Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Translocator protein (18kDa) TSPO: a new diagnostic or therapeutic target for stress-related disorders?

Abstract

Efficient treatment of stress-related disorders, such as depression, is still a major challenge. The onset of antidepressant drug action is generally quite slow, while the anxiolytic action of benzodiazepines is considerably faster. However, their long-term use is impaired by tolerance development, abuse liability and cognitive impairment. Benzodiazepines act as positive allosteric modulators of ɣ-aminobutyric acid type A (GABAA) receptors. 3α-reduced neurosteroids such as allopregnanolone also are positive allosteric GABAA receptor modulators, however, through a site different from that targeted by benzodiazepines. Recently, the administration of neurosteroids such as brexanolone or zuranolone has been shown to rapidly ameliorate symptoms in post-partum depression or major depressive disorder. An attractive alternative to the administration of exogenous neurosteroids is promoting endogenous neurosteroidogenesis via the translocator protein 18k Da (TSPO). TSPO is a transmembrane protein located primarily in mitochondria, which mediates numerous biological functions, e.g., steroidogenesis and mitochondrial bioenergetics. TSPO ligands have been used in positron emission tomography (PET) studies as putative markers of microglia activation and neuroinflammation in stress-related disorders. Moreover, TSPO ligands have been shown to modulate neuroplasticity and to elicit antidepressant and anxiolytic therapeutic effects in animals and humans. As such, TSPO may open new avenues for understanding the pathophysiology of stress-related disorders and for the development of novel treatment options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic presentation of various cellular functions of TSPO.
Fig. 2: Diazepam may lead to synapse loss by increased microglial synaptic pruning via TSPO.
Fig. 3: Neuroimaging-derived parameters using machine learning (ML) and artificial intelligence (AI) models may predict the speed and efficiency of a therapeutic intervention with TSPO ligands.

Similar content being viewed by others

References

  1. Cheng Q, Huang J, Xu L, Li Y, Li H, Shen Y, et al. Analysis of time-course, dose -effect, and influencing factors of antidepressants in the treatment of acute adult patients with major depression. J Psychopharmacol. 2020;23:76–87.

    CAS  Google Scholar 

  2. Rupprecht R, Rammes G, Eser D, Baghai TC, Schüle C, Nothdurfter C, et al. Translocator protein (18 kDa) as target for anxiolytics without benzodiazepine-like side effects. Science. 2009;325:490–3.

    Article  CAS  PubMed  Google Scholar 

  3. Edinoff AN, Nix CA, Hollier J, Sagera CE, Delacroix MB, Abubkar T, et al. Benzodiazepines: uses, dangers, and clinical considerations. Neuro Int. 2021;13:594–607.

    Article  Google Scholar 

  4. Furukawa TA, Streiner DL, Young LT. Antidepressant plus benzodiazepine for major depression. Cochrane Database Syst Rev. 2001;2:CD001026.

    Google Scholar 

  5. Ogawa Y, Takeshima N, Tajika A, Watanabe N, Streiner D, Fururkawa TA. Antidepressants plus benzodiazepines for adults with major depression. Cochrane Database Syst Rev. 2019;3:CD001026.

    Google Scholar 

  6. Rudolph U, Crestani F, Benke D, Brünig I, Benson JA, Fritschiy JM, et al. Benzodiazepine actions mediated by specific gamma-aminobutyric acic(A) receptor subtypes. Nature. 1999;401:796–800.

    Article  CAS  PubMed  Google Scholar 

  7. Rupprecht R, Holsboer F. Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci. 1999;22:410–6.

    Article  CAS  PubMed  Google Scholar 

  8. Chen ZW, Bracamontes JR, Budelier MM, Germann AL, Shin DJ, Kathiresan K, et al. Multiple functional neurosteroid binding sites on GABAA receptors. PLoS Biol. 2019;17:e3000157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Paul SM, Pinna G, Guidotti A. Allopregnanolone: from molecular pathophysiology to therapeutics: a historical perspective. Neurobiol Stress. 2020;14:110215.

