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Chronic kidney disease (CKD) is a complex condition with a prevalence of 10–15% worldwide. An inverse-graded relationship exists
between cardiovascular events and mortality with kidney function which is independent of age, sex, and other risk factors. The
proportion of deaths due to heart failure and sudden cardiac death increase with progression of chronic kidney disease with
relatively fewer deaths from atheromatous, vasculo-occlusive processes. This phenomenon can largely be explained by the
increased prevalence of CKD-associated cardiomyopathy with worsening kidney function. The key features of CKD-associated
cardiomyopathy are increased left ventricular mass and left ventricular hypertrophy, diastolic and systolic left ventricular
dysfunction, and profound cardiac fibrosis on histology. While these features have predominantly been described in patients with
advanced kidney disease on dialysis treatment, patients with only mild to moderate renal impairment already exhibit structural and
functional changes consistent with CKD-associated cardiomyopathy. In this review we discuss the key drivers of CKD-associated
cardiomyopathy and the key role of hypertension in its pathogenesis. We also evaluate existing, as well as developing therapies in
the treatment of CKD-associated cardiomyopathy.
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INTRODUCTION
Chronic kidney disease (CKD) and kidney failure with replace-
ment therapy (KFRT) are complex chronic conditions with a
combined prevalence of 10–15% worldwide [1–5]. Hypertension
is an equally significant global problem and remains one of the
most important preventable causes of mortality worldwide [6, 7],
with the prevalence expected to rise to 1.56 billion by 2025 [6].
Affecting 67–92% of patients with CKD, hypertension is also the
most common comorbidity with increasing prevalence and
severity as kidney function progresses [8]. Its pathogenesis and
that of CKD are tightly intertwined, with hypertension being
both a complication of and driver of kidney disease progression
[9–11].
An inverse graded relationship exists between cardiovascular

events and mortality with estimated glomerular filtration rate
(eGFR), which is independent of age, sex, and other risk factors
[12–18]. The proportion of deaths due to heart failure and sudden
cardiac death (SCD) increase with progression of CKD, with
relatively fewer deaths from atheromatous processes [19–23]. This
is also evidenced by trials which show benefit of lipid-lowering
therapies in early CKD [24–26], but appear to be ineffective in
patients with KFRT [26–28]. This is thought to be the result of the
development of CKD-associated cardiomyopathy.
In this state-of-the-art review, we will discuss some of the key

drivers of CKD-associated cardiomyopathy and the key role of

hypertension in its pathogenesis, and evaluate existing, as well as
developing therapies in the treatment of CKD-associated
cardiomyopathy.

CKD-ASSOCIATED CARDIOMYOPATHY
The concept of CKD-associated cardiomyopathy (Fig. 1) first
appeared in the 1980s following reports of common abnormalities
in cardiac structure and function in patients with CKD and KFRT
[29, 30]. The key features described were:

● Increased left ventricular (LV) mass and left ventricular
hypertrophy (LVH),

● Diastolic and systolic LV dysfunction,
● Profound myocardial fibrosis on histology [15, 31–44].

Whilst these features have been predominantly identified in
patients with KFRT, who are undoubtedly uraemic, those with
mild to moderately reduced eGFR already exhibit structural and
functional changes consistent with CKD-associated cardiomyo-
pathy [35]. This is consistent with observational studies
reporting a 20% higher risk of death and cardiovascular events
in patients with eGFR between 45 and 59 ml/min/1.73 m2

compared to those with eGFR greater than 60 ml/min/1.73 m2

[14].
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Increased left ventricular mass/left ventricular hypertrophy
The LV is a main target for end-organ damage in hypertension,
resulting from a combination of cardiomyocyte hypertrophy
and expansion of the extracellular space caused by interstitial
myocardial fibrosis from activated fibroblasts (myofibroblasts;
Fig. 2) [15]. In the general population, the prevalence of LVH is
between 15 and 21% [45]. The prevalence is significantly
greater in patients with hypertension. In a meta-analysis
encompassing 37,700 hypertensive patients, LVH was detected
by echocardiography in 36–41%, increasing to 58–77% in high-
risk patients who had severe or refractory hypertension, type 2
diabetes mellitus, or a history of previous cardiovascular events
[46]. However, it should be noted that the relationship between
LV mass and blood pressure is continuous, with no true
dichotomy, and that any definition of LVH is a useful, but
arbitrary way of defining hypertensive target organ damage
[47, 48].

LVH is an independent risk factor for cardiovascular morbidity
and mortality [49]. Prospective data from large observational
studies [45, 50] have demonstrated independent associations
between echocardiogram/electrocardiogram-LVH, and an
increased risk of cardiovascular events and all-cause mortality. In
a large retrospective study of 35,602 patients referred for
echocardiography, the presence of LVH increased the risk of all-
cause mortality by 2-fold over a mean follow-up of 3.2 years [51].
In the Heart and Soul Study, a cohort of 1016 patients with stable
coronary artery disease followed up for 3.5 years, evidence of
echocardiographic LVH was associated with a higher overall
mortality (25% v 11%) and SCD (6.7% v 2.2%) [52]. Analysed as a
continuous variable, every 20-unit increase in LV mass increased
the adjusted hazard of overall mortality by 22% and of SCD by
40% [52].
Ambulatory blood pressure measurements more closely corre-

late with LV geometry abnormalities compared to office blood

Fig. 1 CKD-associated cardiomyopathy. CKD-associated cardiomyopathy is characterised by structural remodelling of the heart. Diffuse
interstitial fibrosis and cardiac hypertrophy give rise to cardiac electromechanical dysfunction and increased risk of sudden death.

