Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Leveraging a translational research approach to drive diagnostic and treatment advances for autism

Abstract

Autism spectrum disorder (ASD) is a prevalent and poorly understood neurodevelopmental disorder. There are currently no laboratory-based diagnostic tests to detect ASD, nor are there any disease-modifying medications that effectively treat ASD’s core behavioral symptoms. Scientific progress has been impeded, in part, by overreliance on model organisms that fundamentally lack the sophisticated social and cognitive abilities essential for modeling ASD. We therefore saw significant value in studying naturally low-social rhesus monkeys to model human social impairment, taking advantage of a large outdoor-housed colony for behavioral screening and biomarker identification. Careful development and validation of our animal model, combined with a strong commitment to evaluating the translational utility of our preclinical findings directly in patients with ASD, yielded a robust neurochemical marker (cerebrospinal fluid vasopressin concentration) of trans-primate social impairment and a first-in-class medication (intranasal vasopressin) shown in a small phase 2a pilot trial to improve social abilities in children with ASD. This translational research approach stands to advance our understanding of ASD in a manner not readily achievable with existing animal models, and can be adapted to investigate a variety of other human brain disorders which currently lack valid preclinical options, thereby streamlining translation and amplifying clinical impact more broadly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ASD research strategy for streamlined translation and clinical impact.

Similar content being viewed by others

References

  1. APA. Diagnostic and Statistical Manual of Mental Disorders. Fifth edn. American Psychiatric Association: Washington, DC, 2013.

  2. Maenner MJ, Shaw KA, Bakian AV, Bilder DA, Durkin MS, Esler A, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveill Summ. 2021;70:1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Leigh JP, Du J. Brief report: forecasting the economic burden of Autism in 2015 and 2025 in the United States. J Autism Dev Disord. 2015;45:4135–9.

    Article  PubMed  Google Scholar 

  4. Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB, et al. Most genetic risk for autism resides with common variation. Nat Genet. 2014;46:881–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robinson EB, St Pourcain B, Anttila V, Kosmicki JA, Bulik-Sullivan B, Grove J, et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat Genet. 2016;48:552–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iakoucheva LM, Muotri AR, Sebat J. Getting to the Cores of Autism. Cell. 2019;178:1287–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rogers SJ, Vismara L Interventions for Infants and Toddlers at Risk for Autism Spectrum Disorder. In: Society AC (ed). Handbook of Autism and Pervasive Developmental Disorders, Fourth Edition 2014.

  8. Reichow B, Barton EE, Boyd BA, Hume K. Early intensive behavioral intervention (EIBI) for young children with autism spectrum disorders (ASD). Cochrane Database Syst Rev. 2012;10:CD009260.

    PubMed  Google Scholar 

  9. Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aldinger KA, Qiu S. New mouse genetic model duplicates human 15q11-13 autistic phenotypes, or does it? Dis Model Mech. 2010;3:3–4.

    Article  PubMed  Google Scholar 

  11. Horev G, Ellegood J, Lerch JP, Son YE, Muthuswamy L, Vogel H, et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci USA. 2011;108:17076–81.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Capitanio JP, Emborg ME. Contributions of non-human primates to neuroscience research. Lancet. 2008;371:1126–35.

    Article  PubMed  Google Scholar 

  13. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Disco. 2004;3:711–5.

    Article  CAS  Google Scholar 

  14. Garner JP. The significance of meaning: why do over 90% of behavioral neuroscience results fail to translate to humans, and what can we do to fix it? ILAR J / Natl Res Counc, Inst Lab Anim Resour. 2014;55:438–56.

    Article  CAS  Google Scholar 

  15. Zahs KR, Ashe KH. ‘Too much good news’ - are Alzheimer mouse models trying to tell us how to prevent, not cure, Alzheimer’s disease? Trends Neurosci. 2010;33:381–9.

    Article  CAS  PubMed  Google Scholar 

  16. Garner JP, Gaskill BN, Weber EM, Ahloy-Dallaire J, Pritchett-Corning KR. Introducing Therioepistemology: the study of how knowledge is gained from animal research. Lab Anim (NY). 2017;46:103–13.

    Article  Google Scholar 

  17. McKinney WT Jr., WE Bunney Jr. Animal model of depression. I. Review of evidence: implications for research. Arch Gen Psychiatry. 1969;21:240–8.

