Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Echoes from Gaea, Poseidon, Hephaestus, and Prometheus: environmental risk factors for high blood pressure

Abstract

High blood pressure (BP) affects over one billion people and is the leading risk factor for global mortality. While many lifestyle and genetic risk factors are well-accepted to increase BP, the role of the external environment is typically overlooked. Mounting evidence now supports that numerous environmental factors can promote an elevation in BP. Broadly speaking these include aspects of the natural environment (e.g., cold temperatures, higher altitude, and winter season), natural disasters (e.g., earthquakes, volcanic eruptions), and man-made exposures (e.g., noise, air pollutants, and toxins/chemicals). This is important for health care providers to recognize as one (or several) of these environmental factors could be playing a clinically meaningful role in elevating BP or disrupting hypertension control among their patients. At the population level, certain environmental exposures may even be contributing to the growing pandemic of hypertension. Here we provide an updated review of the literature linking environment exposures with high BP and outline practical recommendations for clinicians.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Roth GA, Huffman MD, Moran AE, Feigin V, Mensah GA, Naghavi M, et al. Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation. 2015;132:1667–78.

    PubMed  Google Scholar 

  2. Rahimi K, Emdin CA, MacMahon S. The epidemiology of blood pressure and its worldwide management. Circ Res. 2015;116:925–36.

    CAS  PubMed  Google Scholar 

  3. Bloch MJ. Worldwide prevalence of hypertension exceeds 1.3 billion. J Am Soc Hypertens. 2016;10:753–4.

    PubMed  Google Scholar 

  4. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et.al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2017 (in press).

  5. Taler SJ. Secondary causes of hypertension. Prim Care. 2008;35:489–500.

    PubMed  Google Scholar 

  6. Akpunonu BE, Mulrow PJ, Hoffman EA. Secondary hypertension: evaluation and treatment. Dis Mon. 1996;42:609–722.

    CAS  PubMed  Google Scholar 

  7. Bolívar JJ. Essential hypertension: an approach to its etiology and neurogenic pathophysiology. Int J Hypertens. 2013;2013:547809.

    PubMed  PubMed Central  Google Scholar 

  8. Gaziano TA. Cardiovascular disease in the developing world and its cost-effective management. Circulation. 2005;112:3547–53.

    PubMed  Google Scholar 

  9. Bertrand E. Cardiovascular Disease in Developing Countries. New York, NY: McGraw-Hill; 1999.

    Google Scholar 

  10. Brundtland GH. The World Health Report 2002: reducing risks, promoting healthy life. Geneva: World Health Organization; 2002.

    Google Scholar 

  11. Muluneh AT, Haileamlak A, Tessema F, Alemseged F, Woldemichael K, Asefa M. Population based survey of chronic non-communicable diseases at gilgel gibe field research center, southwest Ethiopia. Ethiop J Health Sci. 2012;22(S):7–18.

    PubMed  PubMed Central  Google Scholar 

  12. Damasceno A, Azevedo A, Silva-Matos C, Prista A, Diogo D, Lunet N. Hypertension prevalence, awareness, treatment, and control in mozambique: urban/rural gap during epidemiological transition. Hypertension. 2009;54:77–83.

    CAS  PubMed  Google Scholar 

  13. Dewhurst MJ, Dewhurst F, Gray WK, Chaote P, Orega GP, Walker RW. The high prevalence of hypertension in rural-dwelling Tanzanian older adults and the disparity between detection, treatment and control: a rule of sixths? J Hum Hypertens. 2013;27:374–80.

    CAS  PubMed  Google Scholar 

  14. Iwelunmor J, Airhihenbuwa CO, Cooper R, Tayo B, Plange-Rhule J, Adanu R, et al. Prevalence, determinants and systems-thinking approaches to optimal hypertension control in West Africa. Glob Health. 2014;10:42.

    Google Scholar 

  15. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134:441–50.

    PubMed  PubMed Central  Google Scholar 

  16. Jin C-N, Yu C-M, Sun J-P, Fang F, Wen Y-N, Liu M, et al. The healthcare burden of hypertension in Asia. Heart Asia. 2013;5:238–43.

    PubMed  PubMed Central  Google Scholar 

  17. Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension. 2006;47:296–308.

    CAS  PubMed  Google Scholar 

  18. Appel LJ. Lifestyle modification as a means to prevent and treat high blood pressure. J Am Soc Nephrol. 2003;14:S99–S102.

    PubMed  Google Scholar 

  19. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. American Heart Association. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation. 2017;135:e146–e603.

    PubMed  PubMed Central  Google Scholar 

  20. Münzel T, Sorensen M, Gori T, Schmidt F, Rao X, Brook J, et al. Environmental stressors and cardio-metabolic disease: part 1: epidemiologic evidence supporting a role for noise and air pollution and effects of mitigation strategies. Eur Heart J. 2017;38:550–6.

    PubMed  Google Scholar 

  21. Brook RD, Newby DE, Rajagopalan S. Air pollution and cardiometabolic disease: an update and call for clinical trials. Am J Hypertens. 2017;31:1–10.

    PubMed  PubMed Central  Google Scholar 

  22. Brook RD. The environment and blood pressure. Cardiol Clin. 2017;35:213–21.

    PubMed  Google Scholar 

  23. Wang Q, Li C, Guo Y, Barnett AG, Tong S, Phung D, et al. Environmental ambient temperature and blood pressure in adults: a systematic review and meta-analysis. Sci Total Environ. 2017;575:276–86.

