Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

Association between Autism Spectrum Disorder (ASD) and vision problems. A systematic review and meta-analysis

A Correction to this article was published on 09 August 2023

This article has been updated

Abstract

Aim

To conduct a systematic review and meta-analysis assessing whether vision and/or eye disorders are associated with Autism Spectrum Disorder (ASD).

Method

Based on a pre-registered protocol (PROSPERO: CRD42022328485), we searched PubMed, Web of Knowledge/Science, Ovid Medline, Embase and APA PsycINFO up to 5th February 2022, with no language/type of document restrictions. We included observational studies 1) reporting at least one measure of vision in people of any age with a diagnosis of ASD based on DSM or ICD criteria, or ADOS; or 2) reporting the prevalence of ASD in people with and without vision disorders. Study quality was assessed with the Appraisal tool for Cross-Sectional Studies (AXIS). Random-effects meta-analyses were used for data synthesis.

Results

We included 49 studies in the narrative synthesis and 46 studies in the meta-analyses (15,629,159 individuals distributed across multiple different measures). We found meta-analytic evidence of increased prevalence of strabismus (OR = 4.72 [95% CI: 4.60, 4.85]) in people with versus those without ASD (non-significant heterogeneity: Q = 1.0545, p = 0.7881). We also found evidence of increased accommodation deficits (Hedge’s g = 0.68 [CI: 0.28, 1.08]) (non-significant heterogeneity: Q = 6.9331, p = 0.0741), reduced peripheral vision (−0.82 [CI: −1.32, −0.33]) (non-significant heterogeneity: Q = 4.8075, p = 0.4398), reduced stereoacuity (0.73 [CI: −1.14, −0.31]) (non-significant heterogeneity: Q = 0.8974, p = 0.3435), increased color discrimination difficulties (0.69 [CI: 0.27,1.10]) (non-significant heterogeneity: Q = 9.9928, p = 0.1890), reduced contrast sensitivity (0.45 [CI: −0.60, −0.30]) (non-significant heterogeneity: Q = 9.9928, p = 0.1890) and increased retinal thickness (=0.29 [CI: 0.07, 0.51]) (non-significant heterogeneity: Q = 0.8113, p = 0.9918) in ASD.

Discussion

ASD is associated with some self-reported and objectively measured functional vision problems, and structural alterations of the eye, even though we observed several methodological limitations in the individual studies included in our meta-analyses. Further research should clarify the causal relationship, if any, between ASD and problems of vision during early life.

PROSPERO registration

CRD42022328485.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA flowchart.

Similar content being viewed by others

Data availability

Raw data and R codes for the meta-analysis are available upon request to the corresponding author.

Change history

References

  1. Solmi M, Song M, Yon DK, Lee SW, Fombonne E, Kim MS, et al. Incidence, prevalence, and global burden of autism spectrum disorder from 1990 to 2019 across 204 countries. Mol Psychiatry. 2022;27:4172–80.

    PubMed  Google Scholar 

  2. Diagnostic and statistical manual of mental disorders: DSM-5. Arlington, VA: American Psychiatric Association; 2013.

  3. Leekam SR, Nieto C, Libby SJ, Wing L, Gould J. Describing the sensory abnormalities of children and adults with autism. J Autism Dev Disord. 2007;37:894–910.

    PubMed  Google Scholar 

  4. Baranek GT, David FJ, Poe MD, Stone WL, Watson LR. Sensory Experiences Questionnaire: discriminating sensory features in young children with autism, developmental delays, and typical development. J Child Psychol Psychiatry. 2006;47:591–601.

    PubMed  Google Scholar 

  5. Parmar KR, Porter CS, Dickinson CM, Pelham J, Baimbridge P, Gowen E. Visual sensory experiences from the viewpoint of autistic adults. Front Psychol. 2021;12:633037.

    PubMed  PubMed Central  Google Scholar 

  6. Butchart M, Long JJ, Brown M, McMillan A, Bain J, Karatzias T. Autism and visual impairment: a review of the literature. Rev J Autism Dev Disorders. 2017;4:118–31.

    Google Scholar 

  7. Wrzesinska M, Kapias J, Nowakowska-Domagala K, Kocur J. Visual impairment and traits of autism in children. Psychiatr Pol. 2017;51:349–58.

    PubMed  Google Scholar 

  8. Do B, Lynch P, Macris EM, Smyth B, Stavrinakis S, Quinn S, et al. Systematic review and meta-analysis of the association of Autism Spectrum Disorder in visually or hearing impaired children. Ophthalmic Physiol Opt. 2017;37:212–24.

