
ARTICLE

Bridge the gap: correlate face mask leakage and facial features
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BACKGROUND: Face masks have been proven to be effective in protecting the public against airborne transmitted diseases when
fitted appropriately. However, for homemade cloth masks and surgical masks, the fit is often poor, allowing viruses to escape
through the gap.
OBJECTIVE: This work aims to identify the correlation between the mask leakage, mask configurations, and individual’s facial
features.
METHODS: A novel locally morphing 3D face model, and a minimum-energy-based mask deployment model are used to
systematically examine the mask fit for a large cohort of exemplars.
RESULTS: The results show that the mask size and tuck-in ratio, along with selective facial features, especially nose height and chin
length, are key factors determining the leakage location and extent. A polynomial regression model is presented for mask fitness
based on localized facial features.
SIGNIFICANCE: This study is a complete pipeline to test various masks on a wide range of faces with controlled modification of
distinct regions of the face, which is difficult to achieve with human subjects, and provide knowledge on how the masks should be
designed in the future.

IMPACT STATEMENT: The face mask “fit” affects the mask’s efficacy in preventing airborne transmission. To date, research on the
face mask fit has been conducted mainly using experiments on limited subjects. The limited sample size in experimental studies
makes it hard to reach a statistical correlation between mask fit and facial features in a population. Here, we employ a novel
framework that utilizes a morphable face model and mask’s deployment simulation to test mask fit for many facial characteristics
and mask designs. The proposed technique is an important step toward enabling personalized mask selection with maximum
efficacy for society members.
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INTRODUCTION
Due to the impact of the COVID-19 pandemic, face masks have
been must-have accessories for the past year. Their effectiveness
against the transmission of the virus has been a crucial research
topic [1–4]. Although the complete picture of the transmission
route of COVID-19 remains to be fully realized, airborne
transmission with the spread of respiratory droplets and aerosols
has been shown to play a significant role [5–7]. Face masks of all
kinds, including respirator-type, surgical masks, and even home-
made fabric masks, have been proven effective in filtering large
droplets (defined by the WHO as particles larger than 5 μm in
diameter) and aerosols going through the face mask [8, 9]. Various
face mask materials have been tested against different filtration
mechanisms involving the process of diffusion, interception,
impaction, and electrostatic attraction [10–12]. Besides the

materials, the face mask “fit” also affects the effectiveness of the
face masks but has been less studied. Popular surgical or
homemade face masks are often not tailored to the individual’s
face, resulting in a loose or improper fit and allowing droplets and
aerosols to leak out [13–15]. While the larger droplets have been
shown to travel a limited distance, the smaller aerosols can be
transported further, linger in the air for hours, and increase the risk
of transmission to other people [16, 17]. The fitting of the face
masks should be more thoroughly studied to learn how and
where the leakage sites are present and to ensure higher
protection efficacy of masks.
Research on the face mask fit problem has been conducted

mainly through experiments using either human or 3D-printed
faces as the subjects. Various metrics are used to quantify the
leakage, such as if a wearer can smell lingering particles or direct
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measurement of particle counts inside and outside of a face mask
[18–20]. Verma et al. [9] visualized the respiratory jets and
reported that the mask fit and the mask material have an
important impact on the mask’s effectiveness. With fluorescent
tracers tracking particle trajectories, Oestenstad et al. [21, 22]
concluded that the facial dimensions are significantly correlated to
the leakage location. Tang et al. [23] studied the jet generated
from coughing and suggested that a surgical mask, while
effectively blocking the forward momentum of the jet, could
allow air leakage through the top and side of the mask due to a
loose fit. Koh et al. [24] showed that poorly fit N95 respirators can
provide less adequate protection than a simple surgical mask, and
Brooks et al. [25] from the Center for Diseases Control and
Prevention (CDC) suggested that knotting the mask band and
tucking in to achieve better fit can largely improve the protection
efficiency. From these studies, we can conclude that mask fit is an
imperative factor for mask efficiencies. Nevertheless, there has
been a lack of knowledge about the relationship between masks
perimeters leaks and facial features. The limited sample size in
most experimental studies makes it difficult to derive statistically
significant correlations, and the filtering efficiency reported often
covers a widespread margin [26, 27]. A potential solution to this
problem is through the use of 3D morphable face models. Recent
research inspected the mask fit for seven participants and
concluded that small facial differences could lead to significant
fit discrepancies and suggested that 3D models could serve well in
creating virtual samples for large-scale tests [28]. Another study by
Kolewe et al. [13] used 3D-printed head models for testing the
mask protection efficiency and emphasize the benefit of
customizability and variability of using 3D models.
To bridge the knowledge gap between the face mask leakage