    CAS  PubMed  Google Scholar 

  24. Alpérovitch A, Lacombe J-M, Hanon O, Dartigues JF, Richtie K, Ducimetiere P, et al. Relationship between blood pressure and outdoor temperature in a large sample of elderly individuals. The Three-City Study. Arch Intern Med. 2009;169:75–80.

    PubMed  Google Scholar 

  25. Halonen JI, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J. Relationship between outdoor temperature and blood pressure. Occup Environ Med. 2011;68:296–301.

    PubMed  Google Scholar 

  26. Modesti PA, Borabito M, Bertolozzi I, Massetti L, Panci G, Lumachi C, et al. Weather-related changes in 24-hour blood pressure profle: effects of age and implications for hypertension management. Hypertension. 2006;47:1–7.

    Google Scholar 

  27. Sun Z. Cardiovascular responses to cold exposure. Front Biosci. 2010;2:495–503.

    Google Scholar 

  28. Saeki K, Obayashi K, Iwamoto J, Tone N, Okamoto N, Tomioka K, et al. Stronger association of indoor temperature than outdoor temperature with blood pressure in colder months. J Hypertens. 2014;32:1582–9.

    CAS  PubMed  Google Scholar 

  29. Brook RD, Shin HH, Bard RL, Burnett R, Vette A, Croghan C, et al. Can personal exposures to higher nighttime and early morning temperatures increase blood pressure? J Clin Hypertens. 2011;13:881–8.

    Google Scholar 

  30. Lewington S, Li L, Sherliker P, Guo Y, Millwood I, Bian Z, et al. Seasonal variation in blood pressure and its relationship with outdoor temperature in 10 diverse regions of China: the China Kadoorie Biobank. J Hypertens. 2012;30:1383–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang L, Li L, Lewington S, Guo Y, Sherliker P, Bian Z, et al. Outdoor temperature, blood pressure, and cardiovascular disease mortality among 23000 individuals with diagnosed cardiovascular diseases from China. Eur Heart J. 2015;36:1178–85.

    PubMed  PubMed Central  Google Scholar 

  32. Su D, Du H, Zhang X, Qian Y, Chen L, Chen Y, et al. Season and outdoor temperature in relation to detection and control of hypertension in a large rural Chinese population. Int J Epidemiol. 2014;43:1835–45.

    PubMed  PubMed Central  Google Scholar 

  33. Chen Q, Wang J, Tian J, Tang X, Yu C, Marshall RJ, et al. Association between ambient temperature and blood pressure and blood pressure regulators: 1831 hypertensive patients followed up for three years. PLoS ONE. 2013;8:e84522.

    PubMed  PubMed Central  Google Scholar 

  34. van den Hurk K, de Kort WL, Deinum J, Atsma F. Higher outdoor temperatures are progressively associated with lower blood pressure: a longitudinal study in 100,000 healthy individuals. J Am Soc Hypertens. 2015;9:536–43.

    PubMed  Google Scholar 

  35. Modesti PA, Morabito M, Massetti L, Rapi S, Orlandini S, Mancia G, et al. Seasonal blood pressure changes: an independent relationship with temperature and daylight hours. Hypertension. 2013;61:908–14.

    CAS  PubMed  Google Scholar 

  36. Fedecostante M, Barbatelli P, Guerra F, Espinosa E, Dessì-Fulgheri P, Sarzani R. Summer does not always mean lower: seasonality of 24 h, daytime, and night-time blood pressure. J Hypertens. 2012;30:1392–8.

    CAS  PubMed  Google Scholar 

  37. Giorgini P, Rubenfire M, Das R, Gracik T, Wang L, Morishita M, et al. Particulate matter air pollution and ambient temperature: opposing effects on blood pressure in high-risk cardiac patients. J Hypertens. 2015;33:2032–8.

    CAS  PubMed  Google Scholar 

  38. Nafstad MC. Associations between environmental exposure and blood pressure among participants in the Oslo Health Study (HUBRO). Eur J Epidemiol. 2006;21:485–91.

    PubMed  Google Scholar 

  39. Woodhouse PR, Khaw K-T, Plummer M. Seasonal variation of blood pressure and its relationship to ambient temperature in an elderly population. J Hypertens. 1993;11:1267–74.

    CAS  PubMed  Google Scholar 

  40. Al-Tamre YY, Al-Hayali JMT, Al-Ramadhan EAH. Seasonality of hypertension. J Clin Hypert. 2008;10:125–9.

    Google Scholar 

  41. Rostand SG. Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension. 1997;30:150–6.

    CAS  PubMed  Google Scholar 

  42. Goldstein MR, Mascitelli L, Pezzetta F. Regarding the inverse relationship between blood pressure and outdoor temperature: it is the sun. Arch Intern Med. 2009;169:1167.

    PubMed  Google Scholar 

  43. Algert CS, Roberts CL, Shand AW, Morris JM, Ford JB. Seasonal variation in pregnancy hypertension is correlated with sunlight intensity. Am J Obstet Gynecol. 2010;203:e211–5.

    Google Scholar 

  44. Handler J. Seasonal variability of blood pressure in California. J Clin Hypertens. 2011;13:856–60.

    Google Scholar 

  45. Charach G, Rabinovich PD, Weintraub M. Seasonal changes in blood pressure and frequency of related complications in elderly Israeli patients with essential hypertension. Gerontology. 2004;50:315–21.