    PubMed  Google Scholar 

  9. Leung MP, Thompson B, Black J, Dai S, Alsweiler JM. The effects of preterm birth on visual development. Clin Exp Optom. 2018;101:4–12.

    PubMed  Google Scholar 

  10. Lynn WA, Lightman S. The eye in systemic infection. Lancet. 2004;364:1439–50.

    CAS  PubMed  Google Scholar 

  11. Whatham A, Bartlett H, Eperjesi F, Blumenthal C, Allen J, Suttle C, et al. Vitamin and mineral deficiencies in the developed world and their effect on the eye and vision. Ophthalmic Physiol Opt. 2008;28:1–12.

    PubMed  Google Scholar 

  12. Modabbernia A, Velthorst E, Reichenberg A. Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol Autism. 2017;8:13.

    PubMed  PubMed Central  Google Scholar 

  13. Grabrucker AM. Environmental factors in autism. Front Psychiatry. 2012;3:118.

    PubMed  Google Scholar 

  14. Al-Haddad BJS, Oler E, Armistead B, Elsayed NA, Weinberger DR, Bernier R, et al. The fetal origins of mental illness. Am J Obstet Gynecol. 2019;221:549–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Strasser L, Downes M, Kung J, Cross JH, De Haan M. Prevalence and risk factors for autism spectrum disorder in epilepsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2018;60:19–29.

    PubMed  Google Scholar 

  16. Richards C, Jones C, Groves L, Moss J, Oliver C. Prevalence of autism spectrum disorder phenomenology in genetic disorders: a systematic review and meta-analysis. Lancet Psychiatry. 2015;2:909–16.

    PubMed  Google Scholar 

  17. London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9:44–53.

    CAS  PubMed  Google Scholar 

  18. Ecker C. The neuroanatomy of autism spectrum disorder: an overview of structural neuroimaging findings and their translatability to the clinical setting. Autism. 2017;21:18–28.

    PubMed  Google Scholar 

  19. Kelley KW, Pașca SP. Human brain organogenesis: toward a cellular understanding of development and disease. Cell. 2022;185:42–61.

    CAS  PubMed  Google Scholar 

  20. MacCormick IJ, Czanner G, Faragher B. Developing retinal biomarkers of neurological disease: an analytical perspective. Biomark Med. 2015;9:691–701.

    CAS  PubMed  Google Scholar 

  21. Ornitz EM, Ritvo ER. Perceptual inconstancy in early infantile autism. The syndrome of early infant autism and its variants including certain cases of childhood schizophrenia. Arch Gen Psychiatry. 1968;18:76–98.

    CAS  PubMed  Google Scholar 

  22. Little J-A. Vision in children with autism spectrum disorder: a critical review. Clin Exper Optometry. 2018;101:504–13.

    Google Scholar 

  23. Bakroon A, Lakshminarayanan V. Visual function in autism spectrum disorders: a critical review. Clin Exp Optom. 2016;99:297–308.

    PubMed  Google Scholar 

  24. Simmons DR, Robertson AE, McKay LS, Toal E, McAleer P, Pollick FE. Vision in autism spectrum disorders. Vision Res. 2009;49:2705–39.

    PubMed  Google Scholar 

  25. Van der Hallen R, Manning C, Evers K, Wagemans J. Global motion perception in autism spectrum disorder: a meta-analysis. J Autism Dev Disord. 2019;49:4901–18.

    PubMed  PubMed Central  Google Scholar 

  26. Johnson BP, Lum JA, Rinehart NJ, Fielding J. Ocular motor disturbances in autism spectrum disorders: systematic review and comprehensive meta-analysis. Neurosci Biobehav Rev. 2016;69:260–79.

    PubMed  Google Scholar 

  27. Chang MY, Doppee D, Yu F, Perez C, Coleman AL, Pineles SL. Prevalence of ophthalmologic diagnoses in children with autism spectrum disorder using the optum dataset: apopulation-based study. Am J Ophthalmol. 2021;221:147–53.

    PubMed  Google Scholar 

  28. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

    PubMed  PubMed Central  Google Scholar 

  29. Kamp-Becker I, Albertowski K, Becker J, Ghahreman M, Langmann A, Mingebach T, et al. Diagnostic accuracy of the ADOS and ADOS-2 in clinical practice. Eur Child Adolesc Psychiatry. 2018;27:1193–207.

    CAS  PubMed  Google Scholar 

  30. Lortie CJ. Doing meta-analysis with R - a hands-on guide. J Stat Softw Book Rev. 2022;102:1–4.

    Google Scholar 

  31. Downes MJ, Brennan ML, Williams HC, Dean RS. Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open. 2016;6:e011458.