    Article  PubMed  Google Scholar 

  18. Willner P. The validity of animal models of depression. Psychopharmacol (Berl). 1984;83:1–16.

    Article  CAS  Google Scholar 

  19. Bachevalier J, Loveland KA. The orbitofrontal-amygdala circuit and self-regulation of social-emotional behavior in autism. Neurosci Biobehav Rev. 2006;30:97–117.

    Article  PubMed  Google Scholar 

  20. Amaral DG, Bauman MD, Schumann CM. The amygdala and autism: implications from non-human primate studies. Genes Brain Behav. 2003;2:295–302.

    Article  CAS  PubMed  Google Scholar 

  21. Suomi SJ. Early determinants of behaviour: evidence from primate studies. Br Med Bull. 1997;53:170–84.

    Article  CAS  PubMed  Google Scholar 

  22. Rutter M, Andersen-Wood L, Beckett C, Bredenkamp D, Castle J, Groothues C, et al. Quasi-autistic patterns following severe early global privation. English and Romanian Adoptees (ERA) Study Team. J Child Psychol Psychiatry. 1999;40:537–49.

    Article  CAS  PubMed  Google Scholar 

  23. Capitanio JP. Social processes and disease in nonhuman primates: introduction to the special section. Am J Primatol. 2012;74:491–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bettelheim B. The empty fortress: infantile autism and the birth of the self. Free Press: New York, NY, 1967.

  25. DiCicco-Bloom E, Lord C, Zwaigenbaum L, Courchesne E, Dager SR, Schmitz C, et al. The developmental neurobiology of autism spectrum disorder. J Neurosci. 2006;26:6897–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Risch N, Spiker D, Lotspeich L, Nouri N, Hinds D, Hallmayer J, et al. A genomic screen of autism: evidence for a multilocus etiology. Am J Hum Genet. 1999;65:493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pickles A, Starr E, Kazak S, Bolton P, Papanikolaou K, Bailey A, et al. Variable expression of the autism broader phenotype: findings from extended pedigrees. J Child Psychol Psychiatry. 2000;41:491–502.

    Article  CAS  PubMed  Google Scholar 

  28. Piven J, Palmer P, Jacobi D, Childress D, Arndt S. Broader autism phenotype: evidence from a family history study of multiple-incidence autism families. Am J Psychiatry. 1997;154:185–90.

    Article  CAS  PubMed  Google Scholar 

  29. Bishop DV, Maybery M, Maley A, Wong D, Hill W, Hallmayer J. Using self-report to identify the broad phenotype in parents of children with autistic spectrum disorders: a study using the Autism-Spectrum Quotient. J Child Psychol Psychiatry. 2004;45:1431–6.

    Article  PubMed  Google Scholar 

  30. Constantino JN, Lajonchere C, Lutz M, Gray T, Abbacchi A, McKenna K, et al. Autistic social impairment in the siblings of children with pervasive developmental disorders. Am J Psychiatry. 2006;163:294–6.

    Article  PubMed  Google Scholar 

  31. Constantino JN, Todd RD. Autistic traits in the general population: a twin study. Arch Gen Psychiatry. 2003;60:524–30.

    Article  PubMed  Google Scholar 

  32. Constantino JN, Todd RD. Intergenerational transmission of subthreshold autistic traits in the general population. Biol Psychiatry. 2005;57:655–60.

    Article  PubMed  Google Scholar 

  33. Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J Autism Dev Disord. 2001;31:5–17.

    Article  CAS  PubMed  Google Scholar 

  34. Robinson EB, Koenen KC, McCormick MC, Munir K, Hallett V, Happe F, et al. Evidence that autistic traits show the same etiology in the general population and at the quantitative extremes (5%, 2.5%, and 1%). Arch Gen Psychiatry. 2011;68:1113–21.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lundstrom S, Chang Z, Rastam M, Gillberg C, Larsson H, Anckarsater H, et al. Autism spectrum disorders and autistic like traits: similar etiology in the extreme end and the normal variation. Arch Gen Psychiatry. 2012;69:46–52.