    PubMed  Google Scholar 

  46. Morabito M, Crisci A, Vallorani R, Modesti PA, Gensini GF, Orlandini S. Innovative approaches helpful to enhance knowledge on weather-related stroke events over a wide geographical area and a large population. Stroke. 2011;42:593–600.

    PubMed  Google Scholar 

  47. Preval N, Keall M, Telfar-Barnard L, Grimes A, Howden-Chapman P. Impact of improved insulation and heating on mortality risk of older cohort members with prior cardiovascular or respiratory hospitalisations. BMJ Open. 2017;7:e018079.

    PubMed  PubMed Central  Google Scholar 

  48. Hasler E,Suter PM,Vetter W, Race specific altitude effects on blood pressure. J Hum Hypertens. 1997;11:435–8.

    CAS  PubMed  Google Scholar 

  49. Sizlan A, Ogur R, Ozer M, et al. Blood pressure changes in young male subjects exposed to a median altitude. Clin Auton Res. 2008;18:84–89.

    PubMed  Google Scholar 

  50. Handler J. Altitude-related hypertension. J Clin Hypertens. 2009;11:161–5.

    Google Scholar 

  51. Luks AM. Should travelers with hypertension adjust their medications when traveling to high altitude?. High Alt Med Biol. 2009;10:11–14.

    CAS  PubMed  Google Scholar 

  52. Yanamandra U, Singh SP, Yanamandra S, Mulajkar D, Grewal RS, Singh S, et al. Endothelial markers in high altitude induced systemic hypertension (HASH) at moderate high altitude. Med J Armed Forces India. 2017;73:363–9.

    PubMed  PubMed Central  Google Scholar 

  53. Rimoldi SF, Sartori C, Seiler C, Delacretaz E, Mattle HP, Scherrer U, et al. High-altitude exposure in patients with cardiovascular disease: risk assessment and practical recommendations. Prog Cardiovasc Dis. 2010;52:512–24.

    PubMed  Google Scholar 

  54. Dhar P, Sharma VK, Hota KB, Das SK, Hota SK, Srivastava RB, et al. Autonomic cardiovascular responses in acclimatized lowlanders on prolonged stay at high altitude: a longitudinal follow up study. PLoS ONE. 2014;9:e84274.

    PubMed  PubMed Central  Google Scholar 

  55. Mingji C, Onakpoya IJ, Perera R, Ward AM, Heneghan CJ. Relationship between altitude and the prevalence of hypertension in Tibet: a systematic review. Heart. 2015;101:1054–60.

    PubMed  Google Scholar 

  56. Parati G, Bilo G, Faini A, Bilo B, Revera M, Giuliano A, et al. Changes in 24 h ambulatory blood pressure and effects of angiotensin II receptor blockade during acute and prolonged high-altitude exposure: a randomized clinical trial. Eur Heart J. 2014;35:3113–22.

    CAS  PubMed  Google Scholar 

  57. Bilo G, Villafuerte FC, Faini A, Ana-Ramirez C, Giuliano A, Caravita S, et al. Ambulatory blood pressure in untreated and treated hypertensive patients at high altitude: the High Altitude Cardiovascular Research-Andes study. Hypertension. 2015;65:1266–72.

    CAS  PubMed  Google Scholar 

  58. Burtscher M. Effects of living at higher altitudes on mortality: a narrative review. Aging Dis. 2013;5:274–80.

    PubMed  PubMed Central  Google Scholar 

  59. Bärtsch P, Swenson ER. Clinical practice: acute high-altitude illnesses. N Engl J Med. 2013;368:2294–302.

    PubMed  Google Scholar 

  60. Bernabé-Ortiz A, Carrillo-Larco RM, Gilman RH, Checkley W, Smeeth L, Miranda JJ, CRONICAS Cohort Study Group. Impact of urbanisation and altitude on the incidence of, and risk factors for, hypertension. Heart. 2017;103:827–33.

    PubMed  Google Scholar 

  61. Ashraf MZ. Hypertension at high altitude: the interplay between genetic and biochemical factors in the setting of oxidative stress. Hypertens Res. 2016;39:199–200.

    CAS  PubMed  Google Scholar 

  62. Norboo T, Stobdan T, Tsering N, Angchuk N, Tsering P, Ahmed I, et al. Prevalence of hypertension at high altitude: cross-sectional survey in Ladakh, Northern India 2007-2011. BMJ Open. 2015;5:e007026.

    PubMed  PubMed Central  Google Scholar 

  63. Gilbert-Kawai E, Martin D, Grocott M, Levett D. High altitude-related hypertensive crisis and acute kidney injury in an asymptomatic healthy individual. Extrem Physiol Med. 2016;5:10.

    PubMed  PubMed Central  Google Scholar 

  64. Young JH. Evolution of blood pressure regulation in humans. Curr Hypertens Rep. 2007;9:13–8.

    PubMed  Google Scholar 

  65. Shiue I, Shiue M. Indoor temperature below 18°C accounts for 9% population attributable risk for high blood pressure in Scotland. Int J Cardiol. 2014;171:e1–e2.

    PubMed  Google Scholar 

  66. Elford J, Phillips A, Thomson AG, Shaper AG. Migration and geographic variations in blood pressure in Britain. BMJ. 1990;300:291–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cabrera SE, Mindell JS, Toledo M, Alvo M, Ferro CJ. Associations of blood pressure with geographical latitude, solar radiation, and ambient temperature: results from the Chilean Health Survey, 2009-2010. Am J Epidemiol. 2016;183:1071–3.