    PubMed  PubMed Central  Google Scholar 

  32. Viechtbauer W. Conducting meta-analyses in R with the metafor Package. J Stat Softw. 2010;36:1–48.

    Google Scholar 

  33. Langan D, Higgins JPT, Jackson D, Bowden J, Veroniki AA, Kontopantelis E, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods. 2019;10:83–98.

    PubMed  Google Scholar 

  34. Cochran WG. Some methods for strengthening the common χ2 Tests. Biometrics. 1954;10:417–51.

    Google Scholar 

  35. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Publication bias. In: Borenstein M, Hedges LV, Higgins JPT, Rothstein HR, editors. Introduction to meta-analysis. Chichester, U.K: John Wiley & Sons; 2009. pp 277–92.

  37. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.

    CAS  PubMed  Google Scholar 

  38. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.

    CAS  PubMed  Google Scholar 

  39. MA AL, Alsaqr AM. A comparative study of corneal topography in children with autism spectrum disorder: a cross-sectional study. Vision. 2021;15:5.

  40. Anketell PM, Saunders KJ, Gallagher S, Bailey C, Little JA. Profile of refractive errors in European Caucasian children with Autistic Spectrum Disorder; increased prevalence and magnitude of astigmatism. Ophthalmic Physiol Opt. 2016;36:395–403.

    PubMed  Google Scholar 

  41. Wang J, Ding G, Li Y, Hua N, Wei N, Qi X, et al. Refractive status and amblyopia risk factors in Chinese children with autism spectrum disorder. J Autism Dev Disorders. 2018;48:1530–6.

    Google Scholar 

  42. Little JA, Anketell P, Gallagher S, Saunders K. Refractive and corneal astigmatism in autistic spectrum disorder. Investig Ophthalmol Vis Sci. 2013;54:3.

    Google Scholar 

  43. Milne E, Griffiths H, Buckley D, Scope A. Vision in children and adolescents with autistic spectrum disorder: evidence for reduced convergence. J Autism Dev Disord. 2009;39:965–75.

    PubMed  Google Scholar 

  44. Classen S, Monahan M, Brown KE, Hernandez S. Driving indicators in teens with attention deficit hyperactivity and/or autism spectrum disorder. Can J Occup Ther. 2013;80:274–83.

    PubMed  Google Scholar 

  45. Little JA, Anketell P, Doyle L, Saunders KJ. Exploring accommodative accuracy in autism spectrum disorder. Investig Ophthalmol Vis Sci. 2014;55:3769.

    Google Scholar 

  46. Rydzewska E, Hughes-McCormack LA, Gillberg C, Henderson A, MacIntyre C, Rintoul J, et al. Prevalence of sensory impairments, physical and intellectual disabilities, and mental health in children and young people with self/proxy-reported autism: observational study of a whole country population. Autism. 2019;23:1201–9.

    PubMed  Google Scholar 

  47. Swanson MW, Lee SD, Frazier MG, Bade A, Coulter RA. Vision screening among children with autism spectrum disorder. Optom Vis Sci. 2020;97:917–28.

    PubMed  Google Scholar 

  48. Rydzewska E, Hughes-McCormack LA, Gillberg C, Henderson A, MacIntyre C, Rintoul J, et al. Prevalence of long-term health conditions in adults with autism: observational study of a whole country population. BMJ Open. 2018;8:e023945.

    PubMed  PubMed Central  Google Scholar 

  49. Mouridsen SE, Rich B, Isager T. Eye disorders among adult people diagnosed with infantile autism in childhood: a longitudinal case control study. Ophthalmic Epidemiol. 2017;24:332–5.

    PubMed  Google Scholar 

  50. Anketell PM, Saunders KJ, Gallagher SM, Bailey C, Little JA. Accommodative function in individuals with autism spectrum disorder. Optom Vis Sci. 2018;95:193–201.

    PubMed  Google Scholar 

  51. Davis RAO, Bockbrader MA, Murphy RR, Hetrick WP, O’Donnell BF. Subjective perceptual distortions and visual dysfunction in children with autism. J Autism Dev Disord. 2006;36:199–210.

    PubMed  Google Scholar 

  52. Albrecht MA, Stuart GW, Falkmer M, Ordqvist A, Leung D, Foster JK, et al. Brief report: visual acuity in children with autism spectrum disorders. J Autism Dev Disord. 2014;44:2369–74.

