Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

Dual inhibition of CHK1/FLT3 enhances cytotoxicity and overcomes adaptive and acquired resistance in FLT3-ITD acute myeloid leukemia

Abstract

FLT3 inhibitors (FLT3i) are widely used for the treatment of acute myeloid leukemia (AML), but adaptive and acquired resistance remains a primary challenge. Inhibitors simultaneously blocking adaptive and acquired resistance are highly demanded. Here, we observed the potential of CHK1 inhibitors to synergistically improve the therapeutic effect of FLT3i in FLT3-mutated AML cells. Notably, the combination overcame adaptive resistance. The simultaneous targeting of FLT3 and CHK1 kinases may overcome acquired and adaptive resistance. A dual FLT3/CHK1 inhibitor 30 with a good oral PK profile was identified. Mechanistic studies indicated that 30 inhibited FLT3 and CHK1, downregulated the c-Myc pathway and further activated the p53 pathway. Functional studies showed that 30 was more selective against cells with various FLT3 mutants, overcame adaptive resistance in vitro, and effectively inhibited resistant FLT3-ITD AML in vivo. Moreover, 30 showed favorable druggability without significant blood toxicity or myelosuppression and exhibited a good oral PK profile with a T1/2 over 12 h in beagles. These findings support the targeting of FLT3 and CHK1 as a novel strategy for overcoming adaptive and acquired resistance to FLT3i therapy in AML and suggest 30 as a potential clinical candidate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CHK1 inhibitors harbor sensitivity to FLT3-mutated cells and improve the efficacy of FLT3 inhibitor therapy.
Fig. 2: Identification of potential dual FLT3/CHK1 inhibitors for AML with FLT3 mutation.
Fig. 3: Compound 30 blocks FLT3 and CHK1 signaling and potently inhibits acquired and adaptive resistance in FLT3-mutated AML cells.
Fig. 4: Compound 30 blocks FLT3-ITD AML tumor growth and allows prolonged survival in vivo.
Fig. 5: Druggability profile of compound 30.

Similar content being viewed by others

Data availability

For original data and reagents, please contact the corresponding author.

References

  1. Sami SA, Darwish NHE, Barile ANM, Mousa SA. Current and Future Molecular Targets for Acute Myeloid Leukemia Therapy. Curr Treat Options Oncol. 2020;21:3.

    Article  PubMed  Google Scholar 

  2. Burnett A, Wetzler M, Lowenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 2011;29:487–94.

    Article  PubMed  Google Scholar 

  3. Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33:299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang A, Li X, Chen C, Wu H, Qi Z, Hu C, et al. Discovery of 1-(4-(4-Amino-3-(4-(2-morpholinoethoxy)phenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-3-(5-(tert-butyl)isoxazol-3-yl)urea (CHMFL-FLT3-213) as a Highly Potent Type II FLT3 Kinase Inhibitor Capable of Overcoming a Variety of FLT3 Kinase Mutants in FLT3-ITD Positive AML. J Medicinal Chem. 2017;60:8407–24.

    Article  CAS  Google Scholar 

  5. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10:1911–8.

    CAS  PubMed  Google Scholar 

  6. Breitenbuecher F, Schnittger S, Grundler R, Markova B, Carius B, Brecht A, et al. Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood. 2009;113:4074–7.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Z, Cai J, Ren J, Chen Y, Wu Y, Cheng J, et al. Discovery of a Potent FLT3 Inhibitor (LT-850-166) with the Capacity of Overcoming a Variety of FLT3 Mutations. J Med Chem. 2021;64:14664–701.

    Article  CAS  PubMed  Google Scholar 

  8. Weisberg E, Barrett R, Liu Q, Stone R, Gray N, Griffin JD. FLT3 inhibition and mechanisms of drug resistance in mutant FLT3-positive AML. Drug Resist Updat. 2009;12:81–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Antar AI, Otrock ZK, Jabbour E, Mohty M, Bazarbachi A. FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions. Leukemia. 2020;34:682–96.

    Article  PubMed  Google Scholar 

  10. Wang Y, Zhi Y, Jin Q, Lu S, Lin G, Yuan H, et al. Discovery of 4-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1H-pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-Kinase Inhibitor with Potentially High Efficiency against Acute Myelocytic Leukemia. J Medicinal Chem. 2018;61:1499–518.

