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Abstract
The Cu-filling process in through-silicon via (TSV-Cu) is a key technology for chip stacking and three-dimensional
vertical packaging. During this process, defects resulting from chemical–mechanical planarization (CMP) and annealing
severely affect the reliability of the chips. Traditional methods of defect characterization are destructive and
cumbersome. In this study, a new defect inspection method was developed using Mueller matrix spectroscopic
ellipsometry. TSV-Cu with a 3-μm-diameter and 8-μm-deep Cu filling showed three typical types of characteristics:
overdishing (defect-OD), protrusion (defect-P), and defect-free. The process dimension for each defect was 13 nm. First,
the three typical defects caused by CMP and annealing were investigated. With single-channel deep learning and a
Mueller matrix element (MME), the TSV-Cu defect types could be distinguished with an accuracy rate of 99.94%. Next,
seven effective MMEs were used as independent channels in the artificial neural network to quantify the height
variation in the Cu filling in the z-direction. The accuracy rate was 98.92% after training, and the recognition accuracy
reached 1 nm. The proposed approach rapidly and nondestructively evaluates the annealing bonding performance of
CMP processes, which can improve the reliability of high-density integration.

Introduction
In recent years, three-dimensional (3D) integrated cir-

cuit (IC) technology with through-silicon via (TSV) has
attracted significant attention because of its versatility,
small size, and high performance. 3D IC is a technology
that reduces the overall wire length and delay by vertically
stacking multiple chips through high-density chip-to-chip
interconnects1–7. TSV technology involves several pro-
cesses, including etching holes in Si chips, depositing
insulating/blocking/seeding layers, filling blind holes with
Cu conductors, removing the backside Si and Cu overlay
films via chemical–mechanical planarization (CMP) to

expose Cu microcartridges, and ball bonding8,9. Several
researchers have investigated the TSV manufacturing
process. The microcharacterization and nanocharacter-
ization of various processes have also received consider-
able attention in improving the reliability of 3D ICs.
Significant issues in TSV technology include residual

stress, extrusion, cracking, delamination, and Cu leaks,
leading to severe reliability problems, such as warping of
chips or wafers, interface delamination, cracking, and
weak internal wire contact. These problems mainly result
from the significant difference in the coefficient of ther-
mal expansion between the surrounding silicon substrate
and the TSV filler metal10–12. Recently, studies on the Cu-
filling process in TSV (TSV-Cu) protrusion have been
conducted13–15. In these processes, detailed physical
analyses are required because of the considerable impact
of TSV-Cu protrusion on the reliability of the final 3D
stacking. Many studies have been conducted to investigate
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annealing Cu protrusion and CMP dishing16–23. Cu pro-
trusion and excessive dishing reduce the reliability of 3D
stacking. In TSV manufacturing, it is crucial to control the
CMP speed, annealing time, and temperature. Insufficient
or excessive wafer polishing can lead to leaks and shorts,
making the chips defective. Residual stress, interface
delamination, and cracking occur when the annealing
time or temperature is insufficient or excessive6,24–26.
However, real-time nondestructive characterization
methods for Cu protrusions and dishing remain limited.
Nondestructive characterization of TSV-Cu in a pro-

duction line has not been extensively investigated. When
many defects appear during the TSV process, the detec-
tion time obtained using conventional methods is unsa-
tisfactory5,9. The period and critical size of the TSV-Cu
structure prevail on the microscale for both vertical and
horizontal dimensions. However, during CMP and
annealing processes, the accuracy of the z-direction of Cu
must be controlled at the nanoscale5,15,24. Cross-scale
defect characterization in the z-direction of TSV-Cu
structures is therefore a significant challenge.
In this study, an ellipsometry measurement method was

developed for the characterization of TSV-Cu. The rig-
orous coupled-wave analysis (RCWA) algorithm was
employed to calculate the reflection electric field of TSV-

Cu with different dimensions of Cu filling in the
z-direction at different wavelengths. The corresponding
Mueller matrices were calculated by modulating the
incident and reflective electric fields, as described in the
“Methods” section. Deep learning with Mueller matrix
datasets (see the “Methods” section for details) was used
to distinguish the different TSV-Cu defects. The effects of
the annealing temperature and time on the Cu grain size
were experimentally studied, and the defect size of TSV-
Cu was quantified using a multichannel deep-learning
method. A single Mueller matrix element (MME) was
replaced with multiple MMEs as a dataset to improve the
stability and accuracy of the quantitative TSV-Cu size.