    PubMed  Google Scholar 

  53. Anketell PM, Saunders KJ, Gallagher SM, Bailey C, Little J-A. Brief report: vision in children with autism spectrum disorder: what should clinicians expect?. J Autism Dev Disord. 2015;45:3041–7.

    PubMed  Google Scholar 

  54. Ashwin E, Ashwin C, Rhydderch D, Howells J, Baron-Cohen S. Eagle-eyed visual acuity: an experimental investigation of enhanced perception in autism. Biol Psychiatry. 2009;65:17–21.

    PubMed  Google Scholar 

  55. Bölte S, Schlitt S, Gapp V, Hainz D, Schirman S, Poustka F, et al. A close eye on the eagle-eyed visual acuity hypothesis of autism. J Autism Dev Disord. 2012;42:726–33.

    PubMed  Google Scholar 

  56. Brosnan MJ, Gwilliam LR, Walker I. Brief report: the relationship between visual acuity, the embedded figures test and systemizing in autism spectrum disorders. J Autism Dev Disord. 2012;42:2491–7.

    PubMed  Google Scholar 

  57. Falkmer M, Stuart GW, Danielsson H, Bram S, Lönebrink M, Falkmer T. Visual acuity in adults with Asperger’s syndrome: no evidence for “eagle-eyed” vision. Biol Psychiatry. 2011;70:812–6.

    PubMed  Google Scholar 

  58. Kéïta L, Mottron L, Bertone A. Far visual acuity is unremarkable in autism: do we need to focus on crowding? Autism Res. 2010;3:333–41.

    PubMed  Google Scholar 

  59. Tavassoli T, Latham K, Bach M, Dakin SC, Baron-Cohen S. Psychophysical measures of visual acuity in autism spectrum conditions. Vision Res. 2011;51:1778–80.

    PubMed  PubMed Central  Google Scholar 

  60. Tebartz van Elst L, Bach M, Blessing J, Riedel A, Bubl E. Normal visual acuity and electrophysiological contrast gain in adults with high-functioning autism spectrum disorder. Front Hum Neurosci. 2015;9:460.

    PubMed  PubMed Central  Google Scholar 

  61. Coulter RA, Bade A, Jenewein EC, Tea YC, Mitchell GL. Near-point findings in children with autism spectrum disorder and in typical peers. Optom Vis Sci. 2021;98:384–93.

    PubMed  PubMed Central  Google Scholar 

  62. Smith D, Ropar D, Allen HA. The integration of occlusion and disparity information for judging depth in autism spectrum disorder. J Autism Dev Disord. 2017;47:3112–24.

    PubMed  PubMed Central  Google Scholar 

  63. Milne E, Scope A, Griffiths H, Codina C, Buckley D. Brief report: preliminary evidence of reduced sensitivity in the peripheral visual field of adolescents with autistic spectrum disorder. J Autism Dev Disord. 2013;43:1976–82.

    PubMed  Google Scholar 

  64. Song Y, Hakoda Y, Sanefuji W, Cheng C. Can they see it? The functional field of view is narrower in individuals with autism spectrum disorder. PLoS One. 2015;10:e0133237.

    PubMed  PubMed Central  Google Scholar 

  65. García-Medina JJ, García-Piñero M, Del-Río-Vellosillo M, Fares-Valdivia J, Ragel-Hernández AB, Martínez-Saura S, et al. Comparison of foveal, macular, and peripapillary intraretinal thicknesses between autism spectrum disorder and neurotypical subjects. Invest Ophthalmol Vis Sci. 2017;58:5819–26.

    PubMed  Google Scholar 

  66. Little JA, Anketell PM, Doyle L, Saunders K. Investigation of retinal thickness using OCT in Autism spectrum disorder. Investig Ophthalmol Vis Sci. 2016;57:4217.

    Google Scholar 

  67. Emberti Gialloreti L, Pardini M, Benassi F, Marciano S, Amore M, Mutolo MG, et al. Reduction in retinal nerve fiber layer thickness in young adults with autism spectrum disorders. J Autism Dev Disord. 2014;44:873–82.

    PubMed  Google Scholar 

  68. Constable PA, Gaigg SB, Bowler DM, Jagle H, Thompson DA. Full-field electroretinogram in autism spectrum disorder. Documenta Ophthalmol. 2016;132:83–99.

    Google Scholar 

  69. Constable PA, Lee IO, Marmolejo-Ramos F, Skuse DH, Thompson DA. The photopic negative response in autism spectrum disorder. Clin Exp Optom. 2021;104:841–7.