    PubMed  Google Scholar 

  68. Duranton F, Kramer A, Szwarc I, Bieber B, Gayrard N, Jover B, et al. Geographical variations in blood pressure level and seasonality in hemodialysis patients. Hypertension. 2018;71:289–96.

    CAS  PubMed  Google Scholar 

  69. Ohira T, Hosoya M, Yasumura S, Satoh H, Suzuki H, Sakai A, Fukushima Health Management Survey Group. et al. Evacuation and risk of hypertension after the great east Japan earthquake: the Fukushima Health Management Survey. Hypertension. 2016;68:558–64.

    CAS  PubMed  Google Scholar 

  70. Kario K. Disaster hypertension - its characteristics, mechanism, and management. Circ J. 2012;76:553–62.

    CAS  PubMed  Google Scholar 

  71. Trevisan M, Celentano E, Meucci C, Farinaro E, Jossa F, Krogh V, et al. Short-term effect of natural disasters on coronary heart disease risk factors. Arteriosclerosis. 1986;6:491–4.

    CAS  PubMed  Google Scholar 

  72. Trevisan M, Jossa F, Farinaro E, Krogh V, Panico S, Giumetti D, et al. Earthquake and coronary heart disease risk factors: a longitudinal study. Am J Epidemiol. 1992;135:632–7.

    CAS  PubMed  Google Scholar 

  73. Saito K, Kim JI, Maekawa K, Ikeda Y, Yokoyama M. The great Hanshin-Awaji earthquake aggravates blood pressure control in treated hypertensive patients. Am J Hypertens. 1997;10:217–21.

    CAS  PubMed  Google Scholar 

  74. Cwikel JG, Goldsmith JR, Kordysh E, Quastel M, Abdelgani A. Blood pressure among immigrants to Israel from areas affected by the Chernobyl disaster. Public Health Rev. 1997;25:317–35.

    CAS  PubMed  Google Scholar 

  75. Bland SH, Farinaro E, Krogh V, Jossa F, Scottoni A, Trevisan M. Long term relations between earthquake experiences and coronary heart disease risk factors. Am J Epidemiol. 2000;151:1086–90.

    CAS  PubMed  Google Scholar 

  76. Fonseca VA, Smith H, Kuhadiya N, Leger SM, Yau CL, Reynolds K, et al. Impact of a natural disaster on diabetes: Exacerbation of disparities and long-term consequences. Diabetes Care. 2009;32:1632–8.

    PubMed  PubMed Central  Google Scholar 

  77. Krousel-Wood MA, Islam T, Muntner P, Stanley E, Phillips A, Webber LS, et al. Medication adherence in older clinic patients with hypertension after Hurricane Katrina: implications for clinical practice and disaster management. Am J Med Sci. 2008;336:99–104.

    PubMed  PubMed Central  Google Scholar 

  78. Azuma T, Seki N, Tanabe N, Saito R, Honda A, Ogawa Y, et al. Prolonged effects of participation in disaster relief operations after the Mid-Niigata earthquake on increased cardiovascular risk among local governmental staff. J Hypertens. 2010;28:695–702.

    CAS  PubMed  Google Scholar 

  79. Kario K, Matsuo T, Ishida T, Shimada K. “White coat” hypertension and the Hanshin-Awaji earthquake. Lancet. 1995;345:1365.

    CAS  PubMed  Google Scholar 

  80. Kario K, Matsuo T, Shimada K. Follow-up of white-coat hypertension in the Hanshin-Awaji earthquake. Lancet. 1996;347:626–7.

    CAS  PubMed  Google Scholar 

  81. Minami J, Kawano Y, Ishimitsu T, Yoshimi H, Takishita S. Effect of the Hanshin-Awaji earthquake on home blood pressure in patients with essential hypertension. Am J Hypertens. 1997;10:222–5.

    CAS  PubMed  Google Scholar 

  82. Kamoi K, Tanaka M, Ikarashi T, Miyakoshi M. Effect of the 2004 Mid-Niigata Prefecture earthquake on home blood pressure measurement in the morning in type 2 diabetic patients. Clin Exp Hypertens. 2006;28:719–29.

    PubMed  Google Scholar 

  83. Chen Y, Li J, Xian H, Li J, Liu S, Liu G, et al. Acute cardiovascular effects of the Wenchuan earthquake: ambulatory blood pressure monitoring of hypertensive patients. Hypertens Res. 2009;32:797–800.

    PubMed  Google Scholar 

  84. Kario K, Matsuo T, Kobayashi H, Yamamoto K, Shimada K. Earthquake-induced potentiation of acute risk factors in hypertensive elderly patients: possible triggering of cardiovascular events after a major earthquake. J Am Coll Cardiol. 1997;29:926–33.

    CAS  PubMed  Google Scholar 

  85. Yabe H, Suzuki Y, Mashiko H, Nakayama Y, Hisata M, Niwa S, et al. Mental Health Group of the Fukushima Health Management Survey. Psychological distress after the Great East Japan earthquake and Fukushima Daiichi Nuclear Power Plant accident: results of a mental health and lifestyle survey through the Fukushima Health Management Survey in FY2011 and FY2012. Fukushima J Med Sci. 2014;60:57–67.