Results and discussion
Defect classification of TSV-Cu
Figure 1a shows an atomic force microscopy image of a

3-μm-diameter and 8-μm-deep TSV-Cu structure after
annealing at 250 °C for 8.5 h. An optical model was
established based on this structure, as shown in Fig. 1b.
The model comprised 20 nm Ta as a blocking layer,
200 nm SiO2 as an insulating layer, a silicon substrate, and
a Cu-filling layer with a diameter of 3 μm and depth of
8 μm. The Cu-filling period was 6 μm, the incidence angle
was fixed at 45°27, and the wavelength range was
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Fig. 1 Images of TSV-Cu and schematics of defect classification. a Atomic force microscopy image of 3-μm-diameter and 8-μm-deep TSV-Cu
structure. b Optical simulation model of the TSV-Cu structure. c Cross-section of TSV-Cu and top-view image (insert) of Cu filling. d Schematic of
defect division
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400–1000 nm. The scanning electron microscopy images of
the TSV-Cu cross-section are shown in Fig. 1c. The red
dotted line represents the areas where different types of
defects appeared in this study. The top view of the Cu-filled
TSV is shown by the red dotted line (Fig. 1c). During the
annealing process, when the temperature is lower than
200 °C, the height of the upper surface of the Cu-filling (Hu)
changes due to the significant mismatch of the coefficient of
thermal expansion (CTE) between the Cu-filling and silicon
substrate. Due to the higher CTE of Cu, the expansion of Cu
is greater than that of silicon. At this temperature, there is
almost no change in the microstructure of Cu-filling. The
recrystallization of Cu-filling occurs at approximately
200–250 °C, at which point the Cu grain is refined. Once the
annealing temperature exceeds 250 °C, the grain grows
significantly as driven by the total free energy3. Hu is posi-
tively correlated with the grain size14. Therefore, Hu

increases subsequentially. During the CMP process, the
removal of the barrier layer and insulating layer is slower
than that of Cu filling. Through this process, Hu decreases

subsequentially. When Hu is excessively large or small, there
is a risk of cracks and voids, respectively. Under the effect of
poor bonding quality, the electric and thermal resistance of
TSV-Cu increase, and the surface bonding strength
decreases. Therefore, a reasonable Hu process window (−16
to −4 nm) is proposed in this work to achieve void-free and
reliable interconnection7,13. A schematic of the defect types
is shown in Fig. 1d. The upper surface of Si was regarded as
the reference plane of 0 nm. When Hu exceeded 0 nm or
was lower than 4 nm in the z-direction, it was considered a
protrusion defect (defect-P). Hu ranging between 4 and
16 nm was considered free from defects (defect-free). Hu

exceeding 16 nm indicated an overdishing defect (defect-
OD). Defect-P and defect-OD caused extrusion cracking
and incomplete contact during annealing bonding, respec-
tively. The actual process window (4–16 nm) was expected
to have a higher upper limit because no increase in the
dielectric bond strength was assumed.
Figure 2 shows the 4 × 4 MMEs at different wavelengths

after ellipsometry and normalization of m11. The ordinate
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Fig. 2 Fifteen MMEs at different wavelengths after simulation and normalization of m11. The ordinate of each photograph represents the size
of the Cu filling in the z-direction (unit: nm), and the abscissa represents the wavelength (unit: μm)
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of each photograph represents Hu, and the abscissa
represents the wavelength. The off-diagonal MMEs were
nearly zero because the structure of TSV-Cu was iso-
tropic28. The sensitivity of the MME, m12, with a change
in the structure, increased at 0.7–1.0 μm wavelengths.
The sensitivities of m21 and m22 with structural change
increased at 0.85–1.05 μm wavelengths. The sensitivities
of m33 and m44 with structural change increased at
wavelengths of 0.80–1.05 μm. In addition, the sensitivities
of m34 and m43 with structural change increased at
0.80–0.95 μm wavelengths. We selected seven effective
MMEs (m12, m21, m22, m33, m34, m43, and m44) as the
sample set for defect classification, ignoring the off-
diagonal MMEs. The effective MMEs corresponding to
13 structures with Hu ranging from −4 to −16 nm
(intervals of 1 nm), −17 to −29 nm (intervals of 1 nm),
and −3 to 9 nm (intervals of 1 nm) and the 300 noise
dataset of each structure were adopted as the artificial
neural network (ANN) datasets representing the defect-
free, defect-OD, and defect-P topologies, respectively.
Figures 3a and 3b show the cross-entropy loss and

verification accuracy of different MMEs in the defect
classification trained network, respectively. The training
convergence speed of m12 was faster than those of the
other elements, with an increase in training time. The

