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Deep learning enables nanoscale X-ray 3D imaging
with limited data
Chonghang Zhao 1 and Hanfei Yan 1✉

Abstract
Deep neural network can greatly improve tomography reconstruction with limited data. A recent effort of combining
ptycho-tomography model with the 3D U-net demonstrated a significant reduction in both the number of projections
and computation time, and showed its potential for integrated circuit imaging that requires high-resolution and fast
measurement speed.

X-ray tomography is a non-destructive imaging tech-
nique that provides three-dimensional (3D) structural
information about an object. It has many applications in
various scientific fields. The technique involves taking a
series of projection images as the sample rotates, and then
using a mathematical algorithm to compute the volu-
metric reconstruction. The quality of the reconstruction
depends on both the data and the computation method.
To achieve a given resolution, the number of projections
must meet the Crowther criterion, which means that
hundreds to thousands of projections are required under
optimal conditions1. Regarding tomography algorithms,
they can be mainly divided into two categories: direct
methods that utilize back-projection or the connection
between Radon and Fourier transforms2–4, and model-
based methods that iteratively solve an optimization
problem5,6. Direct methods require less computation but
reconstructions are more susceptible to artifacts with
poor-quality data. In contrast, iterative methods are more
robust but are less efficient.
In some cases, it is not possible to meet the data

requirements due to concerns about radiation dose or
geometrical constraints. For example, the tomography of
integrated circuits (ICs) is limited by its plate-like geo-
metry, which restricts the collection of projection images
to a limited angular range. This leads to a well-known
missing edge problem in tomography. In addition, it is

desirable to take as few projections as possible to speed up
the measurement and cover a large area. Achieving high-
quality reconstruction with fast measurement and light
computation has been a focus of research for a long time.
The recent emergence of deep neural networks (DNNs)

has opened up new opportunities to tackle this challenge.
DNNs enable machines to learn complex and implicit
knowledge, allowing them to provide artificial intelligence
(AI). By harnessing the power of DNNs, researchers have
been able to achieve nearly perfect reconstruction with
incomplete datasets, a task that was previously difficult or
impossible with conventional methods7–9.
DNNs can be used in many ways in tomography. They

can act as a black box to replace the iterative solver and
directly map the measured data to the target image9–12.
They can also serve as a post-image processing tool to
improve the image after the reconstruction7,8. Additionally,
they can perform sinogram inpainting to fill in missing
information in the measurement or regularize a solution in
a model-based approach to preserve desired properties13–15.
A recent paper by Z. Wu et al. demonstrates another

successful marriage of DNNs and tomography16. The
team from MIT and Argonne National Laboratory suc-
cessfully reconstructed an IC sample using only 21 pro-
jections in a range of 140 degrees. Their proposed
method, named RAPID, greatly reduces the required
amount of data and speeds up computation time by 140
times while retaining fine details of the object and
achieving a similar quality to that obtained from a full
dataset with 349 projections.
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RAPID differs from existing efforts in two aspects (See
Fig. 1). First, it employs a multi-slice propagation method to
model the measurement, which accounts for the diffraction
effect inside the object17,18. This potentially removes the
limitation on object thickness imposed by the depth of view
and allows for the achievement of spatial resolution better
than that of the optical system. Using a Fresnel Zone plate
with an outermost zone width of 50 nm, the team was able
to achieve a voxel resolution of 14 nm.
Second, RAPID implements a 3D U-net with atrous

convolutions for larger receptive fields, allowing the net-
work to capture 3D features more efficiently. The com-
bination of a 3D physical model and a 3D network makes
it possible to dramatically reduce both the number of
projections and computation time for a tomogram. It also
eliminates the normalization issue between slices some-
times seen with 2D methods.
In RAPID, supervised learning is used. The dataset

acquired from the IC sample was split into two parts: one
for training and one for testing. A high-resolution recon-
struction was generated using the conventional two-step
approach of first reconstructing the 2D projection images
and then performing tomographic reconstruction. This
reconstruction was used as the ground truth for training.
Various metrics were used to evaluate the performance of
the method, and RAPID consistently outperformed con-
ventional filtered back-propagation (FBP) and simultaneous
algebraic reconstruction techniques (SART).
The proposed strategy is to train the network on a

subset of the sample where sufficient measurements have
been conducted and good results have been achieved with

conventional methods. The network can then be applied
to the rest of the sample where a very sparse dataset has
been collected to significantly speed up the process. One
drawback is that new training may be required for a dif-
ferent sample, but transfer learning may reduce the effort
if the features are similar.
With the power of DNNs, which enforce solutions to meet

expectations based on prior knowledge, visually appealing
results can be obtained from incomplete or sometimes
“trash” datasets. This is the case with RAPID and other AI-
enabled algorithms. These methods can greatly reduce the
effort required to measure similar samples while still
maintaining quality. However, because the network is
trained on prior knowledge, the solution is biased toward
that by design. One caveat is that if there is a new feature
that was not seen during training, the network may ignore or
misinterpret it. This is not an issue if we do not expect any
surprises from a sample, such as in a screening application.
However, in scientific research where unknown features are
of interest, this raises several open questions.
Is the solution unique? Could there be another visually

appealing solution that is equally probable? Can uncer-
tainty be assigned to different locations of the object to
indicate which portions are more “guessed” by AI? Unlike
conventional methods where a “bad” result is easily
recognizable, an AI-enabled tool can generate an output
that always looks “good”. To what degree can we trust it?
Appropriate metrics may need to be defined to describe
the confidence level.
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Fig. 1 An x-ray nanoprobe illuminates an IC sample at different angles, where multi-slice model is employed to account for the diffraction
effect. With limited number of projections, a poor-quality approximant was first obtained using ptycho-tomography algorithm, and then fed to the
3D U-net to produce a nearly-perfect tomogram. The network was trained on the reconstruction with the full dataset acquired from the same sample
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