Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adeno-associated virus (AAV) 9-mediated gene delivery of Nurr1 and Foxa2 ameliorates symptoms and pathologies of Alzheimer disease model mice by suppressing neuro-inflammation and glial pathology

A Correction to this article was published on 11 July 2023

A Correction to this article was published on 05 April 2023

This article has been updated

Abstract

There is a compelling need to develop disease-modifying therapies for Alzheimer’s disease (AD), the most common neuro-degenerative disorder. Together with recent progress in vector development for efficiently targeting the central nervous system, gene therapy has been suggested as a potential therapeutic modality to overcome the limited delivery of conventional types of drugs to and within the damaged brain. In addition, given increasing evidence of the strong link between glia and AD pathophysiology, therapeutic targets have been moving toward those addressing glial cell pathology. Nurr1 and Foxa2 are transcription/epigenetic regulators that have been reported to cooperatively regulate inflammatory and neurotrophic response in glial cells. In this study, we tested the therapeutic potential of Nurr1 and Foxa2 gene delivery to treat AD symptoms and pathologies. A series of functional, histologic, and transcriptome analyses revealed that the combined expression of Nurr1 and Foxa2 substantially ameliorated AD-associated amyloid β and Tau proteinopathy, cell senescence, synaptic loss, and neuro-inflammation in multiple in vitro and in vivo AD models. Intra-cranial delivery of Nurr1 and Foxa2 genes using adeno-associated virus (AAV) serotype 9 improved the memory and cognitive function of AD model mice. The therapeutic benefits of gene delivery were attained mainly by correcting pathologic glial function. These findings collectively indicate that AAV9-mediated Nurr1 and Foxa2 gene transfer could be an effective disease-modifying therapy for AD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Cell-type-specific effects of combined Nurr1 and Foxa2 expression.
Fig. 3: Memory and cognitive functions alleviated in AD mice treated with AAV9-Nurr1 + Foxa2.
Fig. 4: AD-associated Aβ, Tau pathologies, and synaptic loss ameliorated in AD mice treated with AAV9-Nurr1 + Foxa2.
Fig. 5: AAV9-based Nurr1 + Foxa2 gene delivery alleviated neuro-inflammation in AD mice.
Fig. 6: Transcriptome analyses suggesting potential therapeutic pathways induced by AAV9-Nurr1 + Foxa2 in 3 x Tg-AD mice.
Fig. 7: Glia-specific expression of Nurr1 + Foxa2 ameliorates AD-associated pathologies in an in vitro culture model.

Similar content being viewed by others

Change history

References

  1. Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019;179:312–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hampel H, Caraci F, Cuello AC, Caruso G, Nistico R, Corbo M, et al. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front Immunol. 2020;11:456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21:383–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Horner PJ, Palmer TD. New roles for astrocytes: the nightlife of an ‘astrocyte’. La vida loca! Trends Neurosci. 2003;26:597–603.

    Article  CAS  PubMed  Google Scholar 

  5. Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003;26:523–30.

    Article  CAS  PubMed  Google Scholar 

  6. Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 2012;26:891–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Neumann H, Kotter MR, Franklin RJ. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain: Neurol. 2009;132:288–95.

    Article  CAS  Google Scholar 

  8. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.

  9. Dzamba D, Harantova L, Butenko O, Anderova M. Glial cells—the key elements of Alzheimer’s disease. Curr Alzheimer Res. 2016;13:894–911.

    Article  CAS  PubMed  Google Scholar 

  10. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17:157–72.

    Article  PubMed  Google Scholar 

  11. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet. 2019;51:414–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153:707–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Verheijen J, Sleegers K. Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends Genet. 2018;34:434–47.