    PubMed  Google Scholar 

  70. Constable PA, Ritvo ER, Ritvo AR, Lee IO, McNair ML, Stahl D, et al. Light-adapted electroretinogram differences in autism spectrum disorder. J Autism Dev Disord. 2020;50:2874–85.

    PubMed  Google Scholar 

  71. Garcia-Medina JJ, Rubio-Velazquez E, Lopez-Bernal MD, Parraga-Muñoz D, Perez-Martinez A, Pinazo-Duran MD, et al. Optical coherence tomography angiography of macula and optic nerve in autism spectrum disorder: a pilot study. J Clin Med. 2020;9:3123.

    PubMed  PubMed Central  Google Scholar 

  72. Franklin A, Sowden P, Burley R, Notman L, Alder E. Color perception in children with autism. J Autism Dev Disord. 2008;38:1837–47.

    PubMed  Google Scholar 

  73. Franklin A, Sowden P, Notman L, Gonzalez-Dixon M, West D, Alexander I, et al. Reduced chromatic discrimination in children with autism spectrum disorders. Dev Sci. 2010;13:188–200.

    PubMed  Google Scholar 

  74. Heaton P, Ludlow A, Roberson D. When less is more: poor discrimination but good colour memory in autism. Res Autism Spectrum Disord. 2008;2:147–56.

    Google Scholar 

  75. Maule J, Stanworth K, Pellicano E, Franklin A. Ensemble perception of color in autistic adults. Autism Res. 2017;10:839–51.

    PubMed  Google Scholar 

  76. Zachi EC, Costa TL, Barboni MTS, Costa MF, Bonci DMO, Ventura DF. Color vision losses in autism spectrum disorders. Front Psychol. 2017;8:1127.

    PubMed  PubMed Central  Google Scholar 

  77. Bertone A, Mottron L, Jelenic P, Faubert J. Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain. 2005;128:2430–41.

    PubMed  Google Scholar 

  78. De Jonge MV, De Haan EH, Kemner C, Coppens JE, Van Den Berg TJTP, Van Engeland H. Visual information processing in high-functioning individuals with autism spectrum disorders and their parents. Neuropsychology. 2007;21:65–73.

    PubMed  Google Scholar 

  79. Greenaway R, Davis G, Plaisted-Grant K. Marked selective impairment in autism on an index of magnocellular function. Neuropsychologia. 2013;51:592–600.

    CAS  PubMed  Google Scholar 

  80. Guy J, Mottron L, Berthiaume C, Bertone A. The developmental trajectory of contrast sensitivity in autism spectrum disorder. Autism Res. 2016;9:866–78.

    PubMed  Google Scholar 

  81. Keita L, Guy J, Berthiaume C, Mottron L, Bertone A. An early origin for detailed perception in Autism Spectrum Disorder: biased sensitivity for high-spatial frequency information. Sci Rep. 2014;4:5475.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Koh HC, Milne E, Dobkins K. Spatial contrast sensitivity in adolescents with autism spectrum disorders. J Autism Dev Disord. 2010;40:978–87.

    PubMed  Google Scholar 

  83. Norton DJ, McBain RK, Murray GE, Khang J, Zong Z, Bollacke HR, et al. Normal face detection over a range of luminance contrasts in adolescents with autism spectrum disorder. Front Psychol. 2021;12:667359.

    PubMed  PubMed Central  Google Scholar 

  84. Pellicano E, Gibson L, Maybery M, Durkin K, Badcock DR. Abnormal global processing along the dorsal visual pathway in autism: a possible mechanism for weak visuospatial coherence? Neuropsychologia. 2005;43:1044–53.

    PubMed  Google Scholar 

  85. Robertson CE, Kravitz DJ, Freyberg J, Baron-Cohen S, Baker CI. Tunnel vision: sharper gradient of spatial attention in autism. J Neurosci. 2013;33:6776–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Davis RA, Bockbrader MA, Murphy RR, Hetrick WP, O’Donnell BF. Subjective perceptual distortions and visual dysfunction in children with autism. J Autism Dev Disord. 2006;36:199–210.

    PubMed  Google Scholar 

  87. Koh HC, Milne E, Dobkins K. Contrast sensitivity for motion detection and direction discrimination in adolescents with autism spectrum disorders and their siblings. Neuropsychologia. 2010;48:4046–56.

    PubMed  PubMed Central  Google Scholar 

  88. Searle A, Rowe FJ. Vergence neural pathways: a systematic narrative literature review. Neuroophthalmology. 2016;40:209–18.