    PubMed  Google Scholar 

  86. Giorgini P, Striuli R, Petrarca M, Petrazzi L, Pasqualetti P, Properzi G, et al. Long-term blood pressure changes induced by the 2009 L’Aquila earthquake: assessment by 24 h ambulatory monitoring. Hypertens Res. 2013;36:795–8.

    PubMed  Google Scholar 

  87. Baxter PJ, Baubron JC, Coutinho R. Health hazards and disaster potential of ground gas emissions at Furnas volcano, Sao Miguel, Azores. J Volcanol Geotherm Res. 1999;92:95–106.

    CAS  Google Scholar 

  88. Small C, Naumann T. The global distribution of human population and recent volcanism. Environ Hazard. 2001;3:93–109.

    Google Scholar 

  89. Williams-Jones G, Rymer H. Hazards of volcanic gases. In: Sigurdsson H, editor. Encyclopedia of volcanoes. San Diego: Academic Press; 2000. p. 997–1004.

    Google Scholar 

  90. Chow CD, Grandinetti A, Fernandez E, Sutton AJ, Elias T, Brooks B, et al. Is volcanic air pollution associated with decreased heart-rate variability? Heat Asia. 2010;2:36–41.

    Google Scholar 

  91. Hansell A, Oppenheimer C. Health hazards from volcanic gases: a systematic literature review. Arch Environ Health. 2004;59:628–39.

    CAS  PubMed  Google Scholar 

  92. Sprowl GM. Hazards of Hawaii Volcanoes National Park. Hawaii J Med Public Health. 2014;73(11 Suppl 2):17–20.

    PubMed  PubMed Central  Google Scholar 

  93. Longo BM, Yang W, Green JB, Crosby FL, Crosby VL. Acute health effects associated with exposure to volcanic air pollution (vog) from increased activity at Kilauea Volcano in 2008. J Toxicol Environ Health A. 2010;73:1370–81.

    CAS  PubMed  Google Scholar 

  94. Tam E, Miike R, Labrenz S, Sutton AJ, Elias T, Davis J, et al. Volcanic air pollution over the island of Hawaiʹi: Emissions, dispersal, and composition. Association with respiratory symptoms and lung function in HawaiʹI Island school children. Environ Intern. 2016;92-93:543–52.

    CAS  Google Scholar 

  95. Longo BM, Rossignol A, Green JB. Cardiorespiratory health effects associated with sulphurous volcanic air pollution. Public Health. 2008;122:809e20.

    Google Scholar 

  96. Longo BM. Adverse health effects associated with increased activity at Kilauea volcano: A repeated population-based survey. ISRN Public Health 2013; Article ID 475962.

  97. United States Environmental Protection Agency, “National Ambient Air Quality Standards, Sulfur dioxide,” 2010, http://www.epa.gov/air/criteria.html.

  98. WHO, WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide, Global Update 2005, Summary of Risk Assessment. World Health Organization, Geneva, Switzerland, 2006.

  99. Yang BY, Qian Z, Howard SW, Vaughn MG, Fan SJ, Liu KK, et al. Global association between ambient air pollution and blood pressure: a systematic review and meta-analysis. Environ Pollut. 2018;235:576–88.

    CAS  PubMed  Google Scholar 

  100. Sentell TL, Juarez DT, Ahn HJ, Tseng CW, Chen JJ, Salvail FR, et al. Disparities in diabetes-related preventable hospitalizations among working-age Native Hawaiians and Asians in Hawaii. Hawaii J Med Public Health. 2014;73(12 Suppl 3):8–13.

    PubMed  PubMed Central  Google Scholar 

  101. Maskarinec G, Jacobs S, Morimoto Y, Chock M, Grandinetti A, Kolonel LN. Disparity in diabetes risk across Native Hawaiians and different Asian groups: the multiethnic cohort. Asia Pac J Public Health. 2015;27:375–84.

    PubMed  Google Scholar 

  102. Maskarinec G, Morimoto Y, Jacobs S, Grandinetti A, Mau MK, Kolonel LN. Ethnic admixture affects diabetes risk in native Hawaiians: the Multiethnic Cohort. Eur J Clin Nutr. 2016;70:1022–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. H. C. R. State of Hawaii, House of Representatives, 23rd Legislature, House Concurrent Resolution H.C.R. No. 141, H.D. 1, 2005, http://www.capitol.hawaii.gov/session2005/bills/hcr141.htm.

  104. Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. Critical review of health impacts of wildfire smoke exposure. Environ Health Perspect. 2016;124:1334–43.

    PubMed  PubMed Central  Google Scholar 

  105. Cascio WE. Wildland fire smoke and human health. Sci Total Environ. 2018;624:586–95.

    CAS  PubMed  Google Scholar 

  106. Claeys MJ, Rajagopalan S, Nawrot TS, Brook RD. Climate and environmental triggers of acute myocardial infarction. Eur Heart J. 2016;38:955–60.

    Google Scholar 

  107. Kingsley SL, Eliot MN, Whitsel EA, Wang Y, Coull BA, Hou L, et al. Residential proximity to major roadways and incident hypertension in post-menopausal women. Environ Res. 2015;142:522–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Dimakopoulou K, Kotentakis K, Papagergiou I, Kasdagli MI, Haralabidis AS, Sourtzi P, et al. Is aircraft noise exposure associated with cardiovascular disease and hypertension? Results from a cohort study in Athens, Greece. Occup Environ Med. 2017;74:830–7.