and the facial features, we propose a framework that utilizes 3D-
scanned face models to achieve large-scale experiments of fitting
masks to faces with a wide variety of facial characteristics and
mask designs. Our recent study [29] categorized the faces created
from a database into different demographics based on weight,
age, gender, and height and study the correlation between these
demographic groups and the mask leakage. The results suggested
that the CDC-recommended mask design is not an optimal choice
for some demographics and the general public should have more
options to receive better protection. It was also revealed that the
mask material, specifically the mask’s elastic modulus, does not
significantly affect the mask fit. In this study, we further utilize a
systematic way of morphing the face based on the available
populations to isolate the impact of different facial features on
mask leakage. The correlation relation found is then tested with a
virtual cohort of randomly generated faces. This work aims to
build a framework to rapidly and systematically generate a series
of test subjects for mask deployment and could be further
extended to more complex mask designs. The goal is to enable
personalized mask selection, similar to selecting personal clothes,

based on some defining key metrics that ensure maximum
protection for each member of society.

MATERIALS AND METHODS
Face database
The publicly available Basel Face Model (BFM) [30] is used to generate the
face populations that will be used in the next step of modifying certain
facial features. The BFM includes high-resolution face scans of more than
100 males and 100 females ranging from 8 to 62 years old, with weights
ranging from 40 to 123 kg. The BFM included the principal component
analysis (PCA) components of faces [31], which allows us to expand the
samples to over 7000 faces with the random weighting of the PCA
components. The benefits of creating a virtual cohort of faces are that
these faces are created based on the actual face scan, and they share
similar meshes, so it is simple to locate the characteristic points such as
nose tip across all faces, which can later be used to calculate the
characteristic lengths. The utilization of this database allows us to cover a
wide range of samples easily and the PCA components can be used to
extend the proposed framework to any face.

Geometrically weighted PCA
As previously stated, one of the major problems of face mask fit study is
that even a seemingly insignificant facial detail could lead to a very
different gap profile. However, it is nearly impossible to look at the effect
of these facial features individually with human subjects. This is where the
3D models are unique as they can change only selected regions of the
face. 3D morphing face models have long been a popular idea in facial
recognition, animation and diverse industries since its introduction by
Blanz and Vetter [31]. The most common approach of building a
morphable face is through PCA [32], representing the face with
combinations of shape vectors [33, 34]. Through different combinations
of these vectors, the face can be morphed into different geometries. In the
same pioneering paper, Blanz and Vetter further proposed the local model
that segments the faces into different regions and employs PCA
modification to different divisions to change only the specified region.
Many studies later adopt this idea. For example, Paysan et al. [30] manually
divided the face into four segments to enhance their facial recognition
algorithm. Tena et al. [35] partitioned the face then modified them
simultaneously by explicitly enforcing boundary constraints to create
natural expressions, and Gilani et al. [36] separated the faces into Voronoi
regions based on the geodesic distance for generating population-specific
deformable models. This study adopts a novel geometrically weighted PCA
to build the morphing faces as the test subjects to isolate and modify
individual facial features.
Weighting the data matrix to emphasize particular metrics is common