    Article  CAS  Google Scholar 

  11. Kennedy VE, Smith CC. FLT3 Mutations in Acute Myeloid Leukemia: Key Concepts and Emerging Controversies. Front Oncol. 2020;10:612880.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Eguchi M, Minami Y, Kuzume A, Chi S. Mechanisms Underlying Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia. Biomedicines. 2020;8:245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alvarado Y, Kantarjian HM, Luthra R, Ravandi F, Borthakur G, Garcia-Manero G, et al. Treatment with FLT3 inhibitor in patients with FLT3-mutated acute myeloid leukemia is associated with development of secondary FLT3-tyrosine kinase domain mutations. Cancer. 2014;120:2142–9.

    Article  CAS  PubMed  Google Scholar 

  14. Bagrintseva K, Schwab R, Kohl TM, Schnittger S, Eichenlaub S, Ellwart JW, et al. Mutations in the tyrosine kinase domain of FLT3 define a new molecular mechanism of acquired drug resistance to PTK inhibitors in FLT3-ITD-transformed hematopoietic cells. Blood. 2004;103:2266–75.

    Article  CAS  PubMed  Google Scholar 

  15. Joshi SK, Sharzehi S, Pittsenbarger J, Bottomly D, Tognon CE, McWeeney SK, et al. A noncanonical FLT3 gatekeeper mutation disrupts gilteritinib binding and confers resistance. Am J Hematol. 2021;96:E226–E229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pauwels D, Sweron B, Cools J. The N676D and G697R mutations in the kinase domain of FLT3 confer resistance to the inhibitor AC220. Haematologica. 2012;97:1773–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Melgar K, Walker MM, Jones LM, Bolanos LC, Hueneman K, Wunderlich M, et al. Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Sci Transl Med. 2019;11:eaaw8828.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bruner JK, Ma HS, Li L, Qin ACR, Rudek MA, Jones RJ, et al. Adaptation to TKI Treatment Reactivates ERK Signaling in Tyrosine Kinase-Driven Leukemias and Other Malignancies. Cancer Res. 2017;77:5554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lindblad O, Cordero E, Puissant A, Macaulay L, Ramos A, Kabir NN, et al. Aberrant activation of the PI3K/mTOR pathway promotes resistance to sorafenib in AML. Oncogene. 2016;35:5119–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Long J, Jia MY, Fang WY, Chen XJ, Mu LL, Wang ZY, et al. FLT3 inhibition upregulates HDAC8 via FOXO to inactivate p53 and promote maintenance of FLT3-ITD+ acute myeloid leukemia. Blood. 2020;135:1472–83.

    Article  PubMed  Google Scholar 

  21. Pei HZ, Zhuang X, Yang M, Guo Y, Chang Z, Zhang D, et al. FLT3 Inhibitors Induce p53 Instability Due to Increased Interaction between p53 and MDM2 By Inhibiting STAT5 Phosphorylation in Acute Myeloid Leukemia. Blood. 2021;138:3333.

    Article  Google Scholar 

  22. Pei HZ, Guo Y, Lu B, Chang Z, Zhang D, Yu L, et al. FLT3 Inhibitors Induce Instability of p53 By Mir-181 Mediated Downregulation of Deubiquitinase YOD1 in Acute Myeloid Leukemia. Blood. 2020;136:6–7.

    Article  Google Scholar 

  23. Zhang Y, Hunter T. Roles of Chk1 in cell biology and cancer therapy. Int J Cancer. 2014;134:1013–23.

    Article  CAS  PubMed  Google Scholar 

  24. Cavelier C, Didier C, Prade N, Mansat-De Mas V, Manenti S, Recher C, et al. Constitutive activation of the DNA damage signaling pathway in acute myeloid leukemia with complex karyotype: potential importance for checkpoint targeting therapy. Cancer Res. 2009;69:8652–61.

    Article  CAS  PubMed  Google Scholar 

  25. David L, Fernandez-Vidal A, Bertoli S, Grgurevic S, Lepage B, Deshaies D, et al. CHK1 as a therapeutic target to bypass chemoresistance in AML. Sci Signal. 2016;9:ra90.

