Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Extracorporeal apheresis therapy for Alzheimer disease—targeting lipids, stress, and inflammation

Abstract

Current therapeutic approaches to Alzheimer disease (AD) remain disappointing and, hence, there is an urgent need for effective treatments. Here, we provide a perspective review on the emerging role of “metabolic inflammation” and stress as a key factor in the pathogenesis of AD and propose a novel rationale for correction of metabolic inflammation, increase resilience and potentially slow-down or halt the progression of the neurodegenerative process. Based on recent evidence and observations of an early pilot trial, we posit a potential use of extracorporeal apheresis in the prevention and treatment of AD. Apolipoprotein E, lipoprotein(a), oxidized LDL (low density lipoprotein)'s and large LDL particles, as well as other proinflammatory lipids and stress hormones such as cortisol, have been recognized as key factors in amyloid plaque formation and aggravation of AD. Extracorporeal lipoprotein apheresis systems employ well-established, powerful methods to provide an acute, reliable 60–80% reduction in the circulating concentration of these lipid classes and reduce acute cortisol levels. Following a double-membrane extracorporeal apheresis in patients with AD, there was a significant reduction of proinflammatory lipids, circulating cytokines, immune complexes, proinflammatory metals and toxic chaperones in patients with AD. On the basis of the above, we suggest designing clinical trials to assess the promising potential of such “cerebropheresis” treatment in patients with AD and, possibly, other neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Fitz NF, Nam KN, Koldamova R, Lefterov I. Therapeutic targeting of nuclear receptors, LXR and RXR, for Alzheimer’s disease. Br J Pharmacol. 2019;176:3599–3610.

  2. Ng TP, Feng L, Nyunt MS, Feng L, Gao Q, Lim ML, et al. Metabolic syndrome and the risk of mild cognitive impairment and progression to dementia: follow-up of the Singapore Longitudinal Ageing Study Cohort. JAMA Neurol. 2016;73:456–63.

    Article  PubMed  Google Scholar 

  3. Furman D, Chang J, Lartigue L, Bolen CR, Haddad F, Gaudilliere B, et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med. 2017;23:174–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de la Monte SM, Tong M, Daiello LA, Ott BR. Early-stage Alzheimer’s disease is associated with simultaneous systemic and central nervous system dysregulation of insulin-linked metabolic pathways. J Alzheimer's Dis. 2019;68:657–68.

    Article  CAS  Google Scholar 

  5. Sharifipour E, Sharifimoghadam S, Hassanzadeh N, Ghasemian MN, Ghoreishi A, Hejazi SA, et al. Altered plasma visfatin levels and insulin resistance in patients with Alzheimer’s disease. Acta Neurol Belg. 2019. [Epub ahead of print].

  6. Schally AV, Salgueiro L. Part III: Experimental studies on antagonists of LH-RH and GH-RH in animal models of Alzheimer’s disease: projections for treatment of other neurological conditions. Peptides. 2015;72:154–63.

    Article  CAS  PubMed  Google Scholar 

  7. Jaszberenyi M, Rick FG, Szalontay L, Block NL, Zarandi M, Cai RZ, et al. Beneficial effects of novel antagonists of GHRH in different models of Alzheimer’s disease. Aging. 2012;4:755–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Romero MJ, Lucas R, Dou H, Sridhar S, Czikora I, Mosieri EM, et al. Role of growth hormone-releasing hormone in dyslipidemia associated with experimental type 1 diabetes. Proc Natl Acad Sci USA. 2016;113:1895–1900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Femminella GD, Frangou E, Love SB, Busza G, Holmes C, Ritchie C, et al. Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer’s disease: study protocol for a randomised controlled trial (ELAD study). Trials. 2019;20:191.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Batista AF, Bodart-Santos V, De Felice FG, Ferreira ST. Neuroprotective actions of glucagon-like peptide-1 (GLP-1) analogues in Alzheimer’s and Parkinson’s diseases. CNS Drugs. 2019;33:209–23.

    Article  PubMed  Google Scholar 

  11. Van DP, Lacoste B. Impact of metabolic syndrome on neuroinflammation and the blood-brain barrier. Front Neurosci. 2018;12:930.