practice when applying modal analysis [37–39] and has been adopted to
improve facial recognition [40, 41]. Here, we weigh the shape vectors
based on the geodesic distance from the specific facial characteristic
points to isolate the variation of specific facial features. Figure 1a shows
the characteristic points chosen on the mean face of the exemplars based
on the principle that each set of characteristic points should represent
possible contact points with the mask. The six sets represent the eyes,
nose, chin, ear, zygomatic arch, and cheeks region. The geodesic distance
of all points on the face to the characteristic points is calculated by solving
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Fig. 1 Facial features and geometrical weighting schematic. (a) The facial feature points selected for calculating the six facial regions (eyes—
red circle; nose—green square; chin—orange triangle; ear—yellow star; zygomatic arch—magenta diamond; cheeks—cyan cross), (b) the
geodesic distance from the chin and (c) the corresponding geodesic weighting, and (d) the facial characteristic length (A—face width; B—
cheek width; C—nose breadth; D—nose height; E—nose–chin length).
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the Eikonal equation [42]. The geodesic distance from the chin is shown in
Fig. 1b. The geometrical weighting is then calculated with the weighting
functions weighted by the geodesic distance. The weighting function
chosen here is a family of Sigmoidal function which is differentiable and
smoothly transitions from 0 to 1:

f x; ak ; ckð Þ ¼ 1
1 þ e�ak ðx� ck Þ :

The weighting of each vertex on the face mesh is assigned by the
relative geodesic distance from the landmark points, with the further point
having zero weight and the points closest to the landmark points have
unity weight. The width and the center of the weighting function transition
area can be controlled with the parameter ak and ck , respectively. These
factors are chosen such that regions do not have overlap and the spatial
weighting function drops to zero at the border of each region. Figure 1c
shows the geodesic weighting based on the geodesic distance from the
chin. Below we describe the whole procedure of the proposed
“Geometrically weighted PCA”. The geometry of each face is represented
by a shape vector si ¼ ðX1;i ; Y1;i ; Z1;i ; X2;i ; ¼ ; YN;i ; ZN;iÞ 2 R3N which
contains the Cartesian coordinates of its N vertices. For the current study,
we adopted over 7000 (the number of faces will be denoted by M)
faces randomly generated from the BFM database [30] as the
exemplars. The exemplars are arranged into a data matrix A after removing
the mean s and introducing the geometric weighting matrix Wi ¼
ðw1;i ;w1;i ;w1;i ;w2;i ; ¼ ;wN;i ;wN;iÞ 2 R3N . The covariance matrix C of the
data matrix is constructed and its eigenvectors are computed using the
singular value decomposition:

s ¼ 1
M

PM
i¼ 1

si ; ai ¼ WT
i si � sð Þ;A ¼ a1; a2; ¼ ; aMð Þ ¼ UΛVT;

C ¼ 1
MAA

T ¼ 1
MUΛ

2UT

The columns of the orthogonal matrix U are the eigenvectors of the
covariance matrix. The eigenvalues can be acquired with σ2i ¼ λ2i

M, where
the λis are diagonal elements of the singular value matrix Λ arranged in
decreasing order. The eigenvalues stand for the relative magnitude of each

principal component. We can then represent the faces with the linear
combination of the shape eigenvectors:

s ¼ s þ
XP
i¼ 1

αiσisi ;

where the number of components used P can be determined with the
accumulated eigenvalues. The shape coefficients αi can be adjusted to
determine the modification extent of a face. Characteristic lengths of the
faces defined in Fig. 1d can be used to quantify the effect of changing the
PCA weighting α. These characteristic lengths are defined based on the
common metrics used for facial recognition but modified, accounting for
the contact points of the mask.
Compared with the segmented face approach, the proposed geome-

trically weighted PCA has some advantages that make it more suitable for
our intended use. First, there is no segmentation involved in the process;
hence no merging sequence is required. The weighting is derived from the
database and can be extended to a larger deformation extent naturally.
With the Sigmoidal weighting function, we have significant control over
the morphing region, and we can also assign multiple landmark points to
achieve length-based morphing. Multiple facial regions can be modified
simultaneously as:

s ¼ s þ
XP1
i¼ 1

αi;1σi;1si;1 þ
XP2
i¼ 1

αi;2σi;2si;2 þ ¼ ;

In conclusion, this novel method can systematically create morphable
faces with natural weighting and is suitable for the next phase of this
study: face mask deployment.