    Article  PubMed  Google Scholar 

  36. Müller E, Schuler A, Yates GB. Social challenges and supports from the perspective of individuals with Asperger syndrome and other Autism spectrum disabilities. Autism. 2008;12:173–90.

    Article  PubMed  Google Scholar 

  37. Phillips KA, Bales KL, Capitanio JP, Conley A, Czoty PW, T Hart BA, et al. Why primate models matter. Am J Primatol. 2014;76:801–27.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tigges J, Gordon TP, McClure HM, Hall EC, Paters AA. Survival rate and life span of rhesus monkeys at the Yerkes regional primate research center. Am J Primatol. 1988;15:263–73.

    Article  PubMed  Google Scholar 

  39. Hull L, Petrides KV, Mandy W. The Female Autism Phenotype and Camouflaging: a Narrative Review. Rev J Autism Developmental Disord. 2020;7:306–17.

    Article  Google Scholar 

  40. Capitanio JP. Sociability and responses to video playbacks in adult male rhesus monkeys (Macaca mulatta). Primates. 2002;43:169–77.

    Article  PubMed  Google Scholar 

  41. Sclafani V, Del Rosso LA, Seil SK, Calonder LA, Madrid JE, Bone KJ, et al. Early Predictors of Impaired Social Functioning in Male Rhesus Macaques (Macaca mulatta). PLoS One. 2016;11:e0165401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Parker KJ, Garner JP, Oztan O, Tarara ER, Li J, Sclafani V, et al. Arginine vasopressin in cerebrospinal fluid is a marker of sociality in nonhuman primates. Sci Transl Med. 2018;10:eaam9100.

  43. Myers AK, Talbot CF, Del Rosso LA, Maness AC, Simmons SMV, Garner JP, et al. Assessment of medical morbidities in a rhesus monkey model of naturally occurring low sociality. Autism Res. 2021;14:1332–46.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jain A, Spencer D, Yang W, Kelly JP, Newschaffer CJ, Johnson J, et al. Injuries among children with autism spectrum disorder. Acad Pediatr. 2014;14:390–7.

    Article  PubMed  Google Scholar 

  45. Cavalari RN, Romanczyk RG. Caregiver perspectives on unintentional injury risk in children with an autism spectrum disorder. J Pediatr Nurs. 2012;27:632–41.

    Article  PubMed  Google Scholar 

  46. Lee LC, Harrington RA, Chang JJ, Connors SL. Increased risk of injury in children with developmental disabilities. Res Dev Disabil. 2008;29:247–55.

    Article  PubMed  Google Scholar 

  47. McDermott S, Zhou L, Mann J. Injury treatment among children with autism or pervasive developmental disorder. J Autism Dev Disord. 2008;38:626–33.

    Article  PubMed  Google Scholar 

  48. Feczko EJ, Bliss-Moreau E, Walum H, Pruett JR Jr., Parr LA. The Macaque Social Responsiveness Scale (mSRS): A Rapid Screening Tool for Assessing Variability in the Social Responsiveness of Rhesus Monkeys (Macaca mulatta). PLoS One. 2016;11:e0145956.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Talbot CF, Garner JP, Maness AC, McCowan B, Capitanio JP, Parker KJ. A psychometrically robust screening tool to rapidly identify socially impaired monkeys in the general population. Autism Res. 2020;13:1465–75.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Constantino JN, Gruber CP. Social Responsiveness Scale, Second Edition. Western Psychological Services 2012.

  51. Constantino JN, Abbacchi AM, Lavesser PD, Reed H, Givens L, Chiang L, et al. Developmental course of autistic social impairment in males. Dev Psychopathol. 2009;21:127–38.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Constantino JN, Davis SA, Todd RD, Schindler MK, Gross MM, Brophy SL, et al. Validation of a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the autism diagnostic interview-revised. J Autism Dev Disord. 2003;33:427–33.

    Article  PubMed  Google Scholar 

  53. Connolly JJ, Glessner JT, Hakonarson H. A genome-wide association study of autism incorporating autism diagnostic interview-revised, autism diagnostic observation schedule, and social responsiveness scale. Child Dev. 2013;84:17–33.