    PubMed  PubMed Central  Google Scholar 

  89. Congdon NG, Patel N, Esteso P, Chikwembani F, Webber F, Msithini RB, et al. The association between refractive cutoffs for spectacle provision and visual improvement among school-aged children in South Africa. Br J Ophthalmol. 2008;92:13–8.

    PubMed  Google Scholar 

  90. McDougal DH, Gamlin PD. Autonomic control of the eye. Compr Physiol. 2015;5:439–73.

    PubMed  PubMed Central  Google Scholar 

  91. Arora I, Bellato A, Ropar D, Hollis C, Groom MJ. Is autonomic function during resting-state atypical in Autism: a systematic review of evidence. Neurosci Biobehav Rev. 2021;125:417–41.

    PubMed  Google Scholar 

  92. Cheng YC, Huang YC, Huang WL. Heart rate variability in individuals with autism spectrum disorders: a meta-analysis. Neurosci Biobehav Rev. 2020;118:463–71.

    PubMed  Google Scholar 

  93. de Vries L, Fouquaet I, Boets B, Naulaers G, Steyaert J. Autism spectrum disorder and pupillometry: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2021;120:479–508.

    PubMed  Google Scholar 

  94. Ronconi L, Gori S, Ruffino M, Molteni M, Facoetti A. Zoom-out attentional impairment in children with autism spectrum disorder. Cortex. 2013;49:1025–33.

    PubMed  Google Scholar 

  95. Cameron JR, Tatham AJ. A window to beyond the orbit: the value of optical coherence tomography in non-ocular disease. Acta Ophthalmol. 2016;94:533–9.

    PubMed  Google Scholar 

  96. Bubl E, Dörr M, Philipsen A, Ebert D, Bach M, van Elst LT. Retinal contrast transfer functions in adults with and without ADHD. PLoS One. 2013;8:e61728.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bubl E, Dörr M, Riedel A, Ebert D, Philipsen A, Bach M, et al. Elevated background noise in adult attention deficit hyperactivity disorder is associated with inattention. PLoS One. 2015;10:e0118271.

    PubMed  PubMed Central  Google Scholar 

  98. Werner AL, Tebartz van Elst L, Ebert D, Friedel E, Bubl A, Clement HW, et al. Normalization of increased retinal background noise after ADHD treatment: a neuronal correlate. Schizophr Res. 2020;219:77–83.

    PubMed  Google Scholar 

  99. Happé F, Frith U. The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord. 2006;36:5–25.

    PubMed  Google Scholar 

  100. Mottron L, Dawson M, Soulières I, Hubert B, Burack J. Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception. J Autism Dev Disord. 2006;36:27–43.

    PubMed  Google Scholar 

  101. Samson F, Mottron L, Soulières I, Zeffiro TA. Enhanced visual functioning in autism: an ALE meta-analysis. Hum Brain Mapp. 2012;33:1553–81.

    PubMed  Google Scholar 

  102. Jassim N, Baron-Cohen S, Suckling J. Meta-analytic evidence of differential prefrontal and early sensory cortex activity during non-social sensory perception in autism. Neurosci Biobehav Rev. 2021;127:146–57.

    PubMed  Google Scholar 

  103. Todorova GK, Hatton REM, Pollick FE. Biological motion perception in autism spectrum disorder: a meta-analysis. Mol Autism. 2019;10:49.

    PubMed  PubMed Central  Google Scholar 

  104. Riddiford JA, Enticott PG, Lavale A, Gurvich C. Gaze and social functioning associations in autism spectrum disorder: A systematic review and meta-analysis. Autism Res. 2022;15:1380–446.

    PubMed  PubMed Central  Google Scholar 

  105. Setien-Ramos I, Lugo-Marín J, Gisbert-Gustemps L, Díez-Villoria E, Magán-Maganto M, Canal-Bedia R, et al. Eye-tracking studies in adults with autism spectrum disorder: a systematic review and meta-analysis. J Autism Dev Disord. 2022;53:2430–43.

    PubMed  Google Scholar 

  106. Thye MD, Bednarz HM, Herringshaw AJ, Sartin EB, Kana RK. The impact of atypical sensory processing on social impairments in autism spectrum disorder. Dev Cogn Neurosci. 2018;29:151–67.

    PubMed  Google Scholar 

  107. Ronconi L, Molteni M, Casartelli L. Building blocks of others’ understanding: a perspective shift in investigating social-communicative deficit in autism. Front Hum Neurosci. 2016;10:144.