    Google Scholar 

  10. Griffin LD, Mellon SH. Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci USA. 1999;96:13512–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schüle C, Romeo E, Uzunov DP, Eser D, di Michele F, Baghai TC, et al. Influence of mirtazapine on plasma concentrations of neuroactive steroids in major depression and on 3alpha-hydoxysteroid oxidoreductase activity. Mol Psychiatry. 2006;11:261–72.

    Article  PubMed  CAS  Google Scholar 

  12. Uzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, et al. Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci USA. 1998;95:3239–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Romeo E, Ströhle A, Spalletta G, di Michele F, Hermann B, Holsboer F, et al. Effects of antidepressant treatment on neuroactive steroids in major depression. Am J Psychiatry. 1998;155:910–3.

    Article  CAS  PubMed  Google Scholar 

  14. Rupprecht R. Neuroactive steroids: Mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology. 2003;28:139–68.

    Article  CAS  PubMed  Google Scholar 

  15. Ströhle A, Romeo E, di Michele F, Pasini A, Hermann B, Gajewski G, et al. Induced panic attacks shift GABAA receptor modulatory steroid composition in patients with panic disorder: preliminary results. Arch Gen Psychiatry. 2003;60:161–8.

    Article  PubMed  Google Scholar 

  16. Meltzer-Brady S, Calquhoun H, Riesenberg R, Epperson CN, Deligiannidis K, Rubinow DR, et al. Brexanolone injection in post-partum depression: two multicentre, double blind, randomised, placebo-controlled, phase-3 trails. Lancet. 2018;392:1058–70.

    Article  Google Scholar 

  17. Althaus AL, Ackley MA, Belfort GM, Gee SM, Dai J, Nguyen DP, et al. Preclinical characterization of zuranolone (SAGE-217), a selective neuroactive steroid GABAA receptor positive allosteric modulator. Neuropharmacology. 2020;181:10833.

    Article  CAS  Google Scholar 

  18. Gunduz-Bruce H, Silber C, Kaul I, Rothschild AJ, Riesenberg R, Sankoh AJ, et al. Trial of SAGE-217 in patients with major depressive disorder. N. Engl J Med. 2019;381:903–11.

    Article  CAS  PubMed  Google Scholar 

  19. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharm Sci. 2006;27:402–9.

    Article  CAS  PubMed  Google Scholar 

  20. Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, et al. Translocator protein (18 kDa) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Disco. 2010;9:971–88.

    Article  CAS  Google Scholar 

  21. Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry. 2015;72:268–265.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mitchell P, Moyle J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature. 1967;213:137–9.

    Article  CAS  PubMed  Google Scholar 

  23. McBride HM, Neuspiel M, Wasiak S. Mitochondria: More than just a powerhouse. Curr Biol. 2006;16:R551–R560.

    Article  CAS  PubMed  Google Scholar 

  24. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009;417:1–13.

    Article  CAS  PubMed  Google Scholar 

  25. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94:909–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hekimi S, Wang Y, Noe A. Mitochondrial ROS and the effectors of the intrinsic apoptotic pathway in aging cells: the discerning killers! Front Genet. 2016;7:161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Psarra AMG, Solakidi S, Sekeris CE. The mitochondrion as a primary site of action of steroid and thyroid hormones: presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells. Mol Cell Endocrinol. 2006;246:21–33.

    Article  CAS  PubMed  Google Scholar 

  28. Psarra AM, Sekeris CE. Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor. Biochim Biophys Acta. 2011;1813:1814–21.

    Article  CAS  PubMed  Google Scholar 

  29. Irwin RW, Yao J, To J, Hamilton RT, Cadenas E, Brinton RD. Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function. J Neuroendocrinol. 2012;24:236–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Picard M, McEwen BS. Psychological stress and mitochondria: a conceptual framework. Psychosom Med. 2018;80:126–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Midzak A, Papadopoulos V. Adrenal mitochondria and steroidogenesis: from individual proteins to functional protein assemblies. Front Endocrinol. 2016;7:106.