    PubMed  Google Scholar 

  109. Fuks KB, Weinmayr G, Basagaña X, Gruzieva O, Hampel R, Oftedal B, et al. Long-term exposure to ambient air pollution and traffic noise and incident hypertension in seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). Eur Heart J. 2017;38:983–90.

    CAS  PubMed  Google Scholar 

  110. Chang TY, Lai YA, Hsieh HH, Lai SJ, Lis CS. Effects of environmental noise exposure on ambulatory blood pressure in young adults. Environ Res. 2009;109:900–5.

    CAS  PubMed  Google Scholar 

  111. Haraladbidis AS, Dimakopoulou K, Vigna-Taglianti F, Giampaolo M, Borgini A, Dudley ML, et al. Acute effects of night-time noise exposure on blood pressure in populations living near airports. Eur Heart J. 2008;29:658–64.

    Google Scholar 

  112. Davies HW, Vlaanderen JJ, Henderson SB, Brauer M. Correlation between co-exposures to noise and air pollution from traffic sources. Occup Environ Med. 2009;66:347–50.

    CAS  PubMed  Google Scholar 

  113. Münzel T, Schmidt FP, Steven S, Herzog J, Daiber A, Sorensen M. Environmental noise and the cardiovascular system. J Am Coll Cardiol. 2018;71:688–97.

    PubMed  Google Scholar 

  114. Münzel T, Gori T, Babisch W, Basner M. Cardiovascular effects of environmental noise exposure. Eur Heart J. 2014;35:829–36.

    PubMed  PubMed Central  Google Scholar 

  115. van Kempen E, Babisch W. The quantitative relationship between road traffic noise and hypertension: a meta-analysis. J Hypertens. 2012;30:1075–86.

    PubMed  Google Scholar 

  116. Hammer MS, Swinburn TK, Neitzel RL. Environmental noise pollution in the United States: developing an effective public health response. Environ Health Perspect. 2014;122:115–9.

    PubMed  Google Scholar 

  117. Foraster M, Künzli N, Aguilera I, Rivera M, Agis D, Vila J, et al. High blood pressure and long-term exposure to indoor noise and air pollution from road traffic. Environ Health Perspect. 2014;122:1193–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Stansfeld SA. Noise effects on health in the context of air pollution exposure. Int J Environ Res Public Health. 2015;12:12735–60.

    PubMed  PubMed Central  Google Scholar 

  119. Babisch W, Wolf K, Petz M, Heinrich J, Cyrys J, Peters A. Associations between traffic noise, particulate air pollution, hypertension, and isolated systolic hypertension in adults: the KORA study. Environ Health Perspect. 2014;122:492–8.

    PubMed  PubMed Central  Google Scholar 

  120. Akinseye OA, Williams SK, Seixas A, Pandi-Perumal SR, Vallon J, Zizi F, et al. Sleep as a mediator in the pathway linking environmental factors to hypertension: a review of the literature. Int J Hypertens. 2015;2015:926414.

    PubMed  PubMed Central  Google Scholar 

  121. Schmidt F, Kolle K, Kreuder K, Schnorbus B, Wild P, Hechtner M, et al. Nighttime aircraft noise impairs endothelial function and increases blood pressure in patients with or at high risk for coronary artery disease. Clin Res Cardiol. 2015;104:23–30.

    CAS  PubMed  Google Scholar 

  122. Münzel T, Sørensen M, Gori T, Schmidt FP, Rao X, Brook JR, et al. Environmental stressors and cardio-metabolic disease: part II-mechanistic insights. Eur Heart J. 2017;38:557–64.

    PubMed  Google Scholar 

  123. Halonen JI, Hansell AL, Gulliver J, Morley D, Blangiardo M, Fecht D, et al. Road traffic noise is associated with increased cardiovascular morbidity and mortality and all-cause mortality in London. Eur Heart J. 2015;36:2653–61.

    PubMed  PubMed Central  Google Scholar 

  124. Correia AW, Peters JL, Levy JI, Melly S, Dominici F. Residential exposure to aircraft noise and hospital admissions for cardiovascular diseases: multi-airport retrospective study. BMJ. 2013;347:f5561.

    PubMed  PubMed Central  Google Scholar 

  125. Kempen EV, Casas M, Pershagen G, Foraster M. WHO Environmental Noise Guidelines for the European Region: a systematic review on environmental noise and cardiovascular and metabolic effects: a summary. Int J Environ Res Public Health. 2018;15(2) pii: E379.

  126. Brown AL, van Kamp I. WHO environmental noise guidelines for the European region: a systematic review of transport noise interventions and their impacts on health. Int J Environ Res Public Health. 2017;14 pii: E873.

    PubMed Central  Google Scholar 

  127. Lind PM, Penell J, Salihovic S, van Bavel B, Lind L. Circulating levels of p, p’-DDE are related to prevalent hypertension in the elderly. Environ Res. 2014;129:27–31.

    CAS  PubMed  Google Scholar 

  128. Valera B, Ayotte P, Poirier P, Dewailly E. Associations between plasma persistent organic pollutant levels and blood pressure in Inuit adults from Nunavik. Environ Int. 2013;59:282–9.

    CAS  PubMed  Google Scholar 

  129. Park SH, Lim J-E, Park H, Jee SH. Body burden of persistent organic pollutants on hypertension: a meta-analysis. Environ Sci Poll Res. 2016;23:14284–93.

    CAS  Google Scholar 

  130. Ha MH, Lee DH, Son HK, Jacobs DR Jr. Association between serum concentrations of persistent organic pollutants and prevalence of newly diagnosed hypertension: results from the National Health and Nutrition Examination Survey 1999–2002. J Hum Hypertens. 2009;23:274–86.