    Article  Google Scholar 

  12. Dempsey C, Rubio AA, Bryson KJ, Finucane O, Larkin C, Mills EL, et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-beta and cognitive function in APP/PS1 mice. Brain Behav Immun. 2017;61:306–16.

    Article  CAS  PubMed  Google Scholar 

  13. Button EB, Boyce GK, Wilkinson A, Stukas S, Hayat A, Fan J, et al. ApoA-I deficiency increases cortical amyloid deposition, cerebral amyloid angiopathy, cortical and hippocampal astrogliosis, and amyloid-associated astrocyte reactivity in APP/PS1 mice. Alzheimer's Res Ther. 2019;11:44.

    Article  Google Scholar 

  14. Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology. 2019;51:165–76.

    Article  CAS  PubMed  Google Scholar 

  15. Lee S, Parekh T, King SM, Reed B, Chui HC, Krauss RM, et al. Low-density lipoprotein particle size subfractions and cerebral amyloidosis. J Alzheimer's Dis. 2019;68:983–90.

    Article  CAS  Google Scholar 

  16. Koch CA, Krabbe S, Hehmke B. Statins, metformin, proprotein-convertase-subtilisin-kexin type-9 (PCSK9) inhibitors and sex hormones: Immunomodulatory properties? Rev Endocr Metab Disord. 2018;19:363–95.

    Article  CAS  PubMed  Google Scholar 

  17. Koch CA, Antonelli A. Immunoendocrinology: when (neuro)endocrinology and immunology meet. Rev Endocr Metab Disord. 2018;19:277–82.

    Article  PubMed  Google Scholar 

  18. Mejias-Trueba M, Perez-Moreno MA, Fernandez-Arche MA. Systematic review of the efficacy of statins for the treatment of Alzheimer’s disease. Clin Med. 2018;18:54–61.

    Article  Google Scholar 

  19. Leung YY, Toledo JB, Nefedov A, Polikar R, Raghavan N, Xie SX, et al. Identifying amyloid pathology-related cerebrospinal fluid biomarkers for Alzheimer’s disease in a multicohort study. Alzheimer's Dement. 2015;1:339–48.

    Google Scholar 

  20. Wilson DP, Jacobson TA, Jones PH, Koschinsky ML, McNeal CJ, Nordestgaard BG, et al. Use of lipoprotein(a) in clinical practice: a biomarker whose time has come. A scientific statement from the National Lipid Association. J Clin Lipidol. 2019;13:374–92.

    Article  PubMed  Google Scholar 

  21. Solfrizzi V, Panza F, D’Introno A, Colacicco AM, Capurso C, Basile AM, et al. Lipoprotein(a), apolipoprotein E genotype, and risk of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2002;72:732–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mielke MM, Haughey NJ, Han D, An Y, Bandaru VVR, Lyketsos CG, et al. The association between plasma ceramides and sphingomyelins and risk of Alzheimer’s disease differs by sex and APOE in the Baltimore Longitudinal Study of Aging. J Alzheimer's Dis. 2017;60:819–28.

    Article  CAS  Google Scholar 

  23. Chatterjee P, Lim WL, Shui G, Gupta VB, James I, Fagan AM, et al. Plasma phospholipid and sphingolipid alterations in presenilin1 mutation carriers: a pilot study. J Alzheimer's Dis. 2016;50:887–94.

    Article  CAS  Google Scholar 

  24. Panchal M, Gaudin M, Lazar AN, Salvati E, Rivals I, Ayciriex S, et al. Ceramides and sphingomyelinases in senile plaques. Neurobiol Dis. 2014;65:193–201.

    Article  CAS  PubMed  Google Scholar 

  25. Xing Y, Tang Y, Zhao L, Wang Q, Qin W, Zhang JL, et al. Plasma ceramides and neuropsychiatric symptoms of Alzheimer’s disease. J Alzheimer's Dis. 2016;52:1029–35.

    Article  CAS  Google Scholar 

  26. Kim SH, Yang JS, Lee JC, Lee JY, Lee JY, Kim E, et al. Lipidomic alterations in lipoproteins of patients with mild cognitive impairment and Alzheimer’s disease by asymmetrical flow field-flow fractionation and nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2018;1568:91–100.