    Article  Google Scholar 

  32. Shoshan-Barmatz V, Pittala S, Mizrachi D. VDAC1 and the TSPO: expression, interactions, and associated functions in health and disease states. Int J Mol Sci. 2019;20:3348.

    Article  CAS  PubMed Central  Google Scholar 

  33. Batarseh A, Papaodpoulos V. Regulation of translocator protein 18 kDa (TSPO) expression in health and disease. Mol Cell Endocrinol. 2010;237:1–12.

    Article  CAS  Google Scholar 

  34. Papadopoulos V. On the role of the translocator protein (18 kDa) TSPO in steroid hormone biosynthesis. Endocrinology. 2014;155:15–20.

    Article  PubMed  CAS  Google Scholar 

  35. Miller WL. Steroid hormone synthesis in mitochondria. Mol Cell Endocrinol. 2013;379:62–73.

    Article  CAS  PubMed  Google Scholar 

  36. Morohaku K, Pelton SH, Daugherty DJ, Butler WR, Deng W, Selvaraj V. Translocator protein/peripheral benzodiazepine receptor is not required for steroid hormone biosynthesis. Endocrinology. 2014;155:89–97.

    Article  PubMed  CAS  Google Scholar 

  37. Banati RB, Middleton RJ, Chan R, Hatty CR, Kam WW, Quin C, et al. Positron emission tomography and functional characterization of a complete PBR/TSPO knockout. Nat Commun. 2014;5:5452.

    Article  PubMed  Google Scholar 

  38. Gatliff J, East D, Crosby J, Abeti R, Harvey R, Craigen W, et al. TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control. Autophagy. 2014;10:2279–96.

    Article  CAS  PubMed  Google Scholar 

  39. Bader S, Wolf L, Milenkovic VM, Gruber M, Nothdurfter C, Rupprecht R, et al. Differential effects of TSPO ligands on mitochondrial function in mouse microglia cells. Psychoneuroendocrinology. 2019;106:65–76.

    Article  CAS  PubMed  Google Scholar 

  40. Gavish M, Veenman L. Regulation of mitochondrial, cellular, and organismal functions by TSPO. Adv Pharm. 2018;82:103–36.

    Article  CAS  Google Scholar 

  41. Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M, et al. Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci. 2012;13:293–307.

    Article  CAS  PubMed  Google Scholar 

  42. Klinedinst NJ, Regenold WT. A mitochondrial bioenergetic basis of depression. J Bioenerg Biomembr. 2015;47:155–71.

    Article  CAS  PubMed  Google Scholar 

  43. Kuffner K, Triebelhorn J, Meindl K, Benner C, Manook A, Sudria-Lopez D, et al. Major depressive disorder is associated with impaired mitochondrial function in skin fibroblasts. Cells. 2020;9:884.

    Article  CAS  PubMed Central  Google Scholar 

  44. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 2016;89:37–53.

    Article  CAS  PubMed  Google Scholar 

  46. Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S, et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol. 2009;35:306–28.

    Article  CAS  PubMed  Google Scholar 

  47. Notter T, Coughlin JM, Sawa A, Meyer U. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Mol Psychiatry. 2018;23:36–47.

    Article  CAS  PubMed  Google Scholar 

  48. Notter T, Schalbetter SM, Clifton NE, Mattei D, Richetto J, Thomas K, et al. Neuronal activity increases translocator protein (TSPO) levels. Mol Psychiatry. 2021;26:2025–37.

    Article  CAS  PubMed  Google Scholar 

  49. Barron AM, Higuchi M, Hattori S, Kito S, Suhara T, Ji B. Regulation of anxiety and depression by mitochondrial translocator protein-mediated steroidogenesis: the role of neurons. Mol Neurobiol. 2021;58:550–63.