Mueller matrices can be decomposed using the
Lu–Shipman polar decomposition method29:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

12 þm2
13 þm2

14

p
m11

ð1Þ

where D is the dichroic scalar of the Mueller matrices
after polar decomposition, and D � m12. Therefore, the
diattenuation of TSV-Cu with different Hu values showed
obvious changes. In defect classification training using
m12, the verification accuracy at the seventh epoch was
99.80%, and the corresponding cross-entropy loss was
0.00043. Hence, only a single MME was required as a
sample set to complete the defect classification using deep
learning. t-distributed stochastic neighbor embedding
(t-SNE) was employed to analyze the defect types, as
shown in Fig. 3c30. Different scatter colors represent
different defect types, and each point represents the
simulation data with 10% noise randomly generated by
m12 (Fig. 2). The separation of the three clusters was more
evident (Fig. 3c), indicating that the defect types could be
distinguished precisely. m12, m21, m22, m33, m34, m43, and
m44 achieved defect classification accuracy values of
99.53%, 99.75%, 98.69%, 99.80%, 99.94%, 99.77%, and
99.66%, respectively.
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Quantification of TSV-Cu defect size using multichannel
deep learning
During the TSV process, annealing was applied to make

the Cu grains more homogeneous and to release the
residual stress. The Cu grain sizes were measured using
electron backscatter diffraction at different annealing
temperatures and times to show the need for defect
quantification and required quantization accuracy (Fig. 4).
Higher temperatures and longer times facilitate grain
growth, produce Cu protrusions, and release residual
stress. Minute grains appeared when the temperature and
time were 250 °C and 40 h, respectively. Two or more
nuclei were formed during the extended annealing times.
Therefore, the fusing and growth times of the grains are
insufficient when the annealing time is extremely short.
When the annealing time was very long, small grains were
formed owing to repeated nuclei precipitation, leading to
inadequate annealing. When annealed at 250 °C, the
average Cu grain size increased by 60 nm from 9 to 40 h.
Therefore, it is necessary to adjust the annealing time and
temperature to control Hu during annealing bonding. The
proposed metrology method should be able to distinguish
10% of the process window to effectively monitor the
TSV-Cu process. In this case, the recognition accuracy in
the z-direction should exceed 1.2 nm to more accurately
characterize Hu in TSV-Cu and be defect-free within the
12 nm process window. In this section, we attempted to
increase the recognition accuracy to 1 nm.
The training and testing accuracy and stability of deep

learning must be improved to achieve a distinguishing
accuracy level of 1 nm. In this study, a multichannel deep
learning method was applied, in which seven effective
MMEs were utilized. Because the actual characterization
system causes random errors, random noise was added to
the MMEs of each structure. Figure 5a shows the cross-
entropy loss of a single channel (one MME) and multiple

channels (seven MMEs) under 10% random noise, and
Fig. 5b depicts the validation accuracy. The training object
consisted of 61 labels, including Hu ranging from –30 to
30 (in intervals of 1 nm). The convergence rate of the
multichannel training cross-entropy loss and validation
accuracy was faster than that of single-channel training.
Figure 5c depicts the test accuracy of the single-channel
and multichannel methods with different random noises.
The test accuracy of the single channel was significantly
influenced by the increase in noise, whereas its influence
on the multichannel was less. When the random noise
increased from 10% to 30%, the test accuracy of the
multichannel changed by only 1.01%. When the random
noise increased to 30%, the multichannel deep-learning
test accuracy reached 98.92%. t-SNE was employed to
quantify the size to intuitively evaluate the difference in
the TSV-Cu size (Fig. 5d). In the t-SNE scatter plot,
clusters with good separation indicate that the TSV-Cu
size can be distinguished clearly, whereas the adjacent and
overlapping clusters indicate very similar datasets. The
effects of different morphologies and different measure-
ment conditions on the measurement sensitivity were
discussed using seven MMEs (Fig. 6). One such effect is
the aspect ratio of TSV-Cu. The diameter of the Cu-filling
is 3 μm, and the aspect ratios are 0.5, 1, 2, 4, 6, 8, and 10
(Fig. 6a). Another such effect is the critical dimension
difference between the top and bottom (ΔTop-Bottom) of
the Cu-filling. The diameter of the Cu-filling is 3 μm, the
aspect ratio is 1, and the ΔTop-Bottom values are 2 μm,
1.6 μm, 1.2 μm, 0.8 μm, 0.4 μm, 0.2 μm, and 0 μm (Fig.
6b). The third is that the azimuth angles of incident light
include 0°, 30°, 60°, 90°, 120°, 150°, and 180° (Fig. 6c). As
seen from Table 1, with the change in the TSV
morphologies and measurement conditions, the test
accuracies fluctuate by no more than 1%. In addition, all
the cross-entropy losses and validation accuracies con-
verge to 0 and 1, respectively, as shown in Fig. 6. Hence,
multichannel deep learning using seven MMEs can
quantify the Hu of TSV-Cu with a quantization accuracy
of 1 nm and is not affected by random errors, aspect
ratios, ΔTop-Bottom or azimuths.