    Article  CAS  PubMed  Google Scholar 

  27. Proitsi P, Kim M, Whiley L, Simmons A, Sattlecker M, Velayudhan L, et al. Association of blood lipids with Alzheimer’s disease: a comprehensive lipidomics analysis. Alzheimer's Dement. 2017;13:140–51.

    Article  Google Scholar 

  28. Yu Q, He Z, Zubkov D, Huang S, Kurochkin I, Yang X, et al. Lipidome alterations in human prefrontal cortex during development, aging, and cognitive disorders. Mol Psychiatry. 2018. [Epub ahead of print].

  29. Lupien SJ, McEwen BS. The acute effects of corticosteroids on cognition: integration of animal and human model studies. Brain Res Brain Res Rev. 1997;24:1–27.

    Article  CAS  PubMed  Google Scholar 

  30. Lee BK, Glass TA, Wand GS, McAtee MJ, Bandeen-Roche K, Bolla KI, et al. Apolipoprotein e genotype, cortisol, and cognitive function in community-dwelling older adults. Am J Psychiatry. 2008;165:1456–64.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ouanes S, Castelao E, Gebreab S, von GA, Preisig M, Popp J. Life events, salivary cortisol, and cognitive performance in nondemented subjects: a population-based study. Neurobiol Aging. 2017;51:1–8.

    Article  PubMed  Google Scholar 

  32. Sang YM, Wang LJ, Mao HX, Lou XY, Zhu YJ. The association of short-term memory and cognitive impairment with ghrelin, leptin, and cortisol levels in non-diabetic and diabetic elderly individuals. Acta Diabetol. 2018;55:531–9.

    Article  CAS  PubMed  Google Scholar 

  33. Ouanes S, Popp J. High cortisol and the risk of dementia and Alzheimer’s disease: a review of the literature. Front Aging Neurosci. 2019;11:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Popp J, Wolfsgruber S, Heuser I, Peters O, Hull M, Schroder J, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36:601–7.

    Article  CAS  PubMed  Google Scholar 

  35. Fitzsimons CP, van Hooijdonk LW, Schouten M, Zalachoras I, Brinks V, Zheng T, et al. Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior. Mol Psychiatry. 2013;18:993–1005.

    Article  CAS  PubMed  Google Scholar 

  36. Moreno-Jimenez EP, Flor-Garcia M, Terreros-Roncal J, Rabano A, Cafini F, Pallas-Bazarra N, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med. 2019;25:554–60.

    Article  CAS  PubMed  Google Scholar 

  37. Bornstein SR. Predisposing factors for adrenal insufficiency. N Engl J Med. 2009;360:2328–39.

    Article  CAS  PubMed  Google Scholar 

  38. Ehrhart-Bornstein M, Hinson JP, Bornstein SR, Scherbaum WA, Vinson GP. Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr Rev. 1998;19:101–43.

    Article  CAS  PubMed  Google Scholar 

  39. Steenblock C, Rubin de Celis MF, Delgadillo Silva LF, Pawolski V, Brennand A, Werdermann M, et al. Isolation and characterization of adrenocortical progenitors involved in the adaptation to stress. Proc Natl Acad Sci USA. 2018;115:12997–3002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bornstein SR, Steenblock C, Chrousos GP, Schally AV, Beuschlein F, Kline G, et al. Stress-inducible-stem cells: a new view on endocrine, metabolic and mental disease? Mol Psychiatry. 2019;24:2–9.

    Article  CAS  PubMed  Google Scholar 

  41. Schettler VJJ, Neumann CL, Peter C, Zimmermann T, Julius U, Hohenstein B, et al. Lipoprotein apheresis is an optimal therapeutic option to reduce increased Lp(a) levels. Clin Res Cardiol Suppl. 2019;14(Suppl 1):33–38.

    Article  CAS  PubMed  Google Scholar 

  42. Leebmann J, Roeseler E, Julius U, Heigl F, Spitthoever R, Heutling D, et al. Lipoprotein apheresis in patients with maximally tolerated lipid-lowering therapy, lipoprotein(a)-hyperlipoproteinemia, and progressive cardiovascular disease: prospective observational multicenter study. Circulation. 2013;128:2567–76.