    Article  CAS  PubMed  Google Scholar 

  50. Nolan A, Roman E, Nasa A, Levins KJ, Hanlon EO, O´Keane V, et al. Hippocampal and amygdalar volume changes in major depressive disorder: a targeted review and focus on stress. Chronic Stress. 2020;4:2470547020944553.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Guilarte TR, Rodichkin AN, McGlothan JL, De La Rocha AMA, Azzam DJ Imaging neuroinflammation with TSPO: a new perspective on the cellular sources and subcellular localization. Pharmacol Ther. 2021; Nov: 108048.

  52. Nutma E, Ceyzeriat K, Amor A, Tsartsalis S, Millet P, Owen DR, et al. Cellular sources of TSPO expression in healthy and diseased brain. Eur J Nucl Med Mol Imaging. 2021;49:146–63.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Heneka MT. Microglia take centre stage in neurodegenerative disease. Nat Rev Immunol. 2019;19:79–80.

    Article  CAS  PubMed  Google Scholar 

  54. Bohlen CJ, Friedman BA, Dejanovic B, Sheng M. Microglia in brain development, homeostasis, and neurodegeneration. Annu Rev Genet. 2019;53:263–88.

    Article  CAS  PubMed  Google Scholar 

  55. Hong S, Dissing-Olesen L, Stevens B. New insights on the role of microglia in synaptic pruning in health and disease. Curr Opin Neurobiol. 2016;36:128–34.

    Article  CAS  PubMed  Google Scholar 

  56. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131:1164–78.

    Article  CAS  PubMed  Google Scholar 

  57. Scott-Hewitt N, Perrucci F, Morini R, Erreni M, Mahoney M, Witkowska A, et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 2020;39:e105380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shi Y, Cui M, Ochs K, Strübing FL, Briel N, Eckenweber F, et al. Long-term diazepam treatment enhances microglial spine engulfment and impairs cognitive performance via the mitochondrial 18 kDa translocator protein (TSPO). Nat Neurosci. 2022;25:317–29.

    Article  CAS  PubMed  Google Scholar 

  59. Furukawa T, Nikaido Y, Shimoyama S, Masuyama N, Notoya A, Ueno S. Impaired cognitive function and hippocampal changes following chronic diazepam treatment in middle-aged mice. Front Aging Neurosci. 2021;13:777404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carton L, Niot C, Kyheng M, Petrault M, Laloux C, Potey C, et al. Lack of direct involvement of a diazepam long-term treatment in the occurrence of irreversible cognitive impairment: a pre-clinical approach. Transl Psychiatry. 2021;11:612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barker M. Persistence of cognitive effects after withdrawal from long-term benzodiazepine use: a meta-analysis. Arch Clin Neuropsychol. 2004;19:437–54.

    Article  PubMed  Google Scholar 

  62. Barker MJ, Greenwood KM, Jackson M, Crowe SF. Cognitive effects of long-term benzodiazepine use: a meta-Analysis. CNS Drugs. 2004;18:37–48.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang Y, Zhou X, Meranus DH, Wang L, Kukull WA. Benzodiazepine use and cognitive decline in elderly with normal cognition. Alzheimer Dis Assoc Disord. 2016;30:113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pariente A, de Gage SB, Moore N, Bégaud B. The benzodiazepine–dementia disorders link: current state of knowledge. CNS Drugs. 2016;30:1–7.

    Article  CAS  PubMed  Google Scholar 

  65. de Gage SB, Moride Y, Ducruet T, Kurth T, Verdoux H, Tournier M, et al. Benzodiazepine use and risk of Alzheimer’s disease: case-control study. Br Med J. 2014;349:g5205.

    Article  CAS  Google Scholar 

  66. Penninkilampi R, Eslick GD. A systematic review and meta-analysis of the risk of dementia associated with benzodiazepine use after controlling for protopathic bias. CNS Drugs. 2018;32:485–97.

    Article  CAS  PubMed  Google Scholar 

  67. Gallacher J, Elwood P, Pickering J, Bayer A, Fish M, Ben-Shlomo Y. Benzodiazepine use and risk of dementia: evidence from the Caerphilly Prospective Study (CaPS). J Epidemiol Commun Health. 2012;66:869–73.