    Article  PubMed  Google Scholar 

  26. Zhang Y, Yuan L. Fms-like tyrosine kinase 3-internal tandem duplications epigenetically activates checkpoint kinase 1 in acute myeloid leukemia cells. Sci Rep. 2021;11:13236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yuan LL, Green A, David L, Dozier C, Recher C, Didier C, et al. Targeting CHK1 inhibits cell proliferation in FLT3-ITD positive acute myeloid leukemia. Leuk Res. 2014;38:1342–9.

    Article  CAS  PubMed  Google Scholar 

  28. Tong L, Song P, Jiang K, Xu L, Jin T, Wang P, et al. Discovery of (R)-5-((5-(1-methyl-1H-pyrazol-4-yl)-4-(methylamino)pyrimidin-2-yl)amino)-3-(pipe ridin-3-yloxy)picolinonitrile, a novel CHK1 inhibitor for hematologic malignancies. Eur J Med Chem. 2019;173:44–62.

    Article  CAS  PubMed  Google Scholar 

  29. Jin T, Wang P, Long X, Jiang K, Song P, Wu W, et al. Design, Synthesis, and Biological Evaluation of Orally Bioavailable CHK1 Inhibitors Active against Acute Myeloid Leukemia. ChemMedChem. 2021;16:1477–87.

    Article  CAS  PubMed  Google Scholar 

  30. Green AS, Maciel TT, Hospital MA, Yin C, Mazed F, Townsend EC, et al. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. Sci Adv. 2015;1:e1500221.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lopez JS, Banerji U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol. 2017;14:57–66.

    Article  CAS  PubMed  Google Scholar 

  33. Jin T, Xu L, Wang P, Hu X, Zhang R, Wu Z, et al. Discovery and Development of a Potent, Selective, and Orally Bioavailable CHK1 Inhibitor Candidate: 5-((4-((3-Amino-3-methylbutyl)amino)-5-(trifluoromethyl)pyrimidin-2-yl)amino)picolinonitrile. J Medicinal Chem. 2021;64:15069–90.

    Article  CAS  Google Scholar 

  34. Tong L, Wang P, Li X, Dong X, Hu X, Wang C, et al. Identification of 2-Aminopyrimidine Derivatives as FLT3 Kinase Inhibitors with High Selectivity over c-KIT. J Med Chem. 2022;65:3229–48.

    Article  CAS  PubMed  Google Scholar 

  35. Galanis A, Levis M. Inhibition of c-Kit by tyrosine kinase inhibitors. Haematologica. 2015;100:e77–79.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang GT, Li G, Mantei RA, Chen Z, Kovar P, Gu W, et al. 1-(5-Chloro-2-alkoxyphenyl)-3-(5-cyanopyrazin-2-yl)ureas [correction of cyanopyrazi] as potent and selective inhibitors of Chk1 kinase: synthesis, preliminary SAR, and biological activities. J Med Chem. 2005;48:3118–21.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang KL, Tong LX, Wang T, Wang HL, Hu XB, Xu GY, et al. Downregulation of c-Myc expression confers sensitivity to CHK1 inhibitors in hematologic malignancies. Acta Pharm Sin. 2022;43:220–8.

    Article  CAS  Google Scholar 

  38. Takahashi S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: biology and therapeutic implications. J Hematol Oncol. 2011;4:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ando K, Nakamura Y, Nagase H, Nakagawara A, Koshinaga T, Wada S, et al. Co-Inhibition of the DNA Damage Response and CHK1 Enhances Apoptosis of Neuroblastoma Cells. Int J Mol Sci. 2019;20:3700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Larizza L, Magnani I, Beghini A. The Kasumi-1 cell line: a t(8;21)-kit mutant model for acute myeloid leukemia. Leuk lymphoma. 2005;46:247–55.

    Article  CAS  PubMed  Google Scholar 

  41. Piloto O, Wright M, Brown P, Kim KT, Levis M, Small D. Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways. Blood. 2007;109:1643–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chandarlapaty S. Negative feedback and adaptive resistance to the targeted therapy of cancer. Cancer Disco. 2012;2:311–9.