    PubMed  PubMed Central  Google Scholar 

  108. Jin X, Simmons SK, Guo A, Shetty AS, Ko M, Nguyen L, et al. In vivo Perturb-Seq, reveals neuronal and glial abnormalities associated with autism risk genes. Science. 2020;370:eaaz6063.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Scotland P, Zhou D, Benveniste H, Bennett V. Nervous system defects of AnkyrinB (-/-) mice suggest functional overlap between the cell adhesion molecule L1 and 440-kD AnkyrinB in premyelinated axons. J Cell Biol. 1998;143:1305–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Elsabbagh M, Fernandes J, Webb SJ, Dawson G, Charman T, Johnson MH. Disengagement of visual attention in infancy is associated with emerging autism in toddlerhood. Biol Psychiatry. 2013;74:189–94.

    PubMed  PubMed Central  Google Scholar 

  111. Jones W, Klin A. Attention to eyes is present but in decline in 2-6-month-old infants later diagnosed with autism. Nature. 2013;504:427–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chokron S, Kovarski K, Zalla T, Dutton GN. The inter-relationships between cerebral visual impairment, autism and intellectual disability. Neurosci Biobehav Rev. 2020;114:201–10.

    CAS  PubMed  Google Scholar 

  113. McGaha CG, Farran DC. Interactions in an inclusive classroom: the effects of visual status and setting. J Vis Impair Blindness. 2001;95:80–94.

    Google Scholar 

  114. Smoller JW, Andreassen OA, Edenberg HJ, Faraone SV, Glatt SJ, Kendler KS. Psychiatric genetics and the structure of psychopathology. Mol Psychiatry. 2019;24:409–20.

    PubMed  Google Scholar 

  115. Bellato A, Perna J, Ganapathy PS, Solmi M, Zampieri A, Cortese S, et al. Association between ADHD and vision problems. A systematic review and meta-analysis. Mol Psychiatry. 2023;28:410–22.

    PubMed  Google Scholar 

  116. Császár N, Kapócs G, Bókkon I. A possible key role of vision in the development of schizophrenia. Rev Neurosci. 2019;30:359–79.

    PubMed  Google Scholar 

  117. van Splunder J, Stilma JS, Bernsen RM, Evenhuis HM. Prevalence of visual impairment in adults with intellectual disabilities in the Netherlands: cross-sectional study. Eye. 2006;20:1004–10.

    PubMed  Google Scholar 

  118. Lai MC, Kassee C, Besney R, Bonato S, Hull L, Mandy W, et al. Prevalence of co-occurring mental health diagnoses in the autism population: a systematic review and meta-analysis. Lancet Psychiatry. 2019;6:819–29.

    PubMed  Google Scholar 

  119. Johnson MH, Gliga T, Jones E, Charman T. Annual research review: infant development, autism, and ADHD-early pathways to emerging disorders. J Child Psychol Psychiatry. 2015;56:228–47.

    PubMed  Google Scholar 

  120. Visser JC, Rommelse NN, Greven CU, Buitelaar JK. Autism spectrum disorder and attention-deficit/hyperactivity disorder in early childhood: a review of unique and shared characteristics and developmental antecedents. Neurosci Biobehav Rev. 2016;65:229–63.

    PubMed  Google Scholar 

  121. Karmiloff-Smith A. From constructivism to neuroconstructivism: the activity-dependent structuring of the human brain. After Piaget. Piscataway, NJ, US: Transaction Publishers; 2012. p. 1–14.

  122. Simms MD. When autistic behavior suggests a disease other than classic autism. Pediatr Clin North Am. 2017;64:127–38.

    PubMed  Google Scholar 

  123. Landa RJ. Efficacy of early interventions for infants and young children with, and at risk for, autism spectrum disorders. Int Rev Psychiatry. 2018;30:25–39.

    PubMed  PubMed Central  Google Scholar 

  124. O’Connor AR, Stephenson T, Johnson A, Tobin MJ, Moseley MJ, Ratib S, et al. Long-term ophthalmic outcome of low birth weight children with and without retinopathy of prematurity. Pediatrics. 2002;109:12–8.

    PubMed  Google Scholar 

  125. Gardener H, Spiegelman D, Buka SL. Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis. Pediatrics. 2011;128:344–55.

    PubMed  PubMed Central  Google Scholar 

  126. Maeyama K, Tomioka K, Nagase H, Yoshioka M, Takagi Y, Kato T, et al. Congenital cytomegalovirus infection in children with autism spectrum disorder: systematic review and meta-analysis. J Autism Dev Disord. 2018;48:1483–91.

    PubMed  Google Scholar 

  127. Mawson AR, Croft AM. Rubella virus infection, the congenital rubella syndrome, and the link to autism. Int J Environ Res Public Health. 2019;16:3543.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Mohiuddin S, Ghaziuddin M. Psychopharmacology of autism spectrum disorders: a selective review. Autism. 2013;17:645–54.