    Article  Google Scholar 

  68. Biétry FA, Pfeil AM, Reich O, Schwenkglenks M, Meier CR. Benzodiazepine use and risk of developing Alzheimer’s disease: a case-control study based on Swiss claims data. CNS Drugs. 2017;31:245–51.

    Article  PubMed  CAS  Google Scholar 

  69. Gray SL, Dublin S, Yu O, Walker R, Anderson M, Hubbard RA, et al. Benzodiazepine use and risk of incident dementia or cognitive decline: prospective population based study. Br Med J. 2016;352:i90.

    Article  CAS  Google Scholar 

  70. Filipello F, Morini R, Corradini I, Zerbi V, Canzi A, Michalski B, et al. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity. 2018;48:979–91.

    Article  CAS  PubMed  Google Scholar 

  71. Paolicelli RC, Jawaid A, Henstridge CM, Valeri A, Merlini M, Robinson JL, et al. TDP-43 depletion in microglia promotes amyloid clearance but also induces synapse loss. Neuron. 2017;95:297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Boissier JR, Simon P, Zaczinska M, Fichelle J. Etude psychopharmacologique experimentale d’une nouvelle substance psychotrope, la 2-e´thylamino-6-chloro-4-me´thyl-4-phe´nyl-4-H-3,1-benzoxazine. Therapie. 1972;27:325–38.

    CAS  PubMed  Google Scholar 

  73. Verleye M, Heulard I, Nuss P, Gillardin JM. Effects of stress and etifoxine on pentobarbital-induced loss of righting reflex in Balb/cByJ and C57BL/6J mice. 2003; 353: 127–30.

  74. Wang DS, Han J, Li S, Sun T, Guo YY, Kang WB, et al. Antidepressant-like and anxiolytic-like effects of ZBD-2, a novel ligand for the translocator protein (18 kDa). Neuromol Med. 2017;19:57–68.

    Article  CAS  Google Scholar 

  75. Ren P, Ma L, Wang JY, Guo H, Sun L, Gao ML, et al. Anxiolytic and anti-depressive like effects of translocator protein (18 kDa) ligand YL-IPAo8 in a rat model of postpartum depression. Neurochem Res. 2020;45:1746–57.

    Article  CAS  PubMed  Google Scholar 

  76. Li XB, Liu A, Yang L, Zhang K, Wu YM, Zhao MG, et al. Antidepressant-like effects of translocator protein (18 kDa) ligand ZBD-2 in mouse models of postpartum depression. Mol Brain. 2018;11:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. McCall AL. Diabetes mellitus and the central nervous system. Int Rev Neurobiol. 2002;51:415–53.

    Article  CAS  PubMed  Google Scholar 

  78. Myers AK, Grannemann BD, Lingvay I, Trivedi MH. Brief report: depression and history of suicide attempts in adults with new-onset type 2 diabetes. Psychoneuroendocrinology. 2013;38:2810–281.

    Article  PubMed  Google Scholar 

  79. Reber SO, Birkeneder L, Obermeier F, Falk W, Straub RH, Neumann ID. Adrenal insufficiency and colonic inflammation after a novel chronic psycho-social stress paradigm in mice: implications and mechanisms. Endocrinology. 2007;148:670–82.

    Article  CAS  PubMed  Google Scholar 

  80. Slattery DA, Uschold N, Magoni M, Baer J, Popoli M, Neumann ID, et al. Behavioural consequences of two chronic psychosocial stress paradigms: anxiety without depression. Psychoneuroendocrinology. 2012;37:702–14.

    Article  PubMed  Google Scholar 

  81. Qiu ZK, He JL, Liu X, Zhang GH, Zeng J, Nie H, et al. The antidepressant-like activity of AC-5216, a ligand for 18 kDa translocator protein (TSPO), in an animal model of diabetes mellitus. Sci Rep. 2016;6:37345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kawahara Y, Mitsui K, Niwa T, Morimoto N, Kawaharada S, Katsumata S. Translocator protein 18 kDa antagonist ameliorates stress-induced stool abnormality and abdominal pain in rodent stress models. Neurogastroenterol Motil. 2018;30:e13425.