    Article  PubMed  Google Scholar 

  54. Constantino JN. The quantitative nature of autistic social impairment. Pediatr Res. 2011;69:55R–62R.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lyall K, Constantino JN, Weisskopf MG, Roberts AL, Ascherio A, Santangelo SL. Parental social responsiveness and risk of autism spectrum disorder in offspring. JAMA Psychiatry. 2014;71:936–42.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Garner JP, Talbot CF, Del Rosso LA, McCowan B, Haig D, Capitanio JP, et al. Rhesus macaque social functioning is paternally, but not maternally, inherited by sons: Potential implications for autism. under review.

  57. Capitanio JP. Variation in BioBehavioral Organization. In: Schapiro S. (ed). Handbook of Primate Behavioral Management. CRC Press: Boca Raton, FL, 2017, pp 55-73.

  58. Jones W, Klin A. Attention to eyes is present but in decline in 2-6-month-old infants later diagnosed with autism. Nature. 2013;504:427–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Keehn B, Vogel-Farley V, Tager-Flusberg H, Nelson CA. Atypical hemispheric specialization for faces in infants at risk for autism spectrum disorder. Autism Res. 2015;8:187–98.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Francis SM, Sagar A, Levin-Decanini T, Liu W, Carter CS, Jacob S. Oxytocin and vasopressin systems in genetic syndromes and neurodevelopmental disorders. Brain Res. 2014;1580:199–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Baribeau DA, Anagnostou E. Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits. Front Neurosci. 2015;9:335.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Samuels IS, Saitta SC, Landreth GE. MAP’ing CNS development and cognition: an ERKsome process. Neuron. 2009;61:160–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Subramanian M, Timmerman CK, Schwartz JL, Pham DL, Meffert MK. Characterizing autism spectrum disorders by key biochemical pathways. Front Neurosci. 2015;9:313.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Oztan O, Talbot CF, Argilli E, Maness AC, Simmons SM, Mohsin N, et al. Autism-associated biomarkers: test-retest reliability and relationship to quantitative social trait variation in rhesus monkeys. Mol Autism. 2021;12:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Oztan O, Garner JP, Partap S, Sherr EH, Hardan AY, Farmer C, et al. Cerebrospinal fluid vasopressin and symptom severity in children with autism. Ann Neurol. 2018;84:611–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shoffner J, Trommer B, Thurm A, Farmer C, Langley WA, 3rd, Soskey L et al. CSF concentrations of 5-methyltetrahydrofolate in a cohort of young children with autism. Neurology. 2016;86:2258–63.

  67. Albers HE. The regulation of social recognition, social communication and aggression: vasopressin in the social behavior neural network. Hormones Behav. 2012;61:283–92.

    Article  CAS  Google Scholar 

  68. Winslow JT, Hastings N, Carter CS, Harbaugh CR, Insel TR. A role for central vasopressin in pair bonding in monogamous prairie voles. Nature. 1993;365:545–8.

    Article  CAS  PubMed  Google Scholar 

  69. Parker KJ, Lee TM. Central vasopressin administration regulates the onset of facultative paternal behavior in microtus pennsylvanicus (meadow voles). Horm Behav. 2001;39:285–94.

    Article  CAS  PubMed  Google Scholar 

  70. Bielsky IF, Hu SB, Szegda KL, Westphal H, Young LJ. Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2004;29:483–93.

    Article  CAS  Google Scholar 

  71. Paul MJ, Peters NV, Holder MK, Kim AM, Whylings J, Terranova JI, et al. Atypical social development in vasopressin-deficient brattleboro rats. eNeuro. 2016;3:ENEURO.0150-15.2016.

  72. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474:380–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lord C, Risi S, DiLavore PS, Shulman C, Thurm A, Pickles A. Autism from 2 to 9 years of age. Arch Gen Psychiatry. 2006;63:694–701.

    Article  PubMed  Google Scholar 

  74. Oztan O, Garner JP, Constantino JN, Parker KJ. Neonatal CSF vasopressin concentration predicts later medical record diagnoses of autism spectrum disorder. Proc Natl Acad Sci USA. 2020;117:10609–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carson DS, Garner JP, Hyde SA, Libove RA, Berquist SW, Hornbeak KB, et al. Arginine vasopressin is a blood-based biomarker of social functioning in children with Autism. PLoS One. 2015;10:e0132224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kagerbauer SM, Martin J, Schuster T, Blobner M, Kochs EF, Landgraf R. Plasma oxytocin and vasopressin do not predict neuropeptide concentrations in human cerebrospinal fluid. J Neuroendocrinol. 2013;25:668–73.