Fig. 2 Activated human induced pluripotent stem cell-derived cardiac fibroblasts. Laser scanning confocal image of human induced
pluripotent stem cell-derived cardiac fibroblasts activated by transforming growth factor-β stained with antibodies against α-smooth muscle
actin (green) and vimentin (red). Every third to fourth cell in the left ventricle is a fibroblast. Most cardiac research has focused on the
cardiomyocyte with research on cardiac fibroblasts proving more challenging. (Image provided by Ms Caitlin Hall, Institute of Cardiovascular
Sciences, University of Birmingham).
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pressure measurements [53, 54]. Patients with a non-dipping or
reverse dipping pattern on 24-h ambulatory monitoring have a
higher LV mass and increased prevalence of LVH [55, 56] as well as
worse CV outcomes [57, 58]. These abnormal blood pressure
circadian rhythms are also more prevalent in patients with CKD
and KRFT and are also associated with worse CV outcomes [59].

Increased left ventricular mass/left ventricular hypertrophy in
chronic kidney disease
The connection between CKD, hypertension and LVH was first
described by several 19th century physicians. Pioneering British
physician Richard Bright (1789–1858) depicted with meticulous
detail first observations of LVH present on autopsies of patients
with albuminuria [60]. Years later, his successor Sir Samuel Wilks
(1824–1911) described pathological changes in the heart and
arteries accompanying Bright’s disease [61]. Further publications
in the 1850s by Ludwig Traube (1818–56) and William Kirkes
(1822–64) introduced the concept of arteriosclerosis and high
intra-arterial pressure as a driver of LVH in renal disease, laying the
foundation for our understanding of CKD-associated cardiomyo-
pathy [62, 63].
Recent imaging studies confirm that increased LV mass and LVH

are common manifestations of CKD-associated cardiomyopathy
(Fig. 3). LVH is found in 48–84% of patients with pre-dialysis CKD
[64–66], and in up to 90% of patients with KFRT receiving
haemodialysis [5, 38, 67]. Similarly, LV mass is a continuous
variable with a graded association with adverse cardiovascular
outcomes and mortality [45, 68–72]. In an analysis of 1,249
patients with predialysis CKD, LVH was associated with a mortality

risk of 25 deaths per 1000 person-years [68]. In patients who have
LVH at dialysis initiation, the risk of mortality was 1.75-fold greater
than those without LVH at 6 years follow-up [5]. Conversely, LVH
regression may improve outcomes in patients with KFRT [67].
LVH is associated with an increased risk of arrhythmia, which

may explain, in part, the increased incidence of cardiovascular
death in CKD [73]. A meta-analysis of 10 studies (27,141 patients)
found that patients had 3.4-fold and 2.8-fold greater odds of
developing sustained supraventricular tachycardia and ventricular
arrhythmias, respectively, in the presence of LVH [74]. Other
studies reported a 20% increase in the risk of atrial fibrillation (AF)
for every standard deviation increase in LV mass [70]. The
presence of LVH in hypertensive patients was a predictor for
progression from paroxysmal to permanent AF [71], whilst blood
pressure reductions of 7.3/1.8 mmHg resulted in regression of LV
mass index with a corresponding 7-fold decline in the prevalence
of paroxysmal AF after a mean follow-up of 24 months [75].

Diastolic and systolic dysfunction
Diastolic dysfunction is highly prevalent in patients with CKD [76]
with studies reporting an incidence of 71% in CKD stages 2–4 [64]
and up to 85–90% in KFRT [77–79]. Excess myocardial deposition
of collagen affects cardiac muscle viscoelasticity, leading to
increased ventricular stiffness, impaired myocardial relaxation
and diastolic recoil [80]. Diastolic dysfunction is strongly associa-
tion with increased LV mass and LVH [19], as well as myocardial
fibrosis [41, 81], and is associated with increased mortality [78, 81].
Indeed, the American Society of Echocardiography and the
European Association of Cardiovascular Imaging considers LVH

Fig. 3 Cardiac magnetic resonance images demonstrating left ventricular hypertrophy and normal dimensions in dialysis patients. Short
axis stack image (A) and horizontal long axis image (B) of a patient on haemodialysis with concentric left ventricular hypertrophy on cardiac
magnetic resonance imaging (maximum wall thickness, 15 mm; left ventricular mass 93 g/m2). Short axis stack image (C) and horizontal long
axis image (D) of a patient on peritoneal dialysis with normal left ventricular dimensions on cardiac magnetic resonance imaging (maximum
wall thickness, 9 mm; left ventricular mass 63 g/m2).
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as an indicator of diastolic dysfunction [82]. Furthermore, the
presence of diastolic dysfunction is considered to be a major
cause for the frequent presentation of HD patients with
pulmonary oedema or intradialytic hypotension with only minor
changes in fluid status [19, 81]. Overt LV systolic dysfunction, as
manifest by a reduced left ventricular ejection fraction, is relatively
uncommon in pre-dialysis CKD, with a reported prevalence of 8%
and no association with eGFR [36, 64]. However, several studies
have shown changes in LV deformation in early stages of CKD
indicating the presence of sub-normal LV systolic function [83–85].
In KFRT, LV systolic dysfunction is very common with a reported
prevalence 10–30 times greater than in the general population
[86–89].
The presence of LVH has also been associated with the risk of

development of systolic dysfunction in hypertensive subjects
[90–92]. The 2013 American College of Cardiology Foundation/
American Heart Association Guideline for the Management of
Heart Failure recognised hypertension and LVH as stage A and B
heart failure. The guideline emphasised the progressive nature of
heart failure, and the importance of long-term treatment of
elevated blood pressure to prevent symptomatic heart failure [93].