    Article  CAS  PubMed  Google Scholar 

  83. Owen DR, Fan J, Campioli E, Venugopal S, Midzak A, Daly E, et al. TSPO mutations in rats and a human polymorphism impair the rate of steroid synthesis. Biochem J. 2017;474:3985–99.

    Article  CAS  PubMed  Google Scholar 

  84. Schüle C, Nothdurfter C, Rupprecht R. The role of allopregnanolone in depression and anxiety. Prog Neurobiol. 2014;113:79–87.

    Article  PubMed  CAS  Google Scholar 

  85. Shang C, Yao RM, Guo Y, Ding ZC, Sun LJ, Ran YH, et al. Translocator protein-mediated fast-onset antidepressant-like and memory-enhancing effects in chronically stressed mice. J Psychopharmacol. 2020;34:441–51.

    Article  CAS  PubMed  Google Scholar 

  86. Armario A, Escorihuela RM, Nadal R. Long-term neuroendocrine and behavioural effects of a single exposure to stress in adult animals. Neurosci Biobehav Rev. 2008;32:1121–35.

    Article  CAS  PubMed  Google Scholar 

  87. Miao YL, Guo WZ, Shi WZ, Fang WW, Liu Y, Liu J, et al. Midazolam ameliorates the behavior deficits of a rat posttraumatic stress disorder model through dual 18 kDa translocator protein and central benzodiazepine receptor and neurosteroidogenesis. PLoS One. 2014;9:e101450.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zhang LM, Qiu ZK, Zhao N, Chen HX, Liu YK, Xu JP, et al. Anxiolytic-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa) in animal models of post-traumatic stress disorder. Int J Neuropsychopharmacol. 2014;17:1659–69.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang XY, Wei W, Zhang YZ, Fu Q, Mi WD, Zhang LM, et al. The 18 kDa translocator protein (TSPO) overexpression in hippocampal dentate gyrus elicits anxiolytic-like effects in a mouse model of post-traumatic stress disorder. Front Pharm. 2018;9:1364.

    Article  CAS  Google Scholar 

  90. Bahr LM, Maurer F, Weigl J, Weber K, Melchner D, Dörfelt A, et al. Dissociation of endocrine responses to the Trier social stress test in virtual reality (VR-TSST) by the benzodiazepine alprazolam and the translocator protein 18 kDa (TSPO) ligand etifoxine. Psychoneuroendocrinology. 2021;124:105100.

    Article  CAS  PubMed  Google Scholar 

  91. Rupprecht R, Rupprecht C, Rammes G. Neuroinflammation and psychiatric disorders: relevance of C1q, translocator protein (18kDa) (TSPO), and neurosteroids. W J Biol Psychiatry. 2021;10(Sep):1–7. https://doi.org/10.1080/15622975.2021.1961503. e-pub ahead of print 2021

    Article  Google Scholar 

  92. Pini S, Martini C, Abelli M, Muti M, Gesi C, Montali M, et al. Peripheral-type benzodiazepine receptor binding sites in platelets of patients with panic disorder associated to separation anxiety symptoms. Psychopharmacology. 2005;181:407–11.

    Article  CAS  PubMed  Google Scholar 

  93. Abelli M, Chelli B, Costa B, Lari L, Cardini A, Gesi C, et al. Reductions in platelet 18-kDa translocator protein density are associated with adult separation anxiety in patients with bipolar disorder. Neuropsychobiology. 2010;62:98–103.

    Article  CAS  PubMed  Google Scholar 

  94. Sarubin N, Baghai TC, Lima-Ojeda JM, Melchner D, Hallof-Buestrich H, Wolf L, et al. Translocator protein (TSPO) expression in platelets of depressed patients decreases during antidepressant therapy. Pharmacopsychiatry. 2016;49:204–9.