    PubMed  Google Scholar 

  129. Witkovsky P. Dopamine and retinal function. Doc Ophthalmol. 2004;108:17–40.

    PubMed  Google Scholar 

  130. Richa S, Yazbek JC. Ocular adverse effects of common psychotropic agents: a review. CNS Drugs. 2010;24:501–26.

    CAS  PubMed  Google Scholar 

  131. Bahali K, Ipek H, Yalcin O, Orum O. Atomoxetine-induced mydriasis in a child patient. Eur Child Adolesc Psychiatry. 2014;23:1231–2.

    PubMed  Google Scholar 

  132. Lu CK, Kuang TM, Chou JC. Methylphenidate (Ritalin)-associated cataract and glaucoma. J Chin Med Assoc. 2006;69:589–90.

    CAS  PubMed  Google Scholar 

  133. Soyer J, Jean-Louis J, Ospina LH, Bélanger SA, Bussières JF, Kleiber N. Visual disorders with psychostimulants: a paediatric case report. Paediatr Child Health. 2019;24:153–5.

    PubMed  PubMed Central  Google Scholar 

  134. Westreich D. Berkson’s bias, selection bias, and missing data. Epidemiology. 2012;23:159–64.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

No funding has been received for the present study. We thank Matthew A. Albrecht, Paul A. Constable, Luc Kéïta, Julie-Anne Little and their colleagues, for providing additional details about their studies and helping us to determine the eligibility for the systematic review and meta-analyses, and for providing additional data when these were not present in the original papers.

Author information

Authors and Affiliations

Authors

Contributions

JP: Investigation, Data Curation, Visualization, Writing - Original Draft, Writing - Review & Editing. AB: Formal analysis, Investigation, Data Curation, Visualization, Writing - Original Draft, Writing - Review & Editing. PSG: Validation, Writing - Review & Editing. MS: Validation, Writing - Review & Editing. AZ: Validation, Writing - Review & Editing. SVF: Conceptualization, Methodology, Writing - Original Draft, Writing - Review & Editing, Supervision, Project administration. SC: Conceptualization, Methodology, Writing - Original Draft, Writing - Review & Editing, Supervision, Project administration.

Corresponding author

Correspondence to Stephen V. Faraone.

Ethics declarations

Competing interests

In the past year, SVF received income, potential income, travel expenses continuing education support and/or research support from Aardvark, Aardwolf, Akili, Atentiv, Corium, Genomind, Ironshore, Medice, Noven, Otsuka, Sandoz, Sky Therapeutics, Supernus, Tris, and Vallon. With his institution, he has US patent US20130217707 A1 for the use of sodium-hydrogen exchange inhibitors in the treatment of ADHD. In previous years, he received support from: Alcobra, Arbor, Aveksham, Axsome, CogCubed, Eli Lilly, Enzymotec, Impact, Janssen, KemPharm, Lundbeck/Takeda, Shire/Takeda, McNeil, NeuroLifeSciences, Neurovance, Novartis, Pfizer, Rhodes, Shire, and Sunovion. He also receives royalties from books published by Guilford Press: Straight Talk about Your Child’s Mental Health; Oxford University Press: Schizophrenia: The Facts; and Elsevier: ADHD: Non-Pharmacologic Interventions. In addition, he is the program director of www.adhdinadults.com. SVF is supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 965381; NIMH grants U01AR076092-01A1, 1R21MH1264940, R01MH116037; 1R01NS128535 – 01; Oregon Health and Science University, Otsuka Pharmaceuticals, Noven Pharmaceuticals Incorporated, and Supernus Pharmaceutical Company. SC declares honoraria and reimbursement for travel and accommodation expenses for lectures from the following non-profit associations: Association for Child and Adolescent Central Health (ACAMH), Canadian ADHD Alliance Resource (CADDRA), and British Association of Pharmacology (BAP), for educational activity on ADHD. All other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the Discussion paragraph of the abstract, the sentence ‘Further research should clarify the causal relationship, if any, between ASD and problems of vision and if problems of vision during early life’. should have read ‘Further research should clarify the causal relationship, if any, between ASD and problems of vision during early life’.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perna, J., Bellato, A., Ganapathy, P.S. et al. Association between Autism Spectrum Disorder (ASD) and vision problems. A systematic review and meta-analysis. Mol Psychiatry 28, 5011–5023 (2023). https://doi.org/10.1038/s41380-023-02143-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02143-7

Search

Quick links