Myocardial fibrosis
It has been suggested that myocardial fibrosis may be the unifying
pathophysiological process underlying CKD-associated cardio-
myopathy [94]. In the 1990s, a post-mortem study found that
myocardial fibrosis was present in 91% of CKD/KFRT patients
without significant flow-limiting coronary lesions. The severity of
fibrosis was related to the length of time on dialysis, but
independent of hypertension, blood pressure, diabetes or
anaemia [31]. However, given a plethora of drivers of cardiac
fibrosis, as demonstrated by numerous preclinical and clinical
studies, we cannot discount the contributing roles of these
diseases on the activation of cardiac fibroblasts [95]. Over a
decade later, Aoki et al. performed endocardial biopsies in 40 KFRT
patients with reduced LV ejection fraction without coronary artery
disease [15]. The predominant pathologic findings were extensive
fibrosis and cardiomyocyte hypertrophy similar to that seen in the
dilated phase of hypertrophic cardiomyopathy, a condition
associated with extremely high morbidity and mortality [96, 97].
A post-mortem study of LV tissue from patients with KFRT found

reduced capillary density, increased cardiomyocyte cross-sectional
area and expansion of interstitial matrix. The apparent myocyte-
capillary mismatch brought about by the reduction in capillary
supply within a hypertrophied myocardium increases the oxygen
diffusion distance, thereby exposing the heart to the risk of
ischaemic injury and subsequent cardiac dysfunction [98]. Recent
advances in imaging technology have enabled the indirect

assessment of coronary microvascular dysfunction (CMD). Cor-
onary flow reserve (CFR) is the most widely used surrogate marker,
and has been successfully utilised to indirectly measure CMD in
conditions such as hypertrophic cardiomyopathy and heart failure
with preserved ejection fraction, both of which are characterised
by LVH and myocardial fibrosis, similar to CKD-associated
cardiomyopathy [99, 100]. Although data are limited, imaging
studies utilising positron emission tomography, angiography and
echocardiography have reported a prevalence of 24–90% in CKD
patients with a graded relationship with eGFR [101]. In a
retrospective study of CKD patients, which included those on
dialysis, reduced CFR below 1.5 was associated with 2.1-fold
increased risk of cardiovascular mortality independent of risk
factors and LV function [102]. The mortality risk remained elevated
in a later analysis of the dialysis-dependent cohort [103].
Studying myocardial fibrosis in CKD/KFRT has been challenging

given that myocardial biopsies are ethically difficult to justify
[104, 105]. Contrast-enhanced cardiac magnetic resonance (CMR)
imaging has been used for the assessment of myocardial fibrosis
in conditions such as myocardial infarction [106], dilated [107] and
hypertrophic cardiomyopathies [108]. Patients with KFRT demon-
strate midwall patterns of late gadolinium enhancement consis-
tent with replacement myocardial fibrosis not associated with
large vessel coronary artery disease [36]. Non-contrast myocardial
native T1 relaxation time, or T1 mapping, has emerged as a viable
alternative for the assessment of myocardial fibrosis in CKD/KFRT
[40] (Fig. 4). In cardiac tissues, T1 relaxation time outside regions of
scarring has been shown to correlate with histologically measured
interstitial fibrosis severity in a number of disease states [109]. In
patients with KFRT, native T1 times are higher than age- and sex-
matched controls, and correlate with increased LV mass [33, 34]. In
parallel with the changes to LV mass and function, native T1 times
have been shown to be increased in early CKD [32] and increase
with worsening CKD stages [110] (Figs. 3 and 4). The contribution
of myocardial water content to the increased T1 times remains
contentious and to date, T1 times have not been validated with
diffuse interstitial fibrosis in CKD-associated cardiomyopathy.

PATHOGENESIS OF CKD-ASSOCIATED CARDIOMYOPATHY
The pathogenesis of CKD-associated cardiomyopathy is likely to
be multifactorial but can broadly be divided into three categories:

● Increased afterload [111],
● Increased preload [112],
● Intrinsic factors not directly to afterload or preload [113].

Although these categories are considered separately, it is
important to note that there is considerable overlap between

Fig. 4 T1 cardiac magnetic resonance images demonstrating different levels of left ventricular fibrosis in dialysis patients. T1 mapping of
the short axis stacked image of the mid left ventricular cavity (A) (Global T1 time 1385ms) and (B) (Global T1 time 1170ms) of 2 peritoneal
dialysis patients consistent with high and low levels of cardiac fibrosis respectively.
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them [40, 41, 101, 114, 115]. Factors within these categories may
indeed interact and exert their effects synergistically (Fig. 5).

Increased afterload
Raised intra-arterial pressure induces cardiac hypertrophy through
chronic haemodynamic stress on the myocardium. In vitro
experimental models of cardiomyocyte and non-myocyte stretch
resulted in cell hypertrophy and hyperplasia, induction of protein
synthesis and increased expression of prohypertrophic proto-
oncogenes such as fos, jun, myc, Ha-ras, and genes encoding atrial
natriuretic factor and β-myosin heavy chain [116–118]. This was
recapitulated in murine and porcine studies of hypertension and
volume overload where transcription of prohypertrophic genes,
and development of LVH were observed [119–123].