    Article  CAS  PubMed  Google Scholar 

  14. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51:404–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang SS, Ebbert MTW, Baker KE, Cook C, Wang X, Sens JP, et al. Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. J Exp Med. 2018;215:2235–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Henstridge CM, Hyman BT, Spires-Jones TL. Beyond the neuron-cellular interactions early in Alzheimer disease pathogenesis. Nat Rev Neurosci. 2019;20:94–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamby ME, Sofroniew MV. Reactive astrocytes as therapeutic targets for CNS disorders. NeuroTher: J Am Soc Exp NeuroTher. 2010;7:494–506.

    Article  CAS  Google Scholar 

  18. Malewicz M, Kadkhodaei B, Kee N, Volakakis N, Hellman U, Viktorsson K, et al. Essential role for DNA-PK-mediated phosphorylation of NR4A nuclear orphan receptors in DNA double-strand break repair. Genes Dev. 2011;25:2031–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kadkhodaei B, Alvarsson A, Schintu N, Ramskold D, Volakakis N, Joodmardi E, et al. Transcription factor Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons. Proc Natl Acad Sci USA. 2013;110:2360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Volakakis N, Kadkhodaei B, Joodmardi E, Wallis K, Panman L, Silvaggi J, et al. NR4A orphan nuclear receptors as mediators of CREB-dependent neuroprotection. Proc Natl Acad Sci USA. 2010;107:12317–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, Bjorklund A. alpha-Synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci Transl Med. 2012;4:163ra156.

    Article  PubMed  Google Scholar 

  22. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 2009;137:47–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oh SM, Chang MY, Song JJ, Rhee YH, Joe EH, Lee HS, et al. Combined Nurr1 and Foxa2 roles in the therapy of Parkinson’s disease. EMBO Mol Med. 2015;7:510–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song JJ, Oh SM, Kwon OC, Wulansari N, Lee HS, Chang MY, et al. Cografting astrocytes improves cell therapeutic outcomes in a Parkinson’s disease model. J Clin Investig. 2018;128:463–82.

    Article  PubMed  Google Scholar 

  25. Yi SH, He XB, Rhee YH, Park CH, Takizawa T, Nakashima K, et al. Foxa2 acts as a co-activator potentiating expression of the Nurr1-induced DA phenotype via epigenetic regulation. Development. 2014;141:761–72.

    Article  CAS  PubMed  Google Scholar 

  26. Kwon OC, Song JJ, Yang Y, Kim SH, Kim JY, Seok MJ, et al. SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Mol Med. 2021;13:e13076.

  27. Moon M, Jeong I, Kim CH, Kim J, Lee PK, Mook-Jung I, et al. Correlation between orphan nuclear receptor Nurr1 expression and amyloid deposition in 5XFAD mice, an animal model of Alzheimer’s disease. J neurochemistry. 2015;132:254–62.

    Article  CAS  Google Scholar 

  28. Zetterstrom RH, Williams R, Perlmann T, Olson L. Cellular expression of the immediate early transcription factors Nurr1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Brain Res Mol Brain Res. 1996;41:111–20.

    Article  CAS  PubMed  Google Scholar 

  29. Saucedo-Cardenas O, Conneely OM. Comparative distribution of NURR1 and NUR77 nuclear receptors in the mouse central nervous system. J Mol Neurosci. 1996;7:51–63.

    Article  CAS  PubMed  Google Scholar 

  30. Pena de Ortiz S, Maldonado-Vlaar CS, Carrasquillo Y. Hippocampal expression of the orphan nuclear receptor gene hzf-3/nurr1 during spatial discrimination learning. Neurobiol Learn Mem. 2000;74:161–78.

    Article  CAS  PubMed  Google Scholar 

  31. Moon M, Jung ES, Jeon SG, Cha MY, Jang Y, Kim W, et al. Nurr1 (NR4A2) regulates Alzheimer’s disease-related pathogenesis and cognitive function in the 5XFAD mouse model. Aging Cell. 2019;18:e12866.

    Article  PubMed  Google Scholar 

  32. Wruck W, Schroter F, Adjaye J. Meta-analysis of transcriptome data related to hippocampus biopsies and iPSC-derived neuronal cells from Alzheimer’s disease patients reveals an association with FOXA1 and FOXA2 gene regulatory networks. J Alzheimers Dis. 2016;50:1065–82.