    Article  CAS  Google Scholar 

  43. Smith CC, Paguirigan A, Jeschke GR, Lin KC, Massi E, Tarver T, et al. Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single-cell analysis. Blood. 2017;130:48–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Joshi SK, Nechiporuk T, Bottomly D, Piehowski PD, Reisz JA, Pittsenbarger J, et al. The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance. Cancer Cell. 2021;39:999–1014.e1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kadia TM, Jain P, Ravandi F, Garcia-Manero G, Andreef M, Takahashi K, et al. TP53 mutations in newly diagnosed acute myeloid leukemia: Clinicomolecular characteristics, response to therapy, and outcomes. Cancer. 2016;122:3484–91.

    Article  CAS  PubMed  Google Scholar 

  46. Levine AJ. p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer. 2020;20:471–80.

    Article  CAS  PubMed  Google Scholar 

  47. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253:49–53.

    Article  CAS  PubMed  Google Scholar 

  48. Yang M, Pan Z, Huang K, Busche G, Liu H, Gohring G, et al. A unique role of p53 haploinsufficiency or loss in the development of acute myeloid leukemia with FLT3-ITD mutation. Leukemia. 2022;36:675–86.

    Article  CAS  PubMed  Google Scholar 

  49. Sasca D, Hahnel PS, Szybinski J, Khawaja K, Kriege O, Pante SV, et al. SIRT1 prevents genotoxic stress-induced p53 activation in acute myeloid leukemia. Blood. 2014;124:121–33.

    Article  CAS  PubMed  Google Scholar 

  50. Seipel K, Marques MAT, Sidler C, Mueller BU, Pabst T. MDM2- and FLT3-inhibitors in the treatment of FLT3-ITD acute myeloid leukemia, specificity and efficacy of NVP-HDM201 and midostaurin. Haematologica. 2018;103:1862–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Andreeff M, Zhang W, Kumar P, Zernovak O, Daver NG, Isoyama T, et al. Synergistic Anti-Leukemic Activity with Combination of FLT3 Inhibitor Quizartinib and MDM2 Inhibitor Milademetan in FLT3-ITD Mutant/p53 Wild-Type Acute Myeloid Leukemia Models. Blood. 2018;132:2720.

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the patients whose samples used in the study and their families. We thank Jianyang Pan (Research and Service Center, College of Pharmaceutical Sciences, Zhejiang University) for performing NMR spectrometry for structure elucidation. We also thank Huazhou Ying (College of Pharmaceutical Sciences, Zhejiang University) for performing mass spectrometry for structure elucidation.

Funding

This work was supported by grants from the Guangdong High-level new R&D Institute (2019B090904008) and the Guangdong High-level Innovative Research Institute (2021B0909050003), the key project of Zhejiang Provincial Natural Science Foundation of China (LZ21H300001), the National Natural Science Foundation of China (81821005, 82204179), the Science and Technology Commission of Shanghai Municipality (18431907100, 19430750100).

Author information

Authors and Affiliations

Authors

Contributions

KLJ, XML, CW, XBH, TL, YBZ and JL conceived and designed the study. KLJ, CW and YTT performed in vitro cellular experiments, analyzed the data and interpreted the results. PPW performed in vitro enzymatic assays, analyzed the data and interpreted the results. XBH, BJC and RZG performed in vivo experiments, analyzed the data and interpreted the results. XML, LXT, TTJ and TL designed and synthesized the compounds, analyzed the data and interpreted the results. HLW and YBH analyzed RNAseq data. TW and JMY provided patients samples. KLJ, XML, CW, TL and YBZ wrote, reviewed, and/or revised the manuscript. JMY, TL, YBZ, and JL contributed to the study supervision.

Corresponding authors

Correspondence to Tao Liu, Jia Li or Yubo Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, K., Li, X., Wang, C. et al. Dual inhibition of CHK1/FLT3 enhances cytotoxicity and overcomes adaptive and acquired resistance in FLT3-ITD acute myeloid leukemia. Leukemia 37, 539–549 (2023). https://doi.org/10.1038/s41375-022-01795-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01795-8

This article is cited by

Search

Quick links