    Article  CAS  PubMed  Google Scholar 

  95. Nudmamud S, Siripurkpong P, Chindaduangratana C, Harnyuattanakorn P, Lotrakul P, Laarbboonsarp W, et al. Stress, anxiety, and peripheral benzodiazepine receptor mRNA levels in human lymphocytes. Life Sci. 2000;67:2221–31.

    Article  CAS  PubMed  Google Scholar 

  96. Nakamura K, Fukunishi I, Nakamoto Y, Iwahashi K, Yoshii M. Peripheral-type benzodiazepine receptors on platelets are correlated with the degrees of anxiety in normal human subjects. Psychopharmacology. 2002;162:301–3.

    Article  CAS  PubMed  Google Scholar 

  97. Rocca P, Beoni AM, Eva C, Ferrero P, Zanalda E, Ravizza L. Peripheral benzodiazepine receptor messenger RNA is decreased in lymphocytes of generalized anxiety disorder patients. Biol Psychiatry. 1998;43:767–73.

    Article  CAS  PubMed  Google Scholar 

  98. Gavish M, Laor N, Bidder M, Fisher D, Fonia O, Muller U, et al. Altered platelet peripheral-type benzodiazepine receptor in posttraumatic stress disorder. Neuropsychopharmacology. 1996;14:181–6.

    Article  CAS  PubMed  Google Scholar 

  99. Johnson MR, Marazziti D, Brawman-Mintzer O, Emmanuel NP, Ware MR, Morton WA, et al. Abnormal peripheral benzodiazepine receptor density associated with generalized social phobia. Biol Psychiatry. 1998;43:306–9.

    Article  CAS  PubMed  Google Scholar 

  100. Costa B, Pini S, Martini C, Abelli M, Gabelloni P, Landi S, et al. Ala147Thr substitution in translocator protein is associated with adult separation anxiety in patients with depression. Psychiatr Genet. 2009;19:110–1.

    Article  PubMed  Google Scholar 

  101. Li H, Sagar AP, Keri S. Microglial markers in the frontal cortex are related to cognitive dysfunctions in major depressive disorder. J Affect Disord. 1018;241:305–10.

    Article  Google Scholar 

  102. Attwells S, Setiawan E, Wilson AA, Rusjan PM, Mizrahi R, Miler L, et al. Inflammation in the neurocircuitry of obsessive-compulsive disorder. JAMA Psychiatry. 2017;74:833–40.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Attwells S, Setiawan E, Rusjan OM, Xu C, Hutton C, Rafiei D, et al. Translocator protein distribution volume predicts reductions of symptoms during open-label trial of celecoxib in major depressive disorder. Biol Psychiatry. 2020;88:649–56.

    Article  CAS  PubMed  Google Scholar 

  104. Bhatt S, Hilmer AT, Girgenti MJ, Rusowicz A, Kapinos M, Nabuls N, et al. PTSD is associated with neuroimmune suppression: evidence from PET imaging and postmortem transctriptional studies. Nat Commun. 2020;11:2360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tournier BB, Tsartsalis S, Ceyzeriat K, Garibotto V, Millet P. In vivo TSPO signal and neuroinflammation in Alzheimer´s disease. Cells. 2020;9:1941.

    Article  CAS  PubMed Central  Google Scholar 

  106. Colasanti A, Owen DR, Grozeva D, Rabiner EA, Matthews PM, Craddock N, et al. Bipolar disorder is associated with the rs6971 polymorphism in the gene encoding 18 kDa translocator protein (TSPO). Psychoneuroendocrinology. 2013;38:2826–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Prossin AR, Chandler M, Ryan KA, Saunders F, Kamali M, Papadopoulos V, et al. Functional TSPO polymorphism predicts variance in the diurnal cortisol rhythm in bipolar disorder. Psychoneuroendocrinology. 2018;89:194–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mattei C, Taly A, Soualah Z, Sauleis O, Herrison D, Guerineau NC, et al. Involvement of the GABAA receptor α subunit in the mode of action of etifoxine. Pharm Res. 2019;145:104250.