Arterial stiffness/decreased large vessel compliance/vascular calcifi-
cation. Arterial stiffening occurs from the early stages of CKD and
increases with the progression to KFRT [124–126]. The extent of
arterial stiffness can be reliably estimated by non-invasive
measurement of carotid-femoral pulse wave velocity (PWV), which
can confer prognostic value in CKD patients independent of
traditional risk factors [127, 128].
Arterial stiffness is both a cause and result of systolic

hypertension, although extricating the bidirectional relationship
can be challenging [129, 130]. Studies have demonstrated
increased arterial stiffness as a consequence of increased distend-
ing vascular wall stress and remodelling from hypertension itself,
so called pressure-dependent increases in PWV [131–133]. Other
studies show that increased arterial stiffness, more specifically
higher PWV, predicts future development of hypertension
[134–137], possibly as a result of inherent pressure-independent
vasculopathy. In patients with KFRT, PWV is independently
associated with nonfatal stroke and myocardial infarction [126]
and with cardiovascular and all-cause mortality [126, 138, 139]. Of
those patients who died, it was found that the persistence of
increased PWV despite a reduction in blood pressure by
haemodialytic and pharmacological strategies (angiotensin

converting enzyme inhibitor; ACEi) was a significant independent
risk factor. This is in contrast to the surviving patients where a
similar fall in blood pressure was mirrored by a reduction in PWV
[139].
In addition to elevated blood pressure, there are several other

postulated pathophysiological drivers of increased arterial stiffness
in CKD such as activation of the renin-angiotensin-aldosterone
system (RAAS), build-up of uraemic toxins, disordered bone and
mineral metabolism (CKD-MBD), accumulation of advanced glyca-
tion end-products, chronic inflammation and oxidative stress
which adversely affect endothelial function and calcific remodel-
ling of the vessel wall [12, 129]. The reduced vessel compliance is
manifested by hypertension and wide pulse pressure, and
disruptions to end-organ perfusion, resulting in myocardial fibrosis,
increased LV mass/LVH and diastolic dysfunction bearing the
hallmarks of CKD-associated cardiomyopathy [140]. Taken
together, blood pressure reduction alone without ‘de-stiffening’
of the arteries may be insufficient to reduce risk of death in
patients with CKD/KRFT.

Increased preload
Intravascular volume expansion/hypervolaemia, secondary to salt
and water loading, is a frequent occurrence in CKD/KRFT and a
determinant of LV mass and mortality [141, 142]. Indeed, volume
expansion is a major contributor to the hypertension observed in
patients with CKD/KRFT [142, 143]. Reduced GFR, activation of the
RAAS as well as superimposed cardiovascular disease all
contribute to sodium and water retention in these patients
[144–146].
As haemoglobin concentrations fall, complex haemodynamic

compensatory mechanisms are activated to increase cardiac
output and blood flow to compensate for tissue hypoxia [147].
These include a reduction in afterload secondary to reduced
systemic vascular resistance, an increase in preload secondary to
increased venous return, and increased LV function as a
consequence of increased sympathetic tone [148, 149]. Treatment
of anaemia in CKD with erythropoietin stimulating agents (ESAs)

Fig. 5 Pathogenesis of CKD-associated cardiomyopathy. An interplay of pathophysiological processes associated with the chronic kidney
disease milieu contribute to the pathogenesis of CKD-associated cardiomyopathy. These can be broadly divided into factors which increase
afterload, preload, and those which result from maladaptive perturbations of intrinsic factors. AGEs advanced glycation end-products, FGF23
fibroblast growth factor 23, PTH parathyroid hormone, RAAS renin-angiotensin-aldosterone system, SNS sympathetic nervous system.
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reduces stroke volume and cardiac output as a consequence of
both reduced venous return and increased peripheral resistance
[150–153]. These functional changes are paralleled by structural
changes in the LV, with partial reduction of LVH [151, 152]. It
should also be noted that treatment with ESA increases blood
pressure by direct vasomotor effects [154–156].
The use of arteriovenous fistulas for haemodialysis is preferrable

to vascular catheters due to improved dialysis quality and reduced
infection rates [157–159]. However, the creation of a shunt
between a high pressure arterial vasculature and a low resistance
venous system increases cardiac output through the shunting
itself, activation of the sympathetic nervous system, neurohormo-
nal changes, and increased venous return [158]. Chronically
increased preload and cardiac output lead to LVH and right
ventricular remodelling, which in turn is associated with an 3.9-
fold increased risk of death [160]. Several studies of fistulas being
tied off after successful kidney transplantation show some
evidence of LVH regression [161, 162]. However, although creation
of an arteriovenous fistula decreases systemic blood pressure,
ligation increases systolic blood pressure by an average of
5 mmHg [163]. The decision to proceed with fistula ligation
should therefore balance, on an individualised basis, the benefits
of cardiac remodelling regression against the potential adverse
effect on blood pressure control.

Intrinsic factors
In addition to the haemodynamic factors already discussed,
several other factors that become dysregulated in patients with
CKD are involved in the pathogenesis of CKD-associated
cardiomyopathy. These include activation of RAAS, sympathetic
nervous system overactivity, increased transforming growth
factor-beta (TGFß) signalling, insulin resistance, uraemic toxins
(e.g., indoxyl sulfate, p-cresyl sulfate), increase in cardiotonic
steroids, oxidative stress and factors associated with CKD-MBD
namely hyperparathyroidism, vitamin D deficiency, increased
circulating fibroblast growth factor-23 (FGF-23), decreased Klotho
expression and hyperphosphataemia [41, 164–166]. Although
often considered in isolation, there are significant overlaps and
crosstalk between these pathways. For example, FGF-23 activates

RAAS through suppression of ACE2 [167], which downregulates
vasodilatory angiotensin- [1–7], and upregulates plasma/cardiac
Angiotensin II and aldosterone [168–170]. In turn, aldosterone
stimulates FGF-23 transcription in osteoblasts in vitro, an effect
reversed by mineralocorticoid receptor blockade [171]. More
recently, Böckmann et al. showed that FGF23 stimulated expres-
sion of RAAS genes and hypertrophic growth in cultured neonatal
rat ventricular myocytes [172].