    Article  CAS  PubMed  Google Scholar 

  33. Hudry E, Vandenberghe LH. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron. 2019;102:263.

    Article  CAS  PubMed  Google Scholar 

  34. McCown TJ. Adeno-Associated Virus (AAV) vectors in the CNS. Curr gene Ther. 2011;11:181–8.

    Article  CAS  PubMed  Google Scholar 

  35. Owens LV, Benedetto A, Dawson N, Gaffney CJ, Parkin ET. Gene therapy-mediated enhancement of protective protein expression for the treatment of Alzheimer’s disease. Brain Res. 2021;1753:147264.

    Article  CAS  PubMed  Google Scholar 

  36. Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Inflammation in Alzheimer’s disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol. 2009;87:181–94.

    Article  CAS  PubMed  Google Scholar 

  37. Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW, et al. NFkappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron. 2015;85:101–15.

    Article  CAS  PubMed  Google Scholar 

  38. Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK. Nuclear factor-kappa beta as a therapeutic target for Alzheimer’s disease. J Neurochem. 2019;150:113–37.

    Article  CAS  PubMed  Google Scholar 

  39. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl J Med. 2017;377:1713–22.

    Article  CAS  PubMed  Google Scholar 

  40. Oh SM, Chang MY, Song JJ, Rhee YH, Joe EH, Lee HS, et al. Combined Nurr1 and Foxa2 roles in the therapy of Parkinson’s disease. EMBO Mol Med. 2016;8:171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dayton RD, Wang DB, Klein RL. The advent of AAV9 expands applications for brain and spinal cord gene delivery. Expert Opin Biol Ther. 2012;12:757–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ. Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther. 2011;19:1058–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schuster DJ, Dykstra JA, Riedl MS, Kitto KF, Belur LR, McIvor RS, et al. Biodistribution of adeno-associated virus serotype 9 (AAV9) vector after intrathecal and intravenous delivery in mouse. Front Neuroanat. 2014;8:42.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Morales I, Guzman-Martinez L, Cerda-Troncoso C, Farias GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci. 2014;8:112.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yap JKY, Pickard BS, Chan EWL, Gan SY. The role of neuronal NLRP1 inflammasome in Alzheimer’s disease: bringing neurons into the neuroinflammation game. Mol Neurobiol. 2019;56:7741–53.

    Article  CAS  PubMed  Google Scholar 

  46. von Herrmann KM, Salas LA, Martinez EM, Young AL, Howard JM, Feldman MS, et al. NLRP3 expression in mesencephalic neurons and characterization of a rare NLRP3 polymorphism associated with decreased risk of Parkinson’s disease. NPJ Parkinsons Dis. 2018;4:24.

    Article  Google Scholar 

  47. Welikovitch LA, Do Carmo S, Magloczky Z, Malcolm JC, Loke J, Klein WL, et al. Early intraneuronal amyloid triggers neuron-derived inflammatory signaling in APP transgenic rats and human brain. Proc Natl Acad Sci USA. 2020;117:6844–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci: Off J Soc Neurosci. 2006;26:10129–40.

    Article  CAS  Google Scholar 

  49. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39:409–21.

    Article  CAS  PubMed  Google Scholar 

  50. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–39.

    Article  CAS  PubMed  Google Scholar 

  51. Ho VM, Lee JA, Martin KC. The cell biology of synaptic plasticity. Science. 2011;334:623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kimura R, Ohno M. Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiol Dis. 2009;33:229–35.

    Article  CAS  PubMed  Google Scholar 

  53. Ma TF, Zhou L, Wang Y, Qin SJ, Zhang Y, Hu B, et al. A selective M1 and M3 receptor antagonist, penehyclidine hydrochloride, prevents postischemic LTP: involvement of NMDA receptors. Synapse. 2013;67:865–74.