Conclusion
The polarization of light is highly sensitive to TSV-Cu

particles of different sizes. In this study, three defect
process windows of TSV were selected, and the Mueller
matrix of TSV-Cu was calculated using Fourier series and
ellipsometry. The effective MME and single-channel deep
learning distinguished the defect types of TSV-Cu with an
accuracy of more than 99%. Multichannel deep learning
based on seven MMEs quantified the Hu of TSV-Cu and
achieved a recognition accuracy level of 1 nm. Random
noise significantly impacts quantization accuracy, reach-
ing 98.92% when random noise increases to 30%.
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Multichannel deep learning is more accurate and stable
and less affected by random noise, aspect ratios, ΔTop-

Bottom, and azimuths, which can improve the reliability of
high-density integration in micro- and nanofabrication
technologies.

Methods
Optical simulation and calculation of the Mueller matrix
The modulation method of the incident optical wave

can be considered natural light transmitting a stationary
linear polarizer and a quarter-wave plate in turn, and the
fast-axis rotation angle is θ. The Stokes vector of natural

light is S0¼

1
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2
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the Stokes vector of incident light on the sample, Sin, can
be defined as follows.

Sin ¼ Rð5θÞMC1Rð�5θÞMPS0 ð2Þ

In addition, the polarization angle and phase difference
of the incident optical wave can be expressed as follows:

Ψ ¼ �Sign sin 2θf g arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Φ ¼ arccos½cos 2ðθ þ 90�Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 2ðθ þ 90�Þp ð4Þ

where Sign{x} = 1 if x > 1, Sign{x} = 0 if x = 0, and
Sign{x} < 0 if x < 0. Ψ is the polarization angle of the
incident optical wave, where Ψ = 0° is p-polarized and
Ψ = 90° is s-polarized. Φ is the phase difference between

the incident optical waves, and θ is the fast-axis rotation
angle of the first quarter-wave plate.

The reflected electric fields, Ex and Ey, and the corre-
sponding phases of incident light after passing through
TSV-Cu were calculated using the RCWA algorithm31.
The RCWA algorithm was integrated into RSoft Dif-
fractmod (RSoft Design Group, Inc., USA). The relation-
ship between the reflected field and wavelength of the
structural, optical model representing the periodic grating

was calculated. MTSV�Cu¼

m11 m12

m21 m22

m13 m14

m23 m24
m31 m32

m41 m42

m33 m34

m43 m44

2
64

3
75 is the

Mueller matrix of TSV-Cu. The Stokes vector reflected by
the sample, Ss, can be expressed as follows:
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Table 1 The test accuracies with different morphologies
and different measurement conditions
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where δ is the phase difference between Ex and Ey. The
light reflected by the sample is remodulated as Sout:

Sout ¼
Sout1
Sout2
Sout3
Sout4

2
6664

3
7775 ¼ MARð3θÞMC2Rð�3θÞSS ð6Þ

whereMA is the Mueller matrix of the analyzer,MA ¼ MP.
MC2 is the Mueller matrix of the second quarter-wave
plate, MC2 ¼ MC1 � Sout1. is the total light intensity
detected by the detector. In this study, Sout1 was expanded
using the Fourier series. Because the rotation angle ratio of
the incident and outgoing quarter-wave plates was 5:3, the
highest order of the Fourier series was 32. Sixteen MMEs of
TSV-Cu were calculated, and all elements were normalized
to m11

32.