TREATMENT OF CKD-ASSOCIATED CARDIOMYOPATHY
Given that CKD-associated cardiomyopathy, and its individual
components, are powerful predictors of cardiovascular mortality in
patients with CKD and KFRT, targeting the mechanisms involved
seems a practical approach to improve outcomes. However, a
meta-analysis assessing the validity of LV mass reduction as a
surrogate marker of all-cause and cardiovascular-mortality in
patients with CKD and KFRT concluded there was no clear
association between intervention-induced change in LV mass and
mortality [173]. It should be noted that, by the authors’ own
admission, most of the included trials were of short duration with
small sample sizes, with either an uncertain or high risk of bias,
and sparse mortality data [173].

Dialysis treatments
Studies have shown that longer, frequent ‘intensive’ dialysis
regimens (Fig. 6) are associated with reductions in LV mass, lower
prevalence of LVH and reduced hospitalisations [174–177].
However, it is not clear if the reductions in LV mass are a direct
consequence of the dialysis treatment - clearance of uraemic
toxins, better phosphate and haemoglobin control; or improved
blood pressure control [178–180]. An intriguing, but small, study
of 54 incident haemodialysis patients found that lowering
dialysate temperature by an average of 1 °C significantly reduced
LV mass (treatment difference between groups 15.6, 95% CI
1.9–29.4 g) measured by CMR over a 12 month period with no
differences in blood pressure between groups [181]. However, 10
of the 54 patients had their 12-month CMR results imputed. This
study finding requires confirmation in larger trials.

Fig. 6 Effect of dialysis regimen on blood pressure, cardiac and other outcomes. Conventional haemodialysis regimens consist of a four-
hour haemodialysis session delivered on alternate days, three times per week. Longer, more frequent dialysis regimens have been trialled,
with benefits on blood pressure, left ventricular mass, mortality, hospitalisations, and quality of life. However, the implementation of such
‘intensive’ regimens significantly increases the demand on healthcare providers and may be associated with risks of infection, vascular access
complications and loss of residual kidney function.
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The previously discussed effects of intensive dialysis on
reduction of hypertension and improvement in LV mass are
encouraging, however it is still unclear as to whether this leads to
better patient survival. A recent meta-analysis encompassing
70,506 patients found that intensive dialysis was associated with
reduced mortality when compared to conventional dialysis, but
the overall quality of the evidence was low [182]. Whilst intensive
dialysis has clear health and quality of life benefits, it needs to be
considered in conjunction with the potential risks of increased
patient and caregiver burden, infection, loss of residual kidney
function and vascular access complications [183].

Transplantation
The gold-standard for the treatment of KFRT is kidney transplanta-
tion [184]. The associated improvement in GFR reduces cardiovas-
cular risk below that of those on waiting lists [185]. However,
cardiovascular risk still remains higher than healthy individuals of
the same age and sex with transplant recipients displaying a three-
fold increased risk [186]. The restoration of kidney function
associated with kidney transplantation improves many factors
thought to cause CKD-associated cardiomyopathy. As a result it is
generally assumed that kidney transplantation reduces LV mass, and
improves diastolic and systolic function, and potentially reverses
myocardial fibrosis [187, 188]. Indeed, review articles continue to
state that CKD-associated cardiomyopathy is reversed by kidney
transplantation. However, these articles frequently will either not cite
any references [41], cite small, uncontrolled studies using either
echocardiography [189] or radionucleotide ventriculography-gated
blood pool scans [187, 190], or refer to other review articles [191].
A recent systematic review and meta-analysis has indeed

confirmed that many echocardiographic studies reported sig-
nificant reductions in LV mass after kidney transplantation [192].
However, this study highlighted key problems in the available
literature. Few studies were blinded or had a control group thus
were prone to bias; meta-analysis of the four studies containing a
control group did not find any association between transplanta-
tion and LV mass. Echocardiography is unreliable for LV mass
determination in dialysis patients [193]; few studies used CMR
which is more reproducible in KFRT patients [40]. Indeed, none of
the three CMR studies included in the review found a significant
change in LV mass.
Intriguingly, a small study in 44 kidney transplant recipients

found a significant reduction in native T1 time at 6 months after
transplantation with no reduction in LV mass [194] A smaller study
found no difference in global T1 times 6 weeks after transplanta-
tion suggesting changes may continue to progress over time
[195]. Larger, controlled studies utilising CMR are required to
further investigate this fundamental question.

Blood pressure treatment
Blood pressure target in chronic kidney disease. Prior to publication
of the SPRINT trial results [196], most societies and guidelines
recommend lowering blood pressure to below 140/90mmHg
[197–201] with some suggesting higher thresholds for the elderly
[197, 198, 201] and lower thresholds for those at higher high risk
including patients with diabetic mellitus and patients with CKD
[197, 198, 201]. It is now recognised that more intensive blood
pressure reduction strategies are effective and safe. The SPRINT
investigators reported a 25% lower risk of major cardiovascular
events such as myocardial infarction, heart failure and stroke and
27% lower risk of all-cause mortality when treating to a target
systolic blood pressure of less than 120mmHg compared to the
standard target of 140mmHg. This was associated with an increase
in complications such as lower serum potassium, sodium, and
syncopal episodes, but no increased risk of falls. Treatment of
hypertension in those with CKD, which formed 28% of the SPRINT
cohort, was associated with improved cardiovascular outcomes and
all-cause mortality, with no adverse effects on kidney function or

increased risk of dialysis. Elderly patients aged over 75 years old also
sustained benefit from more intensive blood pressure control [196].
These data have resulted in lowering of both American and

European blood pressure targets in their respective 2017 [202] and
2018 [203] hypertension guidelines. The recently published Kidney
Disease Improving Global Outcomes (KDIGO) 2021 guideline on the
management of blood pressure in CKD also recommends an
intensive systolic blood pressure target of 120mmHg or less in
patients with CKD (excluding those with a functioning kidney
transplant) with an emphasis on standardised office blood pressure
measurement and lifestyle interventions such as salt restriction and
moderate-intensity exercise [204] (Fig. 7).