Face mask deployment model
Now that we have the virtual faces whose facial features can be modified
individually, the next step is to deploy the mask on them to inspect the
leakage produced by the change of the facial features. The deployment
process starts with placing the mask model on top of the face with elastic

Mask deployment sequence

after tuck-in

L

before tuck-in

L0

(a)

(b)

high pressure point

mask

face

u
high 

pressure 
point
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Fig. 2 Mask deployment process and leakage definition. (a) The mask deployment sequence from the simulation, (b) definition of the tuck-
in ratio, (c) Selective calculated two-dimensional channels depicted with solid red lines, and (d) the schematic of such channel.
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bands surrounding the ears with no tension. The resting length of the
band then gradually decreases, and the quasi-static equilibrium position is
calculated each time until the mask rests in a steady state on the face.
A multi-scale approach that utilizes the minimum elastic energy concept

is adopted to account for different mechanics of the mask-face
interactions. The total elastic energy of the system is expressed as

ϵt Xð Þ ¼ ϵscloth þ ϵsborder þ ϵbborder þ ϵsband;

where the four terms in respective order are the extensional elastic energy
stored in the cloth, the tension and compression energy of the border strip

surrounding the cloth, the bending energy stored in the border strip, and
the tension energy stored in the connecting bands. In addition to the
energy minimization during the settling phase, the non-penetration
contact force between the deformable mask and soft face tissue is also
considered. The soft contact is modeled with nonconservative forces as

fcontact ¼ kcon X � Xconk kn̂con for X � Xconð Þ � n̂con < 0

0 otherwise

�
;

where Xcon is the contact point (or the closest vortex) on the face to the
point X on the mask, and n̂con is the outward-facing normal at this point.

EyesCheeks

Nose

ChinEar

Zygomatic arch

Mean

10 (mm)0

total
with nose wire

Fig. 3 The geodesic weighting of the six facial feature regions and the mean face modified with 200 modes using PCA weighting α =−1
(left in each subplot) and α= 1 (right). The gap height is overlayed on top of the mask border. Under each face set is the corresponding total
hydraulic resistance (blue circle—total hydraulic resistance; orange square—with nose-clip wire) with respect to the PCA weighting change.
The mask size is 9 inches. By 5.4 in. and the tuck-in ratio is 0.5 for all figures.
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The contact stiffness kcon can be specified to take different materials into
account. The equilibrium position at each deployment phase is calculated
by relating the internal forces of the mask to the derivatives of the energy
density function with a set of nonlinear equations for solving the vortices
placements. The equilibrium equations are solved iteratively until the final
position is reached. An example sequence of deploying a mask to a face is
shown in Fig. 2a. Masks can be configured with different sizes and tuck-in
ratios, defined as the ratio of the initial and final height of the mask
deployment sequence, which is equivalent to the pleating ratio L=L0 of the
side of the mask, shown in Fig. 2b. Readers are referred to our prior study
[43] for mathematical details behind each energy term and the parameters
adopted in the numerical simulation. This mask deployment procedure is
highly robust at handling a wide range of mask materials, geometries, and
placements, as well as different faces. Next, we will take a look at the
proposed metric for quantifying mask leakage.

Hydraulic resistance
For the mask fit, the gap between the mask and face is an obvious metric.
However, in our prior research [43], neither the total leakage area nor
maximum gap could show the full picture of the leakage. Hence, hydraulic
resistance was proposed. The principal idea is to look at the gap between
the mask and face as a combination of airflow channels. One end of the
channel is at the mouth or nose, where there is a high-pressure due to
breathing, coughing, or sneezing, and the other end is at the opening
along the mask perimeter. In the current study, we consider the outward
protection for talking or coughing respiratory events, and therefore, the
channels are started at the mouth. The outflow from the mouth results in
several magnitudes higher particle emission rate than breathing from the
nose [44]. Figure 2c shows several of these calculated channels following