    Article  CAS  PubMed  Google Scholar 

  43. Khan TZ, Hsu LY, Arai AE, Rhodes S, Pottle A, Wage R, et al. Apheresis as novel treatment for refractory angina with raised lipoprotein(a): a randomized controlled cross-over trial. Eur Heart J. 2017;38:1561–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Straube R, Voit-Bak K, Gor A, Steinmeier T, Chrousos GP, Boehm BO, et al. Lipid profiles in lyme borreliosis: a potential role for apheresis? Horm Metab Res. 2019;51:326–9.

    Article  CAS  PubMed  Google Scholar 

  45. Morawietz H, Goettsch W, Brux M, Reimann M, Bornstein SR, Julius U, et al. Lipoprotein apheresis of hypercholesterolemic patients mediates vasoprotective gene expression in human endothelial cells. Atheroscler Suppl. 2013;14:107–13.

    Article  CAS  PubMed  Google Scholar 

  46. Orsoni A, Saheb S, Levels JH, Dallinga-Thie G, Atassi M, Bittar R, et al. LDL-apheresis depletes apoE-HDL and pre-beta1-HDL in familial hypercholesterolemia: relevance to atheroprotection. J Lipid Res. 2011;52:2304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schettler VJ, Muellendorff F, Schettler E, Platzer C, Norkauer S, Julius U, et al. NMR-based lipoprotein analysis for patients with severe hypercholesterolemia undergoing lipoprotein apheresis or PCSK9-inhibitor therapy (NAPALI-Study). Ther Apher Dial. 2019. [Epub ahead of print].

  48. Lappegard KT, Kjellmo CA, Ljunggren S, Cederbrant K, Marcusson-Stahl M, Mathisen M, et al. Lipoprotein apheresis affects lipoprotein particle subclasses more efficiently compared to the PCSK9 inhibitor evolocumab, a pilot study. Transfus Apher Sci. 2018;57:91–96.

    Article  PubMed  Google Scholar 

  49. Kopprasch S, Bornstein SR, Bergmann S, Graessler J, Hohenstein B, Julius U. Long-term follow-up of circulating oxidative stress markers in patients undergoing lipoprotein apheresis by Direct Adsorption of Lipids (DALI). Atheroscler Suppl. 2017;30:115–21.

    Article  PubMed  Google Scholar 

  50. Kopprasch S, Bornstein SR, Bergmann S, Graessler J, Julius U. Long-term therapeutic efficacy of lipoprotein apheresis on circulating oxidative stress parameters—a comparison of two different apheresis techniques. Atheroscler Suppl. 2015;18:80–84.

    Article  PubMed  Google Scholar 

  51. Tselmin S, Schmitz G, Julius U, Bornstein SR, Barthel A, Graessler J. Acute effects of lipid apheresis on human serum lipidome. Atheroscler Suppl. 2009;10:27–33.

    Article  CAS  PubMed  Google Scholar 

  52. Baglietto-Vargas D, Medeiros R, Martinez-Coria H, LaFerla FM, Green KN. Mifepristone alters amyloid precursor protein processing to preclude amyloid beta and also reduces tau pathology. Biol Psychiatry. 2013;74:357–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lesuis SL, Weggen S, Baches S, Lucassen PJ, Krugers HJ. Targeting glucocorticoid receptors prevents the effects of early life stress on amyloid pathology and cognitive performance in APP/PS1 mice. Transl Psychiatry. 2018;8:53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Webster SP, McBride A, Binnie M, Sooy K, Seckl JR, Andrew R, et al. Selection and early clinical evaluation of the brain-penetrant 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) inhibitor UE2343 (Xanamem). Br J Pharm. 2017;174:396–408.

    Article  CAS  Google Scholar 

  55. Walther R, Julius U, Tselmin S, Schatz U, Bornstein SR, Graessler J. Short- and long-term effects of lipoprotein apheresis on plasma hormones in patients with therapy-resistant dyslipidemia. Atheroscler Suppl. 2019. [Epub ahead of print].