Efficacy of blood pressure treatment on left ventricular hypertrophy.
In the general population, regression of LVH is associated with a
significant improvement in cardiovascular events [205]. Several
landmark trials have confirmed that LV regression in response to
treatment with antihypertensive medication is associated with
significant reduction in cardiovascular events [206–209]. All classes
of anti-hypertensive medications have been shown to regress LVH
[210–213]. In general, meta-analyses have shown that ACE-
inhibitors, angiotensin receptor blockers (ARBs) and calcium
channel blockers are more effective than beta-blockers at
regressing LVH [214, 215]. Multiple studies have shown that
“CHIP” diuretics (chlorthalidone, indapamide and potassium-
sparing diuretics/hydrochlorothiazide) are more effective than
ACE-inhibitors/ARBs, as well as hydrochlorothiazide, at reducing
LV mass [216–218] (Fig. 8).
Factors associated with persistent LVH and lack of regression of

LVH with antihypertensive treatment include older age, higher
body mass index, sub-optimal blood pressure control, duration of
hypertension and crucially, the presence of CKD [210, 219, 220].
This, together with the fewer and much smaller studies available
make the literature in patients with CKD/KRFT less clear. Most, but
not all [221, 222] studies of ACEi/ARB compared with placebo or
standard treatment in both patients with CKD [223] or on dialysis
[224–227] have shown no significant reduction in LVM. The same
is true for studies comparing ACEi/ARB with a CCB [228–230] or

Fig. 7 Blood pressure management in chronic kidney disease. The
recently updated Kidney Diseases Improving Global Outcomes
(KDIGO) 2021 Blood Pressure Guideline provides clear recommen-
dations for the management and benefits of blood pressure control
in patients with CKD (incl. transplant recipients).
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beta-blocker [231, 232] which have shown no difference between
agents.
The confounding effect of blood pressure reduction on changes

in LV mass are highlighted by a study examining the cardiovas-
cular effects of spironolactone compared with placebo in early-
stage CKD [233]. In 112 non-diabetic patients with CKD stages 2–3
and well-controlled blood pressure, the addition of spironolactone
25mg once daily for 40 weeks reduced LV mass by 14 g compared
with a non-significant change of 3 g with placebo. However,
significantly greater falls in blood pressure were observed in the
spironolactone group. A subsequent study in 154 patients, with
similar characteristics to the original trial, found no significant
difference in the reduction of LV mass observed with spirono-
lactone compared with chlortalidone over a 40-week period [234].
Importantly, reductions in office and 24-hour blood pressure
readings were not different between groups either.

Angiotensin receptor neprilysin inhibitor. Sacubitril/valsartan are
the first in this new class of angiotensin receptor neprilysin
inhibitors (ARNI), approved for the treatment of heart failure with
reduced ejection fraction (HFrEF) in conjunction with other
standard therapies [235]. The neprilysin inhibitor sacubitril
enhances the activity of the natriuretic peptides which have a
counter-regulatory role in conditions linked to RAAS activation
such as heart failure and CKD through increased sodium & water
excretion [236, 237]. Its use in combination with valsartan prevents
reflex activation of RAAS [238]. Clinical studies have shown

sacubitril/valsartan to reduce the risk of death and hospitalisation
when compared to enalapril [239], and provide a further reduction
to blood pressure versus valsartan alone [240]. In patients with
CKD and HFrEF, a meta-analysis of randomised control trials
comparing 3,460 patients on an ARNI versus a RAAS-blocker found
that ARNIs significantly reduced blood pressure and N-terminal
pro-brain natriuretic peptide (NT-proBNP, and was mildly reno-
protective [241]. Patients with CKD can present with diastolic
dysfunction only, or heart failure with preserved ejection fraction
(HFpEF). The efficacy of ARNIs in HFpEF is less convincing.
PARAGON-HF studied 4,796 patients with LV ejection fraction
≥45% and reported no significant change in heart failure
hospitalisations and cardiovascular death when compared to
valsartan alone [242]. In the PARALLAX trial, ARNI did not increase
functional- or symptom-based scores despite a 16% reduction in
NT-proBNP versus RAAS inhibition/placebo [243].