the shortest distance from the high-pressure point under the mask. The
Hagen–Poiseuille flow profile is used to approximate the velocity profile for
permeable 2D channel flow [45] as

v x; yð Þ ¼ H2

2μ
dp
dx

y
H

� y2

H2

� �
;

where x is the streamwise direction, y the cross-flow direction, μ the
dynamic viscosity, H represents the channel height, and dp=dx is the
pressure drop along the channel. Note that the velocity profile has been
shown to not change significantly even with one side of the channel being
porous [46], i.e., the mask. Figure 2d shows an example of such channels.
Integrating the velocity profile across the height of the channel, we have
the mass flow rate as

_m ¼ H3

12μ
ΔP
D

;

where D is the channel length derived with the geodesic distance from the
high-pressure point to the mask border. The hydraulic resistance R
represents the relative resistance to the airflow that leaks out through the
gap versus the cross-flow filtered out through the mask and can be
calculated with

R � ΔP
_m

¼ 12μ
D
H3

:

Since the geometrical parameters D and H are the only varying
components, we will report the parameter R � D

H3. The larger the R is, the
less leakage mask has from its perimeter edges. The channels are assumed
to be in a parallel configuration, and assuming the channel has finite width
related to the number of the channel N and mask border perimeter P the

Tuck-in ratio 0.5 Tuck-in ratio 0.5 Tuck-in ratio 0.3(a)

(b)

(c)

Medium mask Large mask

chin
cheek
nose

Fig. 4 The sectional average hydraulic resistance with different mask sizes, tuck-in ratios, and modified facial regions. The (a) eyes, (b)
chin, and (c) zygomatic arch region is modified, respectively.
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total hydraulic resistance can be defined as

Rtotal ¼
X
i

P
N
1

Ri

 !�1

:

The mean hydraulic resistance can be defined as if the mask border is
composed of N identical channels in a parallel configuration, hence Ravg �
NRtotal . To better understand how the leakage relates to the facial features,
we partition the mask perimeter into three regions: chin, cheeks, and nose
and report the average hydraulic resistance within each region. Hydraulic
resistance, besides the local gap size, also takes the airflow’s travel path
into account and could reflect a more accurate filtration efficiency. Later,
we will see a more distinct correlation between facial features and
hydraulic resistance than with the simple gap measurement.

RESULTS
In this section, we will show how the pipeline works to reveal the
correlation between the facial features and the mask leakage.
Figure 3 shows the faces constructed with the mean face and 200
leading modes with αi ¼ f�1; 1g to demonstrate how the
geometrically weighted PCA modifies the faces within specified
regions. The changes of PCA modes generally emphasize or
dampen the corresponding face features, such as increasing the
weighting of the cheek feature makes a face more “chubby” or the
chin feature modification makes the chin longer or shorter. Note
that for some features, the PCA modes modify multiple facial
attributes simultaneously. For example, modifying the nose region
also leads to changes in lip length. The faces are created from the
PCA modes acquired from the BFM database [30], and with same
weighting each feature is modified to different extent. For
example, varying α from −1.5 to 1.5 for the chin modes modifies
the nose–chin length by 12.4% while using the same weighting
range for the nose region, the nose height changes by 34%. We
first show the total hydraulic resistance with the medium-sized
mask (CDC-recommended size 9 in. by 5.4 in.) and a tuck-in ratio
of 0.5 deployed on each face across the PCA weighting range
α ¼ ½�1:5; 1:5�. For clarity, we plotted the inverse of the hydraulic
resistance here, where larger values indicate more leakage at
the edges. In Fig. 3, we overlay the gap height on the mask
border, and we can see that the maximum gaps do not show
much difference across the range of α for most of the features.
However, distinct trends are observed in the hydraulic resistance
with the changes in the eyes, nose, and zygomatic arch. The face
and mask combinations show that while neither the maximum
gap nor total opening area along the mask border has substantial
changes, the opening area close to the nose increases with the
weighting α of the eyes and nose features. This increase is
amplified by the cube relation of hydraulic resistance and gap
height which results in the increasing trend of the leakage with
the increasing α of the eyes and nose features. In contrast,
increasing the α weighting of the zygomatic arch area slightly
decreases the total leakage. The reason is that with the increasing
α the zygomatic arch flattens and the mask could fit better. Also,
the total hydraulic resistance of the mask with nose-clip wire is
shown in Fig. 3. The nose wire essentially eliminates the gap at the
nose region, and we can see that the gap reduces significantly for
eyes and nose features.

