Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

STEM CELL BIOLOGY

Space exploration and cancer: the risks of deeper space adventures

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E, Barker R, et al. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell. 2020;183:1162–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guo Z, Zhou G, Hu W. Carcinogenesis induced by space radiation: a systematic review. Neoplasia. 2022;32:100828.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gale RP, Welsh J, Karam PA. Why are haematopoietic stem cells in the bone marrow: ontology recapitulates phylogeny. Leukemia. 2023;37:1779–81.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chancellor JC, Scott GB, Sutton JP. Space radiation: the number one risk to astronaut health beyond low earth orbit. Life. 2014;4:491–510.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cucinotta FA, Durante M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. 2006;7:431–5.

    Article  CAS  PubMed  Google Scholar 

  6. Iosim S, MacKay M, Westover C, Mason CE. Translating current biomedical therapies for long duration, deep space missions. Precis Clin Med. 2019;2:259–69.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Restier-Verlet J, El-Nachef L, Ferlazzo ML, Al-Choboq J, Granzotto A, Bouchet A, et al. Radiation on Earth or in space: what does it change? Int J Mol Sci. 2021;22:3739. https://doi.org/10.3390/ijms22073739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cucinotta FA, Hamada N, Little MP. No evidence for an increase in circulatory disease mortality in astronauts following space radiation exposures. Life Sci Space Res. 2016;10:53–6.

    Article  Google Scholar 

  9. Reitz G, Beaujean R, Benton E, Burmeister S, Dachev T, Deme S, et al. Space radiation measurements on-board ISS–the DOSMAP experiment. Radiat Prot Dosim 2005;116:374–9.

    Article  CAS  Google Scholar 

  10. Benton ER, Benton EV. Space radiation dosimetry in low-Earth orbit and beyond. Nucl Instrum Methods Phys Res B. 2001;184:255–94.

    Article  CAS  PubMed  Google Scholar 

  11. Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillies M, O’Hagan JA, et al. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol. 2015;2:e276–81.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science. 2019;364:eaau8650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. LeBlanc A, Rowe R, Schneider V, Evans H, Hedrick T. Regional muscle loss after short duration spaceflight. Aviat Space Environ Med. 1995;66:1151–4.

    CAS  PubMed  Google Scholar 

  14. Fitts RH, Riley DR, Widrick JJ. Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol. 2000;89:823–39.

    Article  CAS  PubMed  Google Scholar 

  15. McNamara KP, Greene KA, Tooze JA, Dang J, Khattab K, Lenchik L, et al. Neck muscle changes following long-duration spaceflight. Front Physiol. 2019;10:1115.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sibonga JD, Spector ER, Keyak JH, Zwart SR, Smith SM, Lang TF. Use of quantitative computed tomography to assess for clinically-relevant skeletal effects of prolonged spaceflight on astronaut hips. J Clin Densitom. 2020;23:155–64.

    Article  PubMed  Google Scholar 

  17. Reynolds R, Little MP, Day S, Charvat J, Blattnig S, Huff J, et al. Cancer incidence and mortality in the USA Astronaut Corps, 1959–2017. Occup Environ Med. 2021;78:869–75.

    Article  PubMed  Google Scholar 

  18. Folley JH, Borges W, Yamawaki T. Incidence of leukemia in survivors of the atomic bomb in Hiroshima and Nagasaki, Japan. Am J Med. 1952;13:311–21.

    Article  CAS  PubMed  Google Scholar 

  19. Little MP, Wakeford R, Borrego D, French B, Zablotska LB, Adams MJ, et al. Leukaemia and myeloid malignancy among people exposed to low doses (<100 mSv) of ionising radiation during childhood: a pooled analysis of nine historical cohort studies. Lancet Haematol. 2018;5:e346–e358.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Crants SA, Olson SS, Li Y, Bejan CA, Bick A, Luo L. Radiation therapy and subsequent clonal hematopoiesis: an analysis of a biorepository of 89,782 patients. Int J Radiat Oncol. 2022;114:E504.

    Article  Google Scholar 

  21. Yoshida K, Satoh Y, Uchimura A, Misumi M, Kyoizumi S, Taga M, et al. Massive expansion of multiple clones in the mouse hematopoietic system long after whole-body X-irradiation. Sci Rep. 2022;12:17276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Modlin LA, Wijetunga NA, Patel M, Gao T, Ptashkin R, Sullivan MR, et al. Effects of radiation therapy on clonal hematopoiesis. J Clin Oncol. 2020;38:12062–12062.