    Article  CAS  Google Scholar 

  109. Nguyen N, Fakra E, Pradel V, Jouve E, Alquier C, Le Guern ME, et al. Efficacy of etifoxine compared to lorazepam monotherapy in the treatment of patients with adjustment disorders with anxiety: a double-blind controlled study in general practice. Hum Psychopharmacol. 2006;21:139–49.

    Article  CAS  PubMed  Google Scholar 

  110. Vicente B, Saldicia S, Hormazabal N, Bustos C, Rubi P. Etifoxine is non-inferior than clonazepam for the reduction of anxiety disorders: a randomized, double blind, non-inferiority trial. Psychopharmacology. 2020;237:3357–67.

    Article  CAS  PubMed  Google Scholar 

  111. Kritzer MD, Mischel NA, Young JR, Lai CS, Masand PS, Szabo ST, et al. Ketamine for treatment of mood disorders and suicidality: a narrative review of recent progress. Ann Clin Psychiatry. 2021;33:e10–e20.

    PubMed  Google Scholar 

  112. Witkin JM, Lippa A, Smith JL, Jin X, Ping X, Biggerstaff A, et al. The imidazodiazepine, KRM-II-81: an example of a newly emerging generations of GABAkines for neurological and psychiatric disorders. Phamacol Biochem Behav. 2022;213:173321.

    Article  CAS  Google Scholar 

  113. Tognoli E, Kelso JAS. The metastable brain. Neuron. 2014;81:35–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Donelly-Kehoe P, Saenger VM, Lisofsky N, Kühn S, Kringelbach ML, Schwarzbach J, et al. Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity. Hum Brain Mapp. 2019;40:2967–80.

    Google Scholar 

  115. Riban V, Meunier J, Buttigieg D, Villard V, Verleye M. In vitro and in vivo neuroprotective effects of etifoxine in β-amyloidinduced toxicity models. CNS Neurol Disord Drug Targets. 2020;19:227–40.

    Article  CAS  PubMed  Google Scholar 

  116. Jung ME. A protective role of translocator protein in Alzheimer´s disease brain. Curr Alzheimer Res. 2020;17:3–15.

    Article  CAS  PubMed  Google Scholar 

  117. Daugherty DJ, Selvaraj V, Chechneva OV, Liu XB, Pleasure DE, Deng WA. TSPO ligand is protective in a mouse model of multiple sclerosis. EMBO Mol Med. 2013;5:891–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Leva G, Klein C, Benyounes J, Hallé F, Bihel F, Collogues N, et al. The translocator protein ligand XBD173 improves clinical symptoms and neuropathological markers in the SJL/J mouse model of multiple sclerosis. Biochim Biophys Acta Mol Basis Dis. 2017;1863:3016–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the German Research Foundation (Deutsche Forschungsgemeinschaft) (DFG), project number 422179811 to RR and JS, 421887978 to NLA, 422182557 to CHW, 422174053 to MS, 422181340 to MD and JH, 422183249 to IDN, the DFG graduate school GRK2174 to IN and RR, and EXC 2145 SyNergy – ID 390857198 to JH.

Author information

Authors and Affiliations

Authors

Contributions

RR drafted and revised the whole manuscript, CW contributed to the chapter on mitochondria, MS to the neurosteroid part, MD and JH contributed findings on neuroplasticity, IDN to the chapter on animal models, and JS and NA to the clinical neuroimaging part. All authors carefully read and revised the manuscript.

Corresponding author

Correspondence to Rainer Rupprecht.

Ethics declarations

Competing interests

RR has received consultancy honoraria from SAGE and GABA Therapeutics.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rupprecht, R., Wetzel, C.H., Dorostkar, M. et al. Translocator protein (18kDa) TSPO: a new diagnostic or therapeutic target for stress-related disorders?. Mol Psychiatry 27, 2918–2926 (2022). https://doi.org/10.1038/s41380-022-01561-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01561-3

This article is cited by

Search

Quick links