    CAS  PubMed  Google Scholar 

  131. Everett CJ, Mainous AG 3rd, Frithsen IL, Player MS, Matheson EM. Association of polychlorinated biphenyls with hypertension in the 1999–2002 National Health and Nutrition Examination Survey. Environ Res. 2008;108:94–97.

    CAS  PubMed  Google Scholar 

  132. Valera B, Jørgensen ME, Jeppesen C, Bjerregaard P. Exposure to persistent organic pollutants and risk of hypertension among Inuit from Greenland. Environ Res. 2013;122:65–73.

    CAS  PubMed  Google Scholar 

  133. Shankar A, Teppala S. Urinary bisphenol A and hypertension in a multiethnic sample of US adults. J Environ Public Health. 2012;2012:481641.

    PubMed  PubMed Central  Google Scholar 

  134. Bae S, Kim JH, Lim Y-H, Park HY, Hong Y-C. Associations of Bisphenol A exposure with heart rate variability and blood pressure. Hypertension. 2012;60:786–93.

    CAS  PubMed  Google Scholar 

  135. Bae S, Hong YC. Exposure to bisphenol A from drinking canned beverages increases blood pressure: randomized crossover trial. Hypertension. 2015;65:313–9.

    CAS  PubMed  Google Scholar 

  136. Trasande L, Attina TM. Association of exposure to di-2-ethylhexylphthalate replacements with increased blood pressure in children and adolescents. Hypertension. 2015;66:301–8.

    CAS  PubMed  Google Scholar 

  137. Shiue I, Hristova K. Higher urinary heavy metal, phthalate and arsenic concentrations accounted for 3–19% of the population attributable risk for high blood pressure: US NHANES, 2009–2012. Hypertens Res. 2014;37:1075–81.

    CAS  PubMed  Google Scholar 

  138. Han C, Hong YC. Bisphenol A, hypertension, and cardiovascular diseases: epidemiological, laboratory, and clinical trial evidence. Curr Hypertens Rep. 2016;18:11.

    PubMed  Google Scholar 

  139. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. Executive summary to EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36:593–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Wu W, Jiang S, Zhao Q, Zhang K, Wei X, Zhou T, et al. Environmental exposure to metals and the risk of hypertension: a cross-sectional study in China. Environ Pollut. 2018;233:670–8.

    CAS  PubMed  Google Scholar 

  141. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389:1907–18.

    PubMed  PubMed Central  Google Scholar 

  142. Giorgini P, Di Giosia P, Grassi D, Rubenfire M, Brook RD, Ferri C. Air pollution exposure and blood pressure: an updated review of the literature. Curr Pharm Des. 2015;22:28–51.

    Google Scholar 

  143. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an Update to the scientific statement from the American Heart Association. Circulation. 2010;121:2331–78.

    CAS  PubMed  Google Scholar 

  144. Brook RD, Sun Z, Brook JR, Zhao X, Ruan Y, Yan J, et al. Extreme air pollution conditions adversely affect blood pressure and insulin resistance: the air pollution and cardiometabolic disease study. Hypertension. 2016;67:77–85.

    CAS  PubMed  Google Scholar 

  145. Rich DQ, Kipen HM, Huang W, Wang G, Wang Y, Zhu P, et al. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. JAMA. 2012;307:2068–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Liang R, Zhang B, Zhao X, Ruan Y, Lian H, Fan Z. Effect of exposure to PM2.5 on blood pressure: a systematic review and meta-analysis. J Hypertens. 2014;32:2130–40.

    CAS  PubMed  Google Scholar 

  147. Chen H, Burnett RT, Kwong JC, Villeneuve PJ, Goldberg MS, Brook RD, et al. Spatial association between ambient fine particulate matter and incident hypertension. Circulation. 2014;129:562–9.

    CAS  PubMed  Google Scholar 

  148. Coogan PF, White LF, Jerrett M, Brook RD, Su JG, Seto E, et al. Air pollution and incidence of hypertension and diabetes mellitus in black women living in Los Angeles. Circulation. 2012;125:767–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Pope CA 3rd, Turner MC, Burnett RT, Jerrett M, Gapstur SM, Diver WR, et al. Relationships between fine particulate air pollution, cardiometabolic disorders, and cardiovascular mortality. Circ Res. 2015;116:108–15.

    CAS  PubMed  Google Scholar 

  150. Brook RD, Kousha T. Air pollution and emergency department visits for hypertension in edmonton and calgary, canada: a case-crossover study. Am J Hypertens. 2015;28:1121–6.

    CAS  PubMed  Google Scholar 

  151. Morishita M, Thompson KC, Brook RD. Understanding air pollution and cardiovascular diseases: is it preventable? Curr Cardiovasc Risk Rep. 2015;9:30.

    PubMed  PubMed Central  Google Scholar 

  152. Cai Y, Zhang B, Ke W, Feng B, Lin H, Xiao J, et al. Associations of short-term and long-term exposure to ambient air pollutants with hypertension: a systematic review and meta-analysis. Hypertension. 2016;68:62–70.

    CAS  PubMed  Google Scholar 

  153. United Nations. The World’s Cities in 2016 – Data Booklet (ST/ESA/SER.A/392). United Nations, Department of Economic and Social Affairs, Population Division, New York, NY, 2016.