Deep learning
In this study, we developed a machine learning

approach to classify defects. The convolutional neural
network (CNN) was employed, matching a fully con-
nected network (FCN) (Fig. 7). The “leaky ReLU” acti-
vation function, a preferred method for solving pattern
recognition problems, was used, and it
consisted of three layers33,34. Each CNN layer was
connected to a max-pooling layer with batch normal-
ization. The number of filters and kernel size of each

channel in each CNN layer are listed in Table 2. The
FCN consisted of two layers with 64 and 32 neurons and
utilized “tanh” activations. Mueller matrices of different
Hu at different wavelengths were introduced into the
ANN input layer as parallel channels, and the kernel size
of each channel was seven. Each defect type was
assigned to a neuron in the ANN output layer. During
the training of the ANN, a Mueller matrix was intro-
duced into the ANN input layer, and different defect
types were introduced into the output layer. Hundreds
or tens of sample sets for each group of structures were
not produced because of the cost and time in the actual
TSV-Cu production process. During the process of
sample measurement, there are two random errors,
including the sample manufacturing error and mea-
surement error35,36. The manufacturing error of surface
displacement fluctuation of 0.1 nm is inevitable in the
TSV-Cu process23. It is difficult to obtain specific
measurement error because the measurement error
depends on the instrument and environment. In prac-
tice, the spectral change caused by measurement error is
usually smaller than that caused by manufacturing error.
The spectrum of TSV-Cu surface fluctuation
(Hu ± 0.1 nm) was analyzed, and all effective spectral
change rates were less than 10% (Fig. 8). It can be seen
from Fig. 8 that only a small number of spectral change
rates are close to 10%. Therefore, 60 structures were
simulated, each with a Cu pillar size interval of 1 nm in
the z-direction, and 300 sets of 10% noise from the
Mueller matrix of each structure at different wave-
lengths were generated as the training dataset. Seventy
percent of the Mueller matrices were used for training.
The remaining 30% were used for testing. In the readout
scheme, the Mueller matrix was fed into the ANN after
training and propagated forward through the network to
retrieve the defect types distinguished by the z-direction
structure. Finally, the cross-entropy loss and validation
accuracy were determined to verify the training quality
of the ANN.

TSV-Cu
section structure

Input:
Muller matrix

Fully
connected

part

Output:
Defect type

Defect-1
Defect-2

Defect free

1D
convolutional

network
��1

�2

�N

Wavelength
M
ij

Fig. 7 Schematic of a one-dimensional convolutional ANN

Table 2 Number of filters and kernel size of each channel
in each CNN layer

Layer Number of filters in each

channel

Kernel size Kernel size of

MPL

First 32 7 2

Second 32 5 2

Third 1 3 2

Sun et al. Microsystems & Nanoengineering            (2023) 9:50 Page 8 of 10



Acknowledgements
This work is supported by the National Key Research and Development
Program of China (2022YFB3206000) and the Key Research and Development
Program of Hubei (2021BAA173).

Author details
1The Institute of Technological Sciences, Wuhan University, Wuhan, China.
2School of Mechanical Science and Engineering, Huazhong University of
Science and Technology, Wuhan, China. 3Hongyi Honor College of Wuhan
University, Wuhan, China. 4School of Power and Mechanical Engineering,
Wuhan University, Wuhan, China. 5The School of Microelectronics, Wuhan
University, Wuhan, China

Author contributions
Q.S. and D.Y. conceptualized the work and provided the deep learning
method. J.L., S.W., and S.H. designed the detailed experiments and
characterizations with support from T.L. Q.S. prepared the manuscript with
support from all co-authors. Y.S. and S.L. discussed the results and commented
on the manuscript. Y.S. supervised the research.

Conflict of interest
The authors declare no competing interests.

Received: 22 October 2022 Revised: 4 March 2023 Accepted: 27 March
2023

References
1. Pahwa, R. S. et al. Automated void detection in TSVs from 2D X-ray scans

using supervised learning with 3D X-ray scans. in 2021 IEEE 71st Electron.
Compon. Technol. Conf. (ECTC), 842–849 (2021).