  56. Freeman LC, Ting JP. The pathogenic role of the inflammasome in neurodegenerative diseases. J Neurochem. 2016;136(Suppl 1):29–38.

    Article  CAS  PubMed  Google Scholar 

  57. Guedes JR, Lao T, Cardoso AL, El KJ. Roles of microglial and monocyte chemokines and their receptors in regulating Alzheimer’s disease-associated amyloid-beta and tau pathologies. Front Neurol. 2018;9:549.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Haskins M, Jones TE, Lu Q, Bareiss SK. Early alterations in blood and brain RANTES and MCP-1 expression and the effect of exercise frequency in the 3xTg-AD mouse model of Alzheimer’s disease. Neurosci Lett. 2016;610:165–70.

    Article  CAS  PubMed  Google Scholar 

  59. Cameron B, Landreth GE. Inflammation, microglia, and Alzheimer’s disease. Neurobiol Dis. 2010;37:503–9.

    Article  CAS  PubMed  Google Scholar 

  60. Ravindran D, Ridiandries A, Vanags LZ, Henriquez R, Cartland S, Tan JT, et al. Chemokine binding protein ‘M3’ limits atherosclerosis in apolipoprotein E-/- mice. PLoS ONE. 2017;12:e0173224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Feng X, Gao X, Jia Y, Zhang H, Xu Y. Atorvastatin decreased circulating RANTES levels in impaired glucose tolerance patients with hypercholesterolemia: an interventional study. Diabetes Ther. 2017;8:309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reale M, Kamal MA, Velluto L, Gambi D, Di NM, Greig NH. Relationship between inflammatory mediators, Abeta levels and ApoE genotype in Alzheimer disease. Curr Alzheimer Res. 2012;9:447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Seddighi S, Varma V, Thambisetty M. alpha2-macroglobulin in Alzheimer’s disease: new roles for an old chaperone. Biomark Med. 2018;12:311–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tomljenovic L. Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimer's Dis. 2011;23:567–98.

    Article  CAS  Google Scholar 

  65. Meleleo D, Notarachille G, Mangini V, Arnesano F. Concentration-dependent effects of mercury and lead on Abeta42: possible implications for Alzheimer’s disease. Eur Biophys J. 2019;48:173–87.

    Article  CAS  PubMed  Google Scholar 

  66. Russ TC, Killin LOJ, Hannah J, Batty GD, Deary IJ, Starr JM. Aluminium and fluoride in drinking water in relation to later dementia risk. Br J Psychiatry. 2019:1–6. [Epub ahead of print].

  67. Mostafalou S, Abdollahi M. The link of organophosphorus pesticides with neurodegenerative and neurodevelopmental diseases based on evidence and mechanisms. Toxicology. 2018;409:44–52.

    Article  CAS  PubMed  Google Scholar 

  68. Boada M, Ramos-Fernandez E, Guivernau B, Munoz FJ, Costa M, Ortiz AM, et al. Treatment of Alzheimer disease using combination therapy with plasma exchange and haemapheresis with albumin and intravenous immunoglobulin: rationale and treatment approach of the AMBAR (Alzheimer Management By Albumin Replacement) study. Neurologia. 2016;31:473–81.

    Article  CAS  PubMed  Google Scholar 

  69. Kawaguchi K, Saigusa A, Yamada S, Gotoh T, Nakai S, Hiki Y, et al. Toward the treatment for Alzheimer’s disease: adsorption is primary mechanism of removing amyloid beta protein with hollow-fiber dialyzers of the suitable materials, polysulfone and polymethyl methacrylate. J Artif Organs. 2016;19:149–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Transcampus and the Deutsche Forschungsgemeinschaft (GRK 2251/1, TRR 205/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan R. Bornstein.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests in relation to the work. KVB, RB work for the INUS clinic and SRB is a consultant.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bornstein, S.R., Voit-Bak, K., Rosenthal, P. et al. Extracorporeal apheresis therapy for Alzheimer disease—targeting lipids, stress, and inflammation. Mol Psychiatry 25, 275–282 (2020). https://doi.org/10.1038/s41380-019-0542-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0542-x

This article is cited by

Search

Quick links