    Article  CAS  PubMed  Google Scholar 

  77. Martin J, Kagerbauer SM, Schuster T, Blobner M, Kochs EF, Landgraf R. Vasopressin and oxytocin in CSF and plasma of patients with aneurysmal subarachnoid haemorrhage. Neuropeptides. 2014;48:91–96.

    Article  CAS  PubMed  Google Scholar 

  78. Zakharov A, Papaiconomou C, Djenic J, Midha R, Johnston M. Lymphatic cerebrospinal fluid absorption pathways in neonatal sheep revealed by subarachnoid injection of Microfil. Neuropathol Appl Neurobiol. 2003;29:563–73.

    Article  CAS  PubMed  Google Scholar 

  79. Saunders NR, Liddelow SA, Dziegielewska KM. Barrier mechanisms in the developing brain. Front Pharm. 2012;3:46–46.

    Article  Google Scholar 

  80. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview - Structure, regulation, and clinical implications. Neurobiol Dis. 2004;16:1–13.

    Article  CAS  PubMed  Google Scholar 

  81. Carson DS, Howerton CL, Garner JP, Hyde SA, Clark CL, Hardan AY, et al. Plasma vasopressin concentrations positively predict cerebrospinal fluid vasopressin concentrations in human neonates. Peptides. 2014;61:12–16.

    Article  CAS  PubMed  Google Scholar 

  82. Bartrons J, Figueras J, Jimenez R, Gaya J, Cruz M. Vasopressin in cerebrospinal fluid of newborns with hypoxic-ischemic encephalopathy. Preliminary report. J Perinat Med. 1993;21:399–403.

    CAS  PubMed  Google Scholar 

  83. Fliers E, Guldenaar SE, van de Wal N, Swaab DF. Extrahypothalamic vasopressin and oxytocin in the human brain; presence of vasopressin cells in the bed nucleus of the stria terminalis. Brain Res. 1986;375:363–7.

    Article  CAS  PubMed  Google Scholar 

  84. Caffe AR, Van Ryen PC, Van der Woude TP, Van Leeuwen FW. Vasopressin and oxytocin systems in the brain and upper spinal cord of Macaca fascicularis. J Comp Neurol. 1989;287:302–25.

    Article  CAS  PubMed  Google Scholar 

  85. Rogers CN, Ross AP, Sahu SP, Siegel ER, Dooyema JM, Cree MA, et al. Oxytocin- and arginine vasopressin-containing fibers in the cortex of humans, chimpanzees, and rhesus macaques. Am J Primatol. 2018;80:e22875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Young LJ, Nilsen R, Waymire KG, MacGregor GR, Insel TR. Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature. 1999;400:766–8.

    Article  CAS  PubMed  Google Scholar 

  87. Donaldson ZR, Spiegel L, Young LJ. Central vasopressin V1a receptor activation is independently necessary for both partner preference formation and expression in socially monogamous male prairie voles. Behav Neurosci. 2010;124:159–63.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Freeman SM, Inoue K, Smith AL, Goodman MM, Young LJ. The neuroanatomical distribution of oxytocin receptor binding and mRNA in the male rhesus macaque (Macaca mulatta). Psychoneuroendocrinology. 2014;45:128–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rogers Flattery CN, Coppeto DJ, Inoue K, Rilling JK, Preuss TM, Young LJ Distribution of brain oxytocin and vasopressin V1a receptors in chimpanzees (Pan troglodytes): comparison with humans and other primate species. Brain Struct Funct. 2021. https://doi.org/10.1007/s00429-021-02369-7. Online ahead of print.

  90. Guastella AJ, Kenyon AR, Alvares GA, Carson DS, Hickie IB. Intranasal arginine vasopressin enhances the encoding of happy and angry faces in humans. Biol Psychiatry. 2010;67:1220–2.

    Article  CAS  PubMed  Google Scholar 

  91. Guastella AJ, Kenyon AR, Unkelbach C, Alvares GA, Hickie IB. Arginine Vasopressin selectively enhances recognition of sexual cues in male humans. Psychoneuroendocrinology. 2011;36:294–7.