To gain more insight on how the leakage is affected by the
facial feature change, we plot the inverse of the sectional
hydraulic resistance of the eyes, chin, and zygomatic arch region
in Fig. 4. We first discuss the relationship between hydraulic
resistance and the changes in the eye region. With a medium
mask size and tuck-in ratio of 0.5, the leakage increases with α,
and the increase of the leakage in the nose section is more
prominent than the other two sections. In contrast, changing the
zygomatic arch region induces a larger change in the leakage of
the chin section. With this mask configuration modifying the chin
area does not show much impact on the hydraulic resistance. We
can explain these observations by correlating the facial feature
weighting α to the characteristic lengths described in Fig. 1d. The
correlations are shown in Table 1, where it should be noted that all
correlations provided have an R-squared score greater than 0.98.
The correlation model is a simple linear regression model with
αif g ¼ b0 þ Pk

i¼ 1
bkXk , where Xks are the corresponding charac-

teristic feature lengths. We can see that the eyes and the nose
feature changes are highly correlated to the nose height, and both
cases show a noticeable leakage increase when α increases. This
suggests that the nose height determines the leakage around the
nose. On the other hand, the zygomatic arch feature change is
related to the increase of cheek breath, implying that the fuller
cheek generates less leakage at the chin area. Interestingly,
although changing the chin also greatly modifies the chin length,
no noticeable leakage change is observed. To reach a thorough
picture of how and where the leakage is formed, we will look at
the impact of the mask dimension, decided by the mask size and
tuck-in ratio.
In Fig. 4, we show the sectional average hydraulic resistance for

two different tuck-in ratios (0.3 and 0.5) for the large mask (10 in.
by 6 in.). One immediate observation is that, with the larger mask,
the leakage is overall more considerable, and increasing the tuck-
in ratio also generally increases the leakage. The main reason for
having a larger leakage is that a larger mask could overhang and
thus fit less appropriately around the chin area, which is evident
from the increase in the chin leakage. In addition, contrary to the
nose leakage-dominant medium mask cases, the larger mask
exhibits chin leakage that sometimes exceeds the leakage at the
nose section by more than double. Another observation is that for
the larger mask and larger tuck-in ratio, the chin feature change is
highly correlated with the chin leakage profile, while the
zygomatic arch feature change is related to the chin leakage for
the smaller tuck-in ratio. This indicates that with a more tightly fit
(smaller mask and/or smaller tuck-in ratio), the chin leakage is
affected by the cheek breadth, while with a looser fit, the chin’s
length controls the leakage of the chin. Also, no matter which size
of the mask, modifying the nose height directly affects the nose
leakage.
From these observation, we conclude that the leakage location

and extent are dependent on a combination of the facial feature
and the mask configurations. For the smaller, tighter mask, the
nose leakage is dominant and could be modified by the nose
height; for larger or looser masks, the gap at the chin area
becomes increasingly important and correlated to multiple facial
features. However, some of the correlations between the facial
features and leakage are not intuitive, such as the zygomatic arch

Table 1. Linear correlation coefficient between the PCA weighting of different facial features and the characteristic lengths.

