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Abstract
Refractive index invariably describes the speed at which light passes through materials, and subsequently its perceived
momentum. But what happens to these quantities as the index becomes zero? A new work explores this question,
highlighting how momentum in near-zero-index materials affects linear optical processes.

The first day of an introductory optics course likely
includes a discussion of waves and the concept of the
refractive index, the ability of a material to alter the speed
at which light moves, and how this fact can be used to
design any number of useful optical elements. As is clear,
the refractive index of a material is fundamental to our
ability to manipulate light and design its amplitude, phase,
and relative dispersion1,2.
In fact, many optical effects (reflection/refraction, reso-

nance, confinement, etc.) and the performance of sub-
sequent devices can be linked to the index contrast
available in a given implementation. Thus, a key focus of
optical materials research has centered on expanding our
understanding of the refractive index2–4 and pushing its
boundaries. From identifying fundamental limits5,6, going
to the extremes of index7,8 as well as engineering meta-
materials9–13, our ability to tailor the index has grown
significantly, having led to a host of exciting new develop-
ments as the refractive index is taken to its ‘extremes’14–19.
In recent years, the study of near-zero-index (NZI)

materials has arisen20–22 and is closely linked to the
concept of materials with other vanishing properties such
as epsilon-near-zero (ENZ), mu-near-zero (MNZ), and
epsilon-mu-near-zero (EMNZ). Such materials constitute
a ‘lower-extreme’ to the index and are commonly realized
with metallic films or heavily doped semiconductors,
phononic materials, and through effective structures

which blend materials or modify the index of a specific
mode23. In particular, NZI and ENZ have gained interest
due to their relative ease to implement in a wide variety of
applications, large index contrast that can be realized with
traditional dielectric and semiconductor materials, as well
as the host of unique optical effects that occur such as
super coupling24, emission tailoring25, long-range inter-
actions26, and geometry invariant photonics27.
While the frontier of utility has grown rapidly within the

metamaterials and plasmonics communities28–30, a theo-
retical understanding of the interactions of light inside such
materials has generally lagged experimental demonstra-
tions. For example, despite experimental works in nonlinear
interactions being realized in 2015 by several groups31,32, a
robust theory was not established until 202033.
In the work by Lobet et al.34, the authors seek to fill one

such gap by expanding upon the fundamental under-
standing of momentum in NZI materials and its sub-classes
(ENZ, MNZ, and EMNZ). In particular, the authors place
the Minkowski and Abraham momentum descriptions into
the context of vanishing property materials, illustrating their
connection to the phase and group velocity of light,
respectively. Situations such as spontaneous emission, las-
ing, and microscopy are presented where the materials are
illustrated to eliminate slit interference, ‘hide’ objects by
filtering k-vectors, and facilitate spatial translations of fields.
While the quantities described herein will be readily familiar
to the general optics researcher, the discussion centered
around momentum provides a different, yet straightfor-
ward, angle through which one may view such interactions
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and evaluate materials that is also tractable to readers
outside of the NZI-community.
While the implications in linear optics are one avenue,

as discussed within the paper, the framework also has
connection with the growing area of nonlinear optical
interactions in vanishing property materials as well35. In
particular, the area of space-time nonlinear interactions,
where strong spatial (Δn ~ 1) and temporal (Δt ~ 300 fs)
changes in the refractive index are driving interesting
works in optical switching32,36, frequency conversion37–40,
and time-refraction41,42. In such interactions, wave-like
and particle-like interactions can coexist, leading to time-
varying reflection coefficients and phase accumulation as
well as Doppler-like frequency shifting and momentum
exchange. While works are beginning to highlight the
roles of certain components40,43, there is still an oppor-
tunity to solidify the theoretical foundation. These non-
linear responses represent an intriguing regime to employ
the momentum framework and observe the relative roles
of each momentum description. Furthermore, the result-
ing descriptions also represent an interesting angle to view
light-matter-interactions in more complex devices which
combine nanostructures with vanishing property materi-
als to tailor the effective index and are likely to find
application in these emerging areas as well.
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