2. Smallwood, D. C., McCloskey, P., O’Mathuna, C., Casey, D. P. & Rohan, J. F.
Methods for latent image simulations in photolithography with a polychro-
matic light attenuation equation for fabricating VIAs in 2.5D and 3D advanced
packaging architectures. Microsyst. Nanoeng. 7, 39 (2021).

3. Li, Y. D. et al. Constitutive modeling of annealing behavior in through-silicon
vias-copper. Mater. Charact. 179, 111359 (2021).

4. Khorramdel, B. et al. Inkjet printing technology for increasing the I/O density of
3D TSV interposers. Microsyst. Nanoeng. 3, 17002 (2017).

5. Sonawane, D. & Kumar, P. Role of grain boundary sliding in structural integrity
of Cu-filled through Si by during isothermal annealing. J. Electron. Mater. 50,
767–778 (2021).

6. Zhang, M. et al. Protrusion of through-silicon-via (TSV) copper with double
annealing processes. J. Electron. Mater. 51, 2433–2449 (2022).

7. Ren, H. X., Yang, Y. T., Ouyang, G. Q. & Iyer, S. S. Mechanism and process
window study for die-to-wafer (D2 W) hybrid bonding. ECS J. Solid State Sci.
Technol. 10, 064008 (2021).

8. Lau, J. H. Overview and outlook of through-silicon via (TSV) and 3D integra-
tions. Microelectron. Int. 28, 8–22 (2011).

9. Zhang, Y. Z., Ding, G. F., Wang, H. & Cheng, P. Microstructure of electro-
deposited Cu microcylinders in high-aspect-ratio blind holes and crystal-
lographic texture of the Cu overburden film. J. Mater. Sci. Technol. 32, 67–73
(2016).

10. Che, F. X., Li, H. Y. Y., Zhang, X. W., Gao, S. & Teo, K. H. Development of wafer
level warpage and stress modeling methodology and its application in pro-
cess optimization for TSV wafers. IEEE Trans. Comp. Packag. Manuf. Technol. 2,
944–955 (2012).

11. Tu, K. N. Reliability challenges in 3D IC packaging technology. Microelectron.
Reliab. 51, 517–523 (2011).

12. Ryu, S. K. et al. Impact of near-surface thermal stresses on interfacial reliability
of through silicon vias for 3D interconnects. IEEE Trans. Device Mater. Reliab. 11,
35–43 (2011).

13. Wolf, I. D. et al. Cu pumping in TSVs: Effect of pre-CMP thermal budget.
Microelectron. Reliab. 51, 1856–1859 (2011).

14. Si, C. et al. Protrusion of electroplated copper filled in through silicon vias
during annealing process. Microelectron Reliab. 63, 183–193 (2016).

15. Bourzgui, S. et al. in Reflection, Scattering, and Diffraction from Surfaces VI (2018).
16. Yadong, L. et al. Constitutive modeling of annealing behavior in through

silicon vias-copper. Mater. Charact. 179, 111359 (2021).
17. Che, F. X. et al. Study on Cu protrusion of through-silicon via. IEEE Trans.

Compon. Packaging Manuf. Technol. 35, 732–739 (2013).
18. Ming, S. et al. Study on copper protrusion of through-silicon via in a 3-D

integrated circuit. Mater. Sci. Eng. A 755, 66–74 (2019).
19. Huang, Y. J., Pan, C. L., Lin, S. C. & Guo, M. H. Machine-learning approach in

detection and classification for defects in TSV-based 3-D IC. IEEE Trans. Com-
pon. Pac. Manuf. Technol. 8, 699–706 (2018).

20. Lekha, P. et al. Preparation of spherical ceria coated silica nanoparticle abra-
sives for CMP application. Appl. Surf. Sci. 357, 1306–1312 (2015).

21. Ke, L. et al. Comprehensive characterization of TSV etching performance with
phase-contrast X-ray microtomography. J. Synchrotron Radiat. 27, 1023–1032
(2020).