    Article  CAS  PubMed  Google Scholar 

  54. Villamil-Ortiz JG, Cardona-Gomez GP. Comparative analysis of autophagy and tauopathy-related markers in cerebral ischemia and Alzheimer’s disease animal models. Front Aging Neurosci. 2015;7:84.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Richetin K, Steullet P, Pachoud M, Perbet R, Parietti E, Maheswaran M, et al. Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer’s disease. Nat Neurosci. 2020;23:1567–79.

    Article  CAS  PubMed  Google Scholar 

  56. Kovacs GG, Molnar K, Laszlo L, Strobel T, Botond G, Honigschnabl S, et al. A peculiar constellation of tau pathology defines a subset of dementia in the elderly. Acta Neuropathol. 2011;122:205–22.

    Article  CAS  PubMed  Google Scholar 

  57. Perea JR, Llorens-Martin M, Avila J, Bolos M. The role of microglia in the spread of Tau: relevance for Tauopathies. Front Cell Neurosci. 2018;12:172.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG, Zhang S, et al. Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci. 2019;22:719–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature. 2018;562:578–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018;17:e12840.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bhat R, Crowe EP, Bitto A, Moh M, Katsetos CD, Garcia FU, et al. Astrocyte senescence as a component of Alzheimer’s disease. PLoS One. 2012;7:e45069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saez-Atienzar S, Masliah E. Cellular senescence and Alzheimer disease: the egg and the chicken scenario. Nat Rev Neurosci. 2020;21:433–44.

    Article  CAS  PubMed  Google Scholar 

  63. Walton CC, Begelman D, Nguyen W, Andersen JK. Senescence as an amyloid cascade: the amyloid senescence hypothesis. Front Cell Neurosci. 2020;14:129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mucke L, Selkoe DJ. Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med. 2012;2:a006338.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-kappaB and the NLRP3 inflammasome. Nat Immunol. 2017;18:861–9.

    Article  CAS  PubMed  Google Scholar 

  66. Voet S, Srinivasan S, Lamkanfi M, van Loo G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med. 2019;11:e10248.

  67. Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, et al. Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer’s disease. Nature. 2017;552:355–61.

    Article  CAS  PubMed  Google Scholar 

  68. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493:674–8.

    Article  CAS  PubMed  Google Scholar 

  69. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575:669–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hanslik KL, Ulland TK. The Role of Microglia and the Nlrp3 Inflammasome in Alzheimer’s disease. Front Neurol. 2020;11:570711.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stancu IC, Cremers N, Vanrusselt H, Couturier J, Vanoosthuyse A, Kessels S, et al. Aggregated Tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo. Acta Neuropathol. 2019;137:599–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Whiten DR, Brownjohn PW, Moore S, De S, Strano A, Zuo Y, et al. Tumour necrosis factor induces increased production of extracellular amyloid-beta- and alpha-synuclein-containing aggregates by human Alzheimer’s disease neurons. Brain Commun. 2020;2:fcaa146.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Habbas S, Santello M, Becker D, Stubbe H, Zappia G, Liaudet N, et al. Neuroinflammatory TNFalpha Impairs Memory Via Astrocyte Signaling. Cell. 2015;163:1730–41.

    Article  CAS  PubMed  Google Scholar 

  74. Bellenguez C, Kucukali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet. 2022;54:412-36.

  75. Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener. 2021;16:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kaeberlein M, Galvan V. Rapamycin and Alzheimer’s disease: Time for a clinical trial? Sci Transl Med. 2019;11:eaar4289.

  77. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shi Q, Chowdhury S, Ma R, Le KX, Hong S, Caldarone BJ, et al. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med. 2017;9:eaaf6295.

  79. Zhou Y, Song WM, Andhey PS, Swain A, Levy T, Miller KR, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat Med. 2020;26:131–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. Genomic analysis of reactive astrogliosis. J Neurosci: Off J Soc Neurosci. 2012;32:6391–410.

    Article  CAS  Google Scholar 

  81. Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, Dvir-Szternfeld R, et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat Neurosci. 2020;23:701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169:1276–90 e1217.