    Article  CAS  PubMed  Google Scholar 

  92. Brunnlieb C, Nave G, Camerer CF, Schosser S, Vogt B, Munte TF, et al. Vasopressin increases human risky cooperative behavior. Proc Natl Acad Sci USA. 2016;113:2051–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tsikunov SG, Belokoskova SG. Psychophysiological analysis of the influence of vasopressin on speech in patients with post-stroke aphasias. Span J Psychol. 2007;10:178–88.

    Article  PubMed  Google Scholar 

  94. Laczi F, Valkusz Z, Laszlo FA, Wagner A, Jardanhazy T, Szasz A, et al. Effects of lysine-vasopressin and 1-deamino-8-D-arginine-vasopressin on memory in healthy individuals and diabetes insipidus patients. Psychoneuroendocrinology. 1982;7:185–93.

    Article  CAS  PubMed  Google Scholar 

  95. Quintana DS, Guastella AJ, Westlye LT, Andreassen OA. The promise and pitfalls of intranasally administering psychopharmacological agents for the treatment of psychiatric disorders. Mol Psychiatry. 2016;21:29–38.

    Article  CAS  PubMed  Google Scholar 

  96. Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002;5:514–6.

    Article  CAS  PubMed  Google Scholar 

  97. Parker KJ, Oztan O, Libove RA, Mohsin N, Karhson DS, Sumiyoshi RD, et al. A randomized placebo-controlled pilot trial shows that intranasal vasopressin improves social deficits in children with autism. Sci Transl Med. 2019;11:eaau7356.

  98. Talbot CF, Maness AC, Capitanio JP, Parker KJ. The factor structure of the macaque social responsiveness scale-revised predicts social behavior and personality dimensions. Am J Primatol. 2021;83:e23234.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Loomes R, Hull L, Mandy WPL. What is the male-to-female ratio in autism spectrum disorder? a systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry. 2017;56:466–74.

    Article  PubMed  Google Scholar 

  100. Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527:95–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to the research collaborators who thought with me and made this body of work possible. They include: Joe Garner, Ozge Oztan, John Capitanio, Antonio Hardan, Elliott Sherr, Kate Talbot, Jennifer Phillips, Sonia Partap, Valentina Sclafani, Sue Swedo, John Constantino, Annie Penn, Dean Carson, Dan Bowling, Laura Del Rosso, Robin Libove, and Adam Myers. I also thank my departmental colleagues Carl Feinstein, David Hong, and Lawrence Fung for their thoughtful discussions on both ASD and the benefits and limitations of animal models. This work has been supported by the National Institutes of Health (R01HD091972; R01HD087048; R21HD083629; R21MH100387; R21HD079095; P51OD011107; R24OD010962), the Simons Foundation (SFARI#s 627146; 342873; 274472; 93231), the Department of Défense (W81XWH-21-1-0210), several family foundations (Weston Havens Foundation; Mosbacher Family Fund for Autism Research; The Yani Calmidis Memorial Fund for Autism Research; The Gupta Foundation; The Peter and Stacy Sullivan Foundation), and Stanford University (Department of Psychiatry; Maternal Child Health Research Institute; Bio-X NeuroVentures Program; Lucile Packard Children’s Hospital Pediatric Neurosciences Fund; The Katherine D. McCormick Fund; Wu Tsai Neurosciences Institute).

Author information

Authors and Affiliations

Authors

Contributions

KJP conceptualized, investigated, wrote, reviewed, and edited this manuscript.

Corresponding author

Correspondence to Karen J. Parker.

Ethics declarations

Competing interests

The Board of Trustees of the Leland Stanford Junior University has filed patent applications related to data reviewed herein: PCT/US2019/019029 (“Methods for diagnosing and determining severity of an autism spectrum disorder”) and PCT/US2019/041250 (“Intranasal Vasopressin Treatment for Social Deficits in Children with Autism”). These patents have not been granted, nor licensed, and the author is not receiving any financial compensation at this time.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parker, K.J. Leveraging a translational research approach to drive diagnostic and treatment advances for autism. Mol Psychiatry 27, 2650–2658 (2022). https://doi.org/10.1038/s41380-022-01532-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01532-8

This article is cited by

Search

Quick links