30

20

10

0

–10

–20

–30

H
u

 (n
m

)

m11

–1

0

1
m12

0

–0.004

–0.008

–0.012

–0.016

–0.020

m21

0.04

0

–0.04

–0.08

m22

0.002

–0.002

–0.004

–0.004

–0.008

0

–10

–20

–30
0.4 0.5

H
u

 (n
m

)

0.6 0.7

m33

0.8

Wavelength (μμm)

0.9 1.0 1.1

30 0.06

0.04

0.02

–0.02

–0.04

–0.06

0

20

10

0

0.4 0.5 0.6 0.7 0.8

Wavelength (μm)

0.9 1.0 1.1

0.08

0.04

–0.04

0

m43

Wavelength (μm)

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.08

0.04

–0.04

0

m44

Wavelength (μm)

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.04

–0.04

–0.08

0

m34

Fig. 8 The effective spectral change rates with a surface displacement fluctuation of 0.1 nm. The ordinate of each photograph represents the
size of the Cu filling in the z-direction (unit: nm), the abscissa represents the wavelength (unit: μm), and the color bar represents the spectral
change rates

Sun et al. Microsystems & Nanoengineering            (2023) 9:50 Page 9 of 10



22. Lin, T. C. et al. Inhibiting the detrimental Cu protrusion in Cu through-
silicon-via by highly (111)-oriented nanotwinned Cu. Scr. Mater. 197,
113782 (2021).

23. Shizhao, W. et al. Surface action mechanism and design considerations for the
mechanical integrity of Cu/low K BEOL interconnect during chemical
mechanical polishing process. Microelectron. Reliab. 134, 0026–2714 (2022).

24. An, Z. L. et al. Mechanically strengthened graphene-Cu composite with
reduced thermal expansion toward interconnect applications. Microsyst.
Nanoeng. 5, 20 (2019).

25. Van Olmen, J. et al. 3D stacked IC demonstrator using hybrid collective die-to-
wafer bonding with Cu through silicon vias (TSV). in Proc. IEEE Int. Conf. 3D Syst.
Integr. 1–5 (2009).

26. Wang, J. J., Ma, L. M., Feng, J. Y., Wang, Y. S. & Guo, F. Study on thermal shock
and annealing behavior of Sn3Ag0.5Cu-TSV prepared by modified molten
metal infiltration method. J. Electron. Mater. 51, 4054–4062 (2022).

27. Chen, X. G., Jiang, H., Zhang, C. W. & Liu, S. Y. Toward understanding the
detection of profile asymmetry from Mueller matrix differential decomposi-
tion. J. Appl. Phys. 118, 225308 (2015).

28. Dixit, D. et al. Nonconventional applications of Mueller matrix-based scat-
terometry for advanced technology nodes. J. Micro-Nanolithogr. MEMS
MOEMS 17, 034001 (2018).

29. Lu, S. & Chipman, R. A. Interpretation of Mueller matrices based on polar
decomposition. J. Opt. Soc. Am. A 13, 5 (1996).

30. Laurens, V. D. M. & Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res.
9, 2579–2605 (2008).

31. Moharam, M. G., Grann, E. B., Pommet, D. A. & Gaylord, T. K. Formulation for
stable and efficient implementation of the rigorous coupled-wave analysis of
binary gratings. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 12, 1068–1076 (1995).

32. Collins, R. W. & Koh, J. Dual rotating-compensator multichannel ellipsometer:
instrument design for real-time Mueller matrix spectroscopy of surfaces and
films. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 16, 1997–2006 (1999).

33. Albawi, S., Mohammed, T. A. & Al-Zawi, S. Understanding of a convolutional
neural network. in 2017 Int. Conf. Eng. Technol., IEEE, 1–6 (2017).

34. He, K. M., Zhang, X. Y., Ren S. Q. & Sun J. Deep residual learning for image
recognition. in 2016 IEEE Conf. on Comp. Vis. and Pat. Recog. (CVPR), 770–778
(2016).

35. Peiting, Z., Fei, P., Dekun, Y., Zhidan, L. & Yi, S. A Laplace sensitivity operator
enhances the calculation efficiency of OCD metrology. Opt. Express 31,
2147–2160 (2023).

36. Dekun, Y. et al. High optical storage density using three-dimensional hybrid
nanostructures based on machine learning. Opt. Lasers Eng. 161, 0143–8166
(2023).

Sun et al. Microsystems & Nanoengineering            (2023) 9:50 Page 10 of 10


	Nondestructive monitoring of annealing and chemical–mechanical planarization behavior using ellipsometry and deep learning
	Introduction
	Results and discussion
	Defect classification of TSV-Cu
	Quantification of TSV-Cu defect size using multichannel deep learning

	Conclusion
	Methods
	Optical simulation and calculation of the Mueller matrix
	Deep learning

	Acknowledgements




