Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

δ-Secretase-cleaved Tau stimulates Aβ production via upregulating STAT1-BACE1 signaling in Alzheimer’s disease

Abstract

δ-Secretase, an age-dependent asparagine protease, cleaves both amyloid precursor protein (APP) and Tau and is required for amyloid plaque and neurofibrillary tangle pathologies in Alzheimer’s disease (AD). However, whether δ-secretase activation is sufficient to trigger AD pathogenesis remains unknown. Here we show that the fragments of δ-secretase-cleavage, APP (586–695) and Tau(1–368), additively drive AD pathogenesis and cognitive dysfunctions. Tau(1–368) strongly augments BACE1 expression and Aβ generation in the presence of APP. The Tau(1–368) fragment is more robust than full-length Tau in binding active STAT1, a BACE1 transcription factor, and promotes its nuclear translocation, upregulating BACE1 and Aβ production. Notably, Aβ-activated SGK1 or JAK2 kinase phosphorylates STAT1 and induces its association with Tau(1–368). Inhibition of these kinases diminishes stimulatory effect of Tau(1–368). Knockout of STAT1 abolishes AD pathologies induced by δ-secretase-generated APP and Tau fragments. Thus, we show that Tau may not only be a downstream effector of Aβ in the amyloid hypothesis, but also act as a driving force for Aβ, when cleaved by δ-secretase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang Z, Song M, Liu X, Kang SS, Duong DM, Seyfried NT, et al. Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer’s disease. Nat Commu. 2015;6:8762.

    CAS  Google Scholar 

  3. Zhang Z, Song M, Liu X, Kang SS, Kwon I-S, Duong DM, et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat Med. 2014;20:1254–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen J-M, Dando PM, Rawlings ND, Brown MA, Young NE, Stevens RA, et al. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J Biol Chem. 1997;272:8090–8.

    CAS  PubMed  Google Scholar 

  5. Chen JM, Dando PM, Stevens RA, Fortunato M, Barrett AJ. Cloning and expression of mouse legumain, a lysosomal endopeptidase. Biochem J. 1998;335:111–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Li DN, Matthews SP, Antoniou AN, Mazzeo DWatts C. Multistep autoactivation of asparaginyl endopeptidase in vitro and in vivo. J Biol Chem. 2003;278:38980–90.

    CAS  PubMed  Google Scholar 

  7. Liu Z, Jang S-W, Liu X, Cheng D, Peng J, Yepes M, et al. Neuroprotective actions of PIKE-L by inhibition of SET proteolytic degradation by asparagine endopeptidase. Mol Cell. 2008;29:665–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ishizaki T, Erickson A, Kuric E, Shamloo M, Hara-Nishimura I, Inácio ARL, et al. The asparaginyl endopeptidase legumain after experimental stroke. J Cereb Blood Flow Metab. 2010;30:1756–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.

    CAS  PubMed  Google Scholar 

  10. Drachman DA. The amyloid hypothesis, time to move on: Amyloid is the downstream result, not cause, of Alzheimer’s disease. Alzheimers Dement. 2014;10:372–80.

    PubMed  Google Scholar 

  11. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8:595–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerrière A, Vital A, et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet. 2006;38:24–6.

    CAS  PubMed  Google Scholar 

  13. Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9:106–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535–9.

    CAS  PubMed  Google Scholar 

  15. Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature. 2006;440:352–7.

    PubMed  Google Scholar 

  16. Jin M, Shepardson N, Yang T, Chen G, Walsh DSelkoe DJ. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci USA. 2011;108:5819–24.

    CAS  PubMed  Google Scholar 

  17. Price JL, McKeel DW, Buckles VD, Roe CM, Xiong C, Grundman M, et al. Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol Aging. 2009;30:1026–36.

    PubMed  PubMed Central  Google Scholar 

  18. Davis D, Schmitt F, Wekstein D, Markesbery W. Alzheimer neuropathologic alterations in aged cognitively normal subjects. Exp Neurol. 1999;58:376–88.

    CAS  Google Scholar 

  19. Balasubramanian AB, Kawas CH, Peltz CB, Brookmeyer R, Corrada MM. Alzheimer disease pathology and longitudinal cognitive performance in the oldest-old with no dementia. Neurology. 2012;79:915–21.

    PubMed  PubMed Central  Google Scholar 

  20. Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G, et al. Imaging β-amyloid burden in aging and dementia. Neurology. 2007;68:1718–25.

    CAS  PubMed  Google Scholar 

  21. Rodrigue K, Kennedy K, Devous M, Rieck J, Hebrank A, Diaz-Arrastia R, et al. β-Amyloid burden in healthy aging Regional distribution and cognitive consequences. Neurology. 2012;78:387–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Karran E, Mercken MDe, Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov. 2011;10:698–712.

    CAS  PubMed  Google Scholar 

  23. Holtzman DM, Morris JC, Goate AM. Alzheimer’s disease: the challenge of the second century. Sci Transl Med. 2011;3:77sr1.

    PubMed  PubMed Central  Google Scholar 

  24. Golde TE, Schneider LSKoo EH. Anti-Aβ therapeutics in Alzheimer’s disease: the need for a paradigm shift. Neuron. 2011;69:203–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16:271–8.

    CAS  PubMed  Google Scholar 

  26. Wirths O, Multhaup G, Bayer TA. A modified β‐amyloid hypothesis: intraneuronal accumulation of the β‐amyloid peptide–the first step of a fatal cascade. J Neurochem. 2004;91:513–20.

    CAS  PubMed  Google Scholar 

  27. Schönheit B, Zarski R, Ohm TG. Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology. Neurobiol Aging. 2004;25:697–711.