    Article  Google Scholar 

  23. Jaiswal S. Clonal hematopoiesis and nonhematologic disorders. Blood. 2020;136:1606–14.

    PubMed  PubMed Central  Google Scholar 

  24. Huang P, Russell AL, Lefavor R, Durand NC, James E, Harvey L, et al. Feasibility, potency, and safety of growing human mesenchymal stem cells in space for clinical application. NPJ Microgravity. 2020;6:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang C, Li L, Jiang Y, Wang C, Geng B, Wang Y, et al. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis. FASEB J. 2018;32:4444–58.

    Article  CAS  PubMed  Google Scholar 

  26. Vignard J, Mirey G, Salles B. Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother Oncol. 2013;108:362–9.

    Article  CAS  PubMed  Google Scholar 

  27. Penninckx S, Pariset E, Cekanaviciute E, Costes SV. Quantification of radiation-induced DNA double strand break repair foci to evaluate and predict biological responses to ionizing radiation. NAR Cancer. 2021;3:zcab046.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brojakowska A, Kour A, Thel MC, Park E, Bisserier M, Garikipati VNS, et al. Retrospective analysis of somatic mutations and clonal hematopoiesis in astronauts. Commun Biol. 2022;5:828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mencia-Trinchant N, MacKay MJ, Chin C, Afshinnekoo E, Foox J, Meydan C, et al. Clonal hematopoiesis before, during, and after human spaceflight. Cell Rep. 2020;33:108458.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Steensma DP. Clinical consequences of clonal hematopoiesis of indeterminate potential. Hematol Am Soc Hematol Educ Program. 2018;2018:264–9.

    Article  Google Scholar 

  32. Trudel G, Shafer J, Laneuville O, Ramsay T. Characterizing the effect of exposure to microgravity on anemia: more space is worse. Am J Hematol. 2020;95:267–273.

    Article  CAS  PubMed  Google Scholar 

  33. Trudel G, Shahin N, Ramsay T, Laneuville O, Louati H. Hemolysis contributes to anemia during long-duration space flight. Nat Med. 2022;28:59–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Multiple partners to validate stem cell production on Space Station. 2023. Available from: https://www.issnationallab.org/ng19-bioserve-sierra-space-stem-cells/

  35. Zea L, Piper SS, Gaikani H, Khoshnoodi M, Niederwieser T, Hoehn A, et al. Experiment verification test of the Artemis I ‘Deep Space Radiation Genomics’ experiment. Acta Astronaut. 2022;198:702–6.

    Article  Google Scholar 

  36. Hammond TG, Allen PL, Well HW, Russick JM, Nislow C, Giaever G, et al. Moonshot: affordable, simple, flight hardware for the Artemis-1 mission and beyond. Front Space Technol. 2020;1:593523.

    Article  Google Scholar 

  37. Simonsen LC, Slaba TC. Improving astronaut cancer risk assessment from space radiation with an ensemble model framework. Life Sci Space Res. 2021;31:14–28.

    Article  Google Scholar 

  38. Zhao L, Tang A, Long F, Mi D, Sun Y. Modeling of ionizing radiation-induced chromosome aberration and tumor prevalence based on two classes of DNA double-strand breaks clustering in chromatin domains. Ecotoxicol Environ Saf. 2023;259:115038.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

SKH Honoraria from Pfizer, Novartis. Janssen, Therakos Mallinckrodt, Sanofi and Roche.

Author information

Authors and Affiliations

Authors

Contributions

INM: Conceptualization, resources, writing original draft & review and editing subsequent drafts. ACZ: Resources and review and editing subsequent drafts. TN: Resources and review and editing subsequent drafts. SKH: Conceptualization, resources, writing original draft & review and editing subsequent drafts. All authors approved the final version of the draft.

Corresponding author

Correspondence to Shahrukh K. Hashmi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhsen, I.N., Zubair, A.C., Niederwieser, T. et al. Space exploration and cancer: the risks of deeper space adventures. Leukemia 38, 1872–1875 (2024). https://doi.org/10.1038/s41375-024-02298-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-024-02298-4

This article is cited by

Search

Quick links