  154. Diez Roux AV. Residential environments and cardiovascular risk. J Urban Health. 2003;80:569–89.

    PubMed  PubMed Central  Google Scholar 

  155. Leal C, Chaix B. The influence of geographic life environments on cardiometabolic risk factors: a systematic review, a methodological assessment and a research agenda. Obes Rev. 2011;12:217–30.

    CAS  PubMed  Google Scholar 

  156. Sallis JF, Floyd MF, Rodríguez DA, Saelens BE. Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation. 2012;125:729–37.

    PubMed  PubMed Central  Google Scholar 

  157. Sarkar C, Webster C. Urban environments and human health: current trends and future directions. Curr Opin Environ Sustain . 2017;25:33–44.

    Google Scholar 

  158. Ewing R, Cervero R. Travel and the built environment: a synthesis. Transp Res Rec: J Transp Res Board. 2001;1780:87–114.

    Google Scholar 

  159. Lee C, Moudon AV. The 3Ds+R: quantifying land use and urban form correlates of walking. Transp Res Part D: Transp Environ. 2006;11:204–15.

    Google Scholar 

  160. Booth GL, Creatore MI, Moineddin R, Gozdyra P, Weyman JT, Matheson FI, et al. Unwalkable neighborhoods, poverty, and the risk of diabetes among recent immigrants to Canada compared with long-term residents. Diabetes Care. 2013;36:302–8.

    PubMed  PubMed Central  Google Scholar 

  161. Frank L, Engelke P, Schmid T. Health and Community Design: The Impact of the Built Environment on Physical Activity. Washington DC: Island Press; 2003.

    Google Scholar 

  162. Frank LD, Sallis JF, Conway TL, Chapman JE, Saelens BE, Bachman W. Many pathways from land use to health: associations between neighborhood walkability and active transportation, body mass index, and air quality. J Am Plan Assoc. 2006;72:75–87.

    Google Scholar 

  163. Sarkar C, Webster C, Gallacher J. Healthy Cities: Public Health Through Urban Planning. Cheltenham, UK: Edward Elgar Publishing; 2014.

    Google Scholar 

  164. Chiu M, Rezai M-R, Maclagan LC, Austin PC, Shah BR, Redelmeier DA, et al. Moving to a highly walkable neighborhood and incidence of hypertension: a propensity-score matched cohort study. Environ Health Perspect. 2016;124:754.

    CAS  PubMed  Google Scholar 

  165. Loo CJ, Greiver M, Aliarzadeh B, Lewis D. Association between neighbourhood walkability and metabolic risk factors influenced by physical activity: a cross-sectional study of adults in Toronto, Canada. BMJ. 2017;Open7:e013889.

    Google Scholar 

  166. Mujahid MS, Roux AVD, Morenoff JD, Raghunathan TE, Cooper RS, Ni H, et al. Neighborhood characteristics and hypertension. Epidemiology. 2008;19:590–8.

    PubMed  Google Scholar 

  167. Kaiser P, Diez Roux AV, Mujahid M, Carnethon M, Bertoni A, Adar SD, et al. Neighborhood environments and incident hypertension in the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2016;183:988–97.

    PubMed  PubMed Central  Google Scholar 

  168. Sarkar, C, International Journal of Hygiene and Environmental Health. 2018. (In Press) https://doi.org/10.1016/j.ijheh.2018.01.009

    PubMed  Google Scholar 

  169. Coffee NT, Howard N, Paquet C, Hugo G, Daniel M. Is walkability associated with a lower cardiometabolic risk? Health Place. 2013;21:163–9.

    PubMed  Google Scholar 

  170. Azuma K, Ikeda K, Kagi N, Yanagi U, Osawa H. Prevalence and risk factors associated with nonspecific building-related symptoms in office employees in Japan: relationships between work environment, Indoor Air Quality, and occupational stress. Indoor Air. 2015;25:499–511.

    CAS  PubMed  Google Scholar 

  171. Mitter SS, Vedanthan R, Islami F, Pourshams A, Khademi H, Kamangar F, et al. Household fuel use and cardiovascular disease mortality: Golestan Cohort Study. Circulation. 2016;133:2360–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Song X, Ma W, Xu X, Liu T, Xiao J, Zeng W, et al. The association of domestic incense burning with hypertension and blood pressure in Guangdong, China. Int J Environ Res Public Health. 2017;14:788.

    PubMed Central  Google Scholar 

  173. Baumgartner J, Schauer JJ, Ezzati M, Lu L, Cheng C, Patz JA, et al. Indoor air pollution and blood pressure in adult women living in rural China. Environ Health Perspect. 2011;119:1390–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Houston MC. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. J Clin Hypertens. 2011;13:621–7.

    CAS  Google Scholar 

  175. Norsk P, Asmar A, Damgaard M, Christensen NJ. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J Physiol. 2015;593:573–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Talukder MR, Rutherford S, Huang C, Phung D, Islam MZ, Chu C. Drinking water salinity and risk of hypertension: a systematic review and meta-analysis. Arch Environ Occup Health. 2017;72:126–38.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Brook.

Ethics declarations

Conflict of interest

R.D.B. Inc. investigator initiate grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Brook, R.D. Echoes from Gaea, Poseidon, Hephaestus, and Prometheus: environmental risk factors for high blood pressure. J Hum Hypertens 32, 594–607 (2018). https://doi.org/10.1038/s41371-018-0078-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-018-0078-6

This article is cited by

Search

Quick links