Mineralocorticoid receptor antagonists. It is well-established that
aldosterone promotes cardiovascular damage and high concen-
trations are associated with LVH [244, 245] and myocardial fibrosis
both in experimental and human studies [246, 247]. The
mineralocorticoid receptor (MR) is expressed in vascular smooth
muscle, as well as cardiomyocytes and myofibroblasts [248], and
may directly stimulate proliferation of myofibroblasts [249].
Aldosterone directly induces cardiac hypertrophy, ventricular
remodelling, arrhythmia and ischaemia, independently of its
hemodynamic effects [250] and it appears that progression from

Fig. 8 Comparing the cardiac effects of conventional antihypertensive therapy. Several landmark trials and meta-analyses have compared
the efficacy of antihypertensive drug classes on cardiac functional, structural, and mortality endpoints.
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LVH to cardiac failure is mediated by aldosterone through the MR
[251]. Mineralocorticoid receptor antagonists (MRA) have consis-
tently shown beneficial effects on left ventricular dilation, cardiac
function, fibrosis or collagen content in preclinical studies
[252–254] and also regress LVH in clinical trials [212]. MRA have
consistently been shown to improve outcomes in patients with
HFrEF and potentially in patients with HFpEF [255].
Whether the lowering of LV mass in CKD patients is dependent

on the blood pressure lowering effect of MRAs is unclear
[233, 234]. Recently two large placebo-controlled studies with
the non-steroidal MRA finerenone have shown significant reduc-
tions in cardiovascular events and mortality in patients with
diabetic nephropathy with little effect on blood pressure
[256–258]. Consistent with the effect of blood pressure on stroke
risk [203, 259] the incidence of stroke did not vary between
groups [255]. The lower incidence of hyperkalaemia versus
steroidal MRAs (spironolactone and eplerenone) makes finerenone
an attractive option for the treatment of CKD-associated
cardiomyopathy [255].

Sodium-glucose co-transporter-2 inhibitors. Sodium-glucose co-
transporter-2 (SGLT2) inhibitors are a recent class of oral
antidiabetic agents [260, 261]. They inhibit renal glucose
reabsorption and several SGLT2-inhibitors are licensed in various
countries for the treatment of diabetes mellitus. In addition
SGLT2-inhibitors significantly reduce weight through glycosuria-
associated calorie loss [260, 261]. They also decrease sodium-
reabsorption exhibiting a mild natriuretic and diuretic effect
[260, 261] (Fig. 9).
A recent meta-analysis of large RCTs clearly demonstrated a

23% reduction in CV morbidity and mortality, especially heart
failure hospitalisations in patients with diabetes mellitus [262].
Similar results are emerging in patients with CKD and with heart
failure without diabetes [263, 264]. Short-term, mechanistic
studies have shown that SGLT2-inhibitors reduce LV mass in
diabetics with [265] and without LVH [266]. These early effects of
SGLT2-inhibitors on LV remodelling are consistent with their rapid
impact on cardiovascular death and heart failure hospitalisation
observed in the trials [267]. In addition SGLT2-inhibitors have been
shown to improve LV diastolic dysfunction [268, 269].

Several mechanisms have been proposed for the reduction in
LV mass and improved diastolic dysfunction observed with SGLT2-
inhibitors [267] (Fig. 9). Their effects on lowering intracellular
sodium concentrations in the heart have however recently been
disproved [270, 271]. It should be noted that SGLT2-inhibitors also
significantly lower systolic and diastolic blood pressure by 3–5/
1–2mmHg [261], through their diuretic and natriuretic actions, as
well as reported reductions in sympathetic activity, arterial
stiffness and vascular resistance [260, 261] (Fig. 9). A significant
correlation between blood pressure reduction and regression of
LVH with SGLT2-inhibitor use has been reported [269]. SGLT2-
inhibitors might therefore be useful agents to improve CKD-
associated cardiomyopathy acting via both blood pressure
reduction and blood pressure independent mechanisms.

Renal sympathetic denervation. Hypertension can be challenging
to control in CKD, with the prevalence of apparent resistant
hypertension reported to be as high as 40% [272]. Whilst the true
prevalence is likely to be lower after accounting for medicines
nonadherence and white coat syndrome, patients with true resistant
hypertension are at increased risk of adverse cardiovascular
outcomes compared with those who are treatment-responsive
[273]. Following initial disappointment [274], several recent rando-
mised sham-controlled trials have now shown that renal denerva-
tion therapy can effectively reduce blood pressure [275–279]. The
latest analyses of 3-year data from the Global SYMPLICITY Registry
provide encouraging news for patients with CKD, who experience a
similar reduction in blood pressure following renal denervation to
those without renal disease, and also demonstrate the safety of the
procedure [280, 281]. The longer-term effects on renal function and
cardiovascular events are yet to be determined, with trials currently
ongoing (NCT01888315, NCT04264403).

Treating individual factors
Anaemia. The presence of anaemia is associated with the
development of LVHH and heart failure in patients with CKD
[282, 283], KFRT [284, 285], and kidney transplant recipients
[286, 287]. Correction of severe anaemia with ESA is associated
with a reduction in LV mass [288]. However, correction of
moderate anaemia to target haemoglobins above 12 g/dL appears

Fig. 9 Pleiotropic effects of sodium-glucose cotransporter type 2 inhibition. Sodium-glucose cotransporter type 2 inhibitors have
traditionally been an effective antidiabetic therapy. Recent trials have demonstrated a multitude of beneficial cardiorenal, metabolic and
vascular effects, which underpin the improvement in cardiovascular and renal outcomes independent of improved glycaemic control. Some
of these mechanisms have been summarised.
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to have no effect on LV mass [288]. Interestingly, the correction/
normalisation of anaemia to targets above 12 g/dL have
consistently been shown to increase the risk of myocardial
infarction, heart failure and all-cause mortality in patients with
CKD and KFRT [289–292].