    Article  CAS  PubMed  Google Scholar 

  83. Chen WT, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, Corthout N, et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell. 2020;182:976–91 e919.

    Article  CAS  PubMed  Google Scholar 

  84. Damisah EC, Hill RA, Rai A, Chen F, Rothlin CV, Ghosh S, et al. Astrocytes and microglia play orchestrated roles and respect phagocytic territories during neuronal corpse removal in vivo. Sci Adv. 2020;6:eaba3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rostami J, Mothes T, Kolahdouzan M, Eriksson O, Moslem M, Bergstrom J, et al. Crosstalk between astrocytes and microglia results in increased degradation of alpha-synuclein and amyloid-beta aggregates. J Neuroinflammation. 2021;18:124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Miners JS, Barua N, Kehoe PG, Gill S, Love S. Abeta-degrading enzymes: potential for treatment of Alzheimer disease. J Neuropathol Exp Neurol. 2011;70:944–59.

    Article  CAS  PubMed  Google Scholar 

  87. Shirotani K, Tsubuki S, Iwata N, Takaki Y, Harigaya W, Maruyama K, et al. Neprilysin degrades both amyloid beta peptides 1-40 and 1-42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J Biol Chem. 2001;276:21895–901.

    Article  CAS  PubMed  Google Scholar 

  88. Ries M, Sastre M. Mechanisms of abeta clearance and degradation by glial cells. Front Aging Neurosci. 2016;8:160.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D’Avanzo C, et al. A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature. 2014;515:274–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–5.

    Article  CAS  PubMed  Google Scholar 

  91. Magdesian MH, Carvalho MM, Mendes FA, Saraiva LM, Juliano MA, Juliano L, et al. Amyloid-beta binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/beta-catenin signaling. J Biol Chem. 2008;283:9359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Townsend M, Mehta T, Selkoe DJ. Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem. 2007;282:33305–12.

    Article  CAS  PubMed  Google Scholar 

  93. Hudry E, Vandenberghe LH. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron. 2019;101:839–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank YoungSoo Kim and Jisu Shin (Department of Pharmacy, Yonsei University) for the critical discussion and technical support.

Funding

This work was supported by the grants 2017R1A5A2015395 and 2020M3A9D8039925, funded by the National Research Foundation of Korea (NRF) of the Ministry of Science and ICT, Republic of Korea (to SHL), grants HI20C0253 and HU21C0113 from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea (SHK).

Author information

Authors and Affiliations

Authors

Contributions

Performed research; YY, M-JS, J-JS, YEK, YC, S-hK, S-JO, and M-HN Designed research; S-HL, S-HK, H-II, M-YC, and T-GK. Analyzed data; YY, M-JS, J-JS, YEK, YC, YAS Wrote the paper; S-HL, YY, M-JS.

Corresponding authors

Correspondence to Heh-In Im, Seong-Ho Koh or Sang-Hun Lee.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In Fig. 4I in the originally published version of this article, the Western blot image for PSD95 was incorrectly cropped. The error has been corrected in the HTML and PDF versions of the article. The original article has been corrected.

The original online version of this article was revised: 1. In the figure legend of Fig. 4I (page 8, line 7), ‘hippocampal lysates’ need to be corrected to ‘cortical lysates’. 2. In Fig. 4I and 5I, in the originally published version of this article, the western blot images for β-ACTIN bands were incorrectly cropped. The bands were replaced by the correct ones. In addition, the graphs for the western blot data were revised. The original article has been corrected.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Seok, MJ., Kim, Y.E. et al. Adeno-associated virus (AAV) 9-mediated gene delivery of Nurr1 and Foxa2 ameliorates symptoms and pathologies of Alzheimer disease model mice by suppressing neuro-inflammation and glial pathology. Mol Psychiatry (2022). https://doi.org/10.1038/s41380-022-01693-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-022-01693-6

Search

Quick links