    PubMed  Google Scholar 

  28. Braak H, Zetterberg H, Del, Tredici K, Blennow K. Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-β changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathol. 2013;126:631–41.

    CAS  PubMed  Google Scholar 

  29. Ribé EM, Pérez M, Puig B, Gich I, Lim F, Cuadrado M, et al. Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice. Neurobiol Dis. 2005;20:814–22.

    PubMed  Google Scholar 

  30. Bright J, Hussain S, Dang V, Wright S, Cooper B, Byun T, et al. Human secreted tau increases amyloid-beta production. Neurobiol Aging. 2015;36:693–709.

    CAS  PubMed  Google Scholar 

  31. Cho HJ, Kim SK, Jin SM, Hwang EM, Kim YS, Huh K, et al. IFN‐γ‐induced BACE1 expression is mediated by activation of JAK2 and ERK1/2 signaling pathways and direct binding of STAT1 to BACE1 promoter in astrocytes. Glia. 2007;55:253–62.

    PubMed  Google Scholar 

  32. Cho HJ, Jin SM, Son SM, Kim YW, Hwang JY, Hong HS, et al. Constitutive JAK2/STAT1 activation regulates endogenous BACE1 expression in neurons. Biochem Biophys Res Commun. 2009;386:175–80.

    CAS  PubMed  Google Scholar 

  33. Hongpaisan J, Sun MK, Alkon DL. PKC ε activation prevents synaptic loss, Aβ elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. J Neurosci. 2011;31:630–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hsu W, Chiu T, Tai D, Ma Y, Lee E. A novel defense mechanism that is activated on amyloid-β insult to mediate cell survival: role of SGK1-STAT1/STAT2 signaling. Cell Death Differ. 2009;16:1515–29.

    CAS  PubMed  Google Scholar 

  35. Zhang Y, Zhou B, Deng B, Zhang F, Wu J, Wang Y, et al. Amyloid-β induces hepatic insulin resistance in vivo via JAK2. Diabetes. 2013;62:1159–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith R, Johansen HT, Nilsen H, Haugen MH, Pettersen SJ, Mælandsmo GM, et al. Intra- and extracellular regulation of activity and processing of legumain by cystatin E/M. Biochimie. 2012;94:2590.

    CAS  PubMed  Google Scholar 

  37. Basurtoislas G, Grundkeiqbal I, Tung YC, Liu F, Iqbal K. Activation of asparaginyl endopeptidase leads to Tau hyperphosphorylation in Alzheimer disease. J Biol Chem. 2013;288:17495.

    CAS  Google Scholar 

  38. Wen Y, Yu WH, Maloney B, Bailey J, Ma J, Marie I, et al. Transcriptional regulation of beta-secretase by p25/cdk5 leads to enhanced amyloidogenic processing. Neuron. 2008;57:680–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tamagno E, Parola M, Bardini P, Piccini A, Borghi R, Guglielmotto M, et al. Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem. 2005;92:628–36.

    CAS  PubMed  Google Scholar 

  40. Shuai K, Liu B. Regulation of JAK–STAT signalling in the immune system. Nat Rev Immunol. 2003;3:900–11.

    CAS  PubMed  Google Scholar 

  41. Lee Y-J, Choi D-Y, Choi IS, Kim KH, Kim YH, Kim HM, et al. Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models. J Neuroinflamm. 2012;9:35.

    CAS  Google Scholar 

  42. Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement. 2016;12:719–32.

    PubMed  Google Scholar 

  43. Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol. 2007;184:69–91.

    CAS  PubMed  Google Scholar 

  44. Sastre M, Dewachter I, Landreth GE, Willson TM, Klockgether T, Van Leuven F, et al. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-γ agonists modulate immunostimulated processing of amyloid precursor protein through regulation of β-secretase. J Neurosci. 2003;23:9796–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee Y-J, Choi D-Y, Han J-Y, Jeong H-S, Han SB, Oh K-W, et al. Inhibitory effect of a tyrosine-fructose Maillard reaction product, 2, 4-bis (p-hydroxyphenyl)-2-butenal on amyloid-β generation and inflammatory reactions via inhibition of NF-κB and STAT3 activation in cultured astrocytes and microglial BV-2 cells. J Neuroinflamm. 2011;8:132.

    CAS  Google Scholar 

  46. Jones RS, Minogue AM, Fitzpatrick O, Lynch MA. Inhibition of JAK2 attenuates the increase in inflammatory markers in microglia from APP/PS1 mice. Neurobiol Aging. 2015;36:2716–24.

    CAS  PubMed  Google Scholar 

  47. Musiek ES, Holtzman DM. Three dimensions of the amyloid hypothesis: time, space and’wingmen’. Nat Neurosci. 2015;18:800–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Leroy K, Ando K, Laporte V, Dedecker R, Suain V, Authelet M, et al. Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice. Am J Pathol. 2012;181:1928–40.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from M.J. FOX Foundation (Grant ID 11137) and NIH RO1 (AG051538) to K.Y., and grant from National Natural Science Foundation (NSFC) of China (No. 81571249 and 81771382) to ZZ, and NSFC grant (No. 81528007) to KY and JZW. We thank ADRC at Emory University for human AD patients and healthy control samples. HEK293 cells stably transfected with APP were from Dr. Edward Koo, University of California.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Zhi Wang or Keqiang Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, XG., Wang, ZH. et al. δ-Secretase-cleaved Tau stimulates Aβ production via upregulating STAT1-BACE1 signaling in Alzheimer’s disease. Mol Psychiatry 26, 586–603 (2021). https://doi.org/10.1038/s41380-018-0286-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0286-z

This article is cited by

Search

Quick links