Factors associated with CKD-MBD. CKD-MBD encompasses the
progressive deterioration in the homoeostasis of calcium,
phosphate due to disruption in circulating hormones FGF23 and
its co-receptor Klotho, PTH and vitamin D (Fig. 10). Higher
circulating levels of phosphate are associated with higher LV mass
and LVH in the general population, patients with CKD and in
dialysis patients [164, 293, 294]. However, the relationship
between serum phosphate and increased LV mass has not yet
been proven to be causal although a small, recent study reported
a significant association between reduction in serum phosphate
and regression of LV mass [295].
Low levels of vitamin D have been associated with higher blood

pressure [296], a higher incidence of hypertension [297], and LVH,
possibly mediated by parathyroid hormone [298, 299]. Patients with
CKD often develop vitamin D (1,25-dihydroxyvitamin D3/calcitriol)
deficiency because of a lack of its precursor, 25-hydroxyvitamin D3
and impaired activity of the kidney enzyme 1α-hydroxylase [300].
Observational studies have suggested a beneficial association
between therapy with calcitriol or related analogues and reduced
cardiovascular events [301–305] with experimental models suggest-
ing that these actions are mediated by a reduction in LVH, and
improved LV diastolic function [299, 306–309]. However, to date,
randomised controlled trials have not shown a significant reduction
in either blood pressure or LVH with vitamin D treatment [310, 311].

The phosphaturic hormone FGF23 is markedly increased in
patients with CKD, and dialysis [165, 312–314] and has been causally
linked to the development of LVH [315] and LV dysfunction [316]
and arrythmias such as AF [317]. The calcimimetic agent cinacalcet
reduces circulating FGF23 and has been shown to reduce
cardiovascular death, sudden cardiac death and heart failure in
patients on dialysis [318]. However, it should be noted that
calcimimetics appear to have a consistent blood pressure lowering
effect in experimental models of uraemia and patients with CKD
and KFRT [295, 319–322].
The FGF23 co-receptor αKlotho is a protein severely down-

regulated in CKD [323] due to vitamin D deficiency [324, 325], RAAS
overactivity [326, 327], inflammation [328] and also by FGF23 excess
[329]. In haemodialysis patients, αKlotho deficiency is a strong
predictor of cardiovascular events and mortality [330, 331]. In its
secreted, circulating form, soluble αKlotho exerts a broad array of
biological functions as evidenced in studies of αKlotho-deficient
mice which manifested an ageing phenotype of phosphate
imbalance, osteoporosis/osteopenia [332], vascular calcification,
growth retardation, emphysema [333] and premature death [334],
cardiac hypertrophy and fibrosis [335–337]. In addition, αKlotho has
a role in blood pressure homoeostasis. In a study of 2774 subjects,
higher αKlotho was associated with a lower risk of incident
hypertension [338]. Preclinical studies have shed light on the
potential underlying mechanisms, including αKlotho inhibition of
inflammation-associated renal sodium retention [339, 340] and
endothelial dysfunction through reduced oxidative stress and
increased nitric oxide availability [341–343] in murine and in vitro
studies. Klotho supplementation in uraemic and diabetic mice
protected against uraemic toxin [344], angiotensin II [345],

Fig. 10 Cardiovascular consequences of CKD-MBD. Chronic kidney disease – mineral bone disorder (CKD-MBD) describes the alterations in
circulating and tissue levels of calcium and phosphate because of changes in parathyroid hormone, vitamin D, fibroblast growth factor 23
(FGF23) and its coreceptor Klotho. These biochemical changes are associated with the cardiovascular remodelling and clinical manifestations
observed in patients with CKD.
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inflammation [345, 346], oxidative stress [346] and myocardial
FGF21-induced LVH [347]. The use of recombinant αKlotho in the
treatment of hypertension and CKD-associated cardiomyopathy
remains a promising therapeutic option [348] although yet to
trialled in larger mammals.

Weight loss. Obesity, defined as a body mass index of ≥30 kg/m2,
is a strong predictor of metabolic syndrome and plays a critical
role in the development of cardiovascular and kidney disease
[349–353]. In a meta-analysis of 1022 obese patients with
preserved systolic function, surgical bariatric interventions
resulted in a decrease in LV mass and improved LV diastolic
function during a mean follow-up period of 16 months [354].
Whilst lifestyle interventions can be effective in the short term,
bariatric procedures have been proven to result in more persistent
weight loss compared to non-surgical approaches [355]. A
randomised controlled trial of 41 hypertensive, obese patients
found that a mean weight loss of 8.3 kg achieved through lifestyle
changes led to a 16% reduction (adjusted for body surface area) in
LV mass, independent of blood pressure changes [356]. This is
particularly intriguing as weight loss has also been associated with
reduction in proteinuria and improved renal function [357–359].
However, data on the longer-term outcomes of lifestyle interven-
tions in obese, diabetic individuals demonstrate no significant
difference in cardiovascular events at 10 [360] and 20 [361] years
of follow-up. Although few in number, recent observational
studies reported significantly lower rates of cardiovascular events
and death in obese patients 5–15 years following bariatric surgery
[362–364]. How these data can be extrapolated to patients with
kidney disease remains to be investigated.

CONCLUSIONS AND FUTURE PERSPECTIVES
The pathophysiology of CKD-associated cardiomyopathy is
extremely complex and involves multiple inter-related mechan-
isms. Increasing evidence linking individual factors to its aetiology
may well lead to novel treatments in the future. However, the
current evidence continues to suggest that the diagnosis,
characterisation, and optimisation of treatment of hypertension
is the cornerstone of treatment for now. To date, specific, blood
pressure independent, beneficial treatment effects on either LV
mass or hard clinical end points have not been convincingly
demonstrated. While further research into potential treatments
targeting molecular aetiological pathways needs to continue,
research into the optimal blood pressure targets, monitoring
strategies and antihypertensive regimens, for individuals at
different stages of CKD and with KFRT needs to progress in
parallel.
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