Key R & D Program of Zhejiang (2022C03096 to TL), Project for Hangzhou Medical Disciplines of Excellence & Key Project for Hangzhou Medical Disciplines (grant number 202004A11 to TL), and special Foundation for Brain Research from Science and Technology Program of Guangdong (2018B030334001 to TL). LP acknowledges research support from the Monique H. Bourgeois Chair in Developmental Disorders and Graham Boeckh Foundation (Douglas Research Centre, McGill University) and salary award from the Fonds de recherche du Quebec-Sante ́ (FRQS).

Author information

Authors and Affiliations

Authors

Contributions

WW, XM, LZ, PS, and TL concepted and designed this research. WW, LD, CQ, YY, YZ, XL, HY, LJ, ML, WG, QW, WD, XM, and LZ collected data. WW, LD, CQ, QW, WD, XM, and LZ performed data quality control. WW, LD, WD, and LP analyzed data. WW, PS, LP, and TL drafted and revised the paper.

Corresponding authors

Correspondence to Lena Palaniyappan or Tao Li.

Ethics declarations

Competing interests

LP reports personal fees from Janssen Canada, Otsuka Canada, SPMM Course Limited, UK, Canadian Psychiatric Association; book royalties from Oxford University Press; investigator-initiated educational grants from Janssen Canada, Sunovion and Otsuka Canada outside the submitted work. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Deng, L., Qiao, C. et al. Neural variability in three major psychiatric disorders. Mol Psychiatry 28, 5217–5227 (2023). https://doi.org/10.1038/s41380-023-02164-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02164-2

Search

Quick links