Eyes Nose Chin Ears Zygomatic arch Cheeks

A—Bizygomatic width −0.117

B—Bigonial width −0.287 0.923 1.12 0.975

C—Nose breadth −0.472 −0.652 −0.177

D—Nose–chin length 0.914

E—Nose height 0.336 0.358
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is more correlated with the chin leakage than the nose leakage.
Two reasons might be behind such observation. First reason is
that the facial region modifications involve multiple and even
competing effects on the overall geometry of the face. We
observe that for the zygomatic region chosen, increasing the
weighting α does not result in a monotonic change of a single
feature like what has been observed for the nose region. Since the
PCA modes are acquired from real faces, they lead to nonlinear
changes within the region. Specifically, increasing the weighting
suppressed the arching zygomatic bone but protruding the supra-
alar creases, which has a competing effect on the nose gap. The
second reason is related to the nonlinear relation between the
mask opening caused by the relatively large in-plane stiffness of
the cloth. While the maks cloth can bend easily, it is almost
inextensible and has a much larger stiffness in stretching
directions. Therefore, slight changes in one edge can reorient
the mask and its placement on the face and consequently
modifies the leakage on the other edges. This nonlinear
correlation effect is strongly linked to the shape and size of the
face mask.
So far, the effects of each facial feature, as defined by α, on

mask effectiveness have been studied independently. However,
could this sectional approach work when multiple facial features
change at the same time? As stated previously, a slight change in
facial features could lead to a large leakage profile difference [28]
and although a strong linear correlation is observed in our
analysis, nonlinear effects could appear when multiple features
change simultaneously. To further test whether nonlinear correla-
tion terms can be incorporated to reach a more accurate
prediction model of the total hydraulic resistance based on the
six dominant PCA features, we employ a sparse regression model
on mask deployment results of 1000 randomly generated faces
with a medium mask and tuck-in ratio of 0.5. The 1000 faces were
generated by randomly changing all 6 PCA features simulta-
neously. The LASSO (least absolute shrinkage and selection
operator regression technique) [47] is used to reach a sparse
relationship between the total hydraulic resistance and poly-
nomials of α terms up to third order including all cross-terms.
Bayesian information criterion (BIC) [48] is used to obtain the
model’s sparsity-promoting regularization parameter and select
the set of relevant terms in the regression model (Fig. 5). The
model is trained with a random selection of 80% of the data and is
tested with the remaining results. An adequate prediction of the
hydraulic resistance can be achieved with 11 linear and nonlinear
terms as listed in Fig. 5. The results show that the proposed model

can be employed to reach a predictive model of the leakage
based on facial features and the choice of the mask. From the
results shown here and the previous study [29], we confirm the
finding by Oestenstad et al. [21, 22] that facial features are a
dominant factor in deciding the leakage site. With a large
database of faces of different ethnicity, gender and age groups,
we anticipate the predictions of the proposed model to be
improved and it could provide a more precise assessment model
of the leakage formation. Such a study would be otherwise costly
and time-consuming to be done in the traditional experimental
setups. Furthermore, the model can be employed to check mask
designs and provide fitness metrics for different facial shapes.
This section demonstrates how geometrically weighted PCA can

bridge the facial characteristic and the mask leakage. The
proposed hydraulic resistance metric successfully reveals the
connections between the leakage, facial features, and mask
configurations. In the next section, we will talk about more aspects
awaiting to be explored to build a complete pipeline for
personalized mask selection.

DISCUSSION
Now that we already know that the facial features can be directly
related to mask leakage, the next step will be building a
framework for rapid mask selection. The concept is based on
measuring characteristic lengths of the individual’s face using
standard digital face-scanning technology available in most
mobile devices. Based on our discussion above, the information
is then used to determine which mask size/tuck-in ratio fits the
best. However, before making the mask choice as simple as
picking a shirt from the rack, further studies are necessary to
extend these results to different mask designs and demographical
categories such as gender, weight, and age. The results are based
on the BFM database [30]; hence the PCA modes are inherently
restricted to faces in that database. With a more expanded
database such as the BU-EEG multimodal facial action database
[49], we can expect the leakage assessment model to be
increasingly accurate or include the effects of expressions or
mouth movements.
Furthermore, once we know how the leakage is formed, the

question of what kind of leakage is “good” leakage arises. In other
words, if leakage is inevitable, where should we allow leakage to
occur such that the aerosol does not linger in the air for too long?
Another question to be answered is related to the deformation of
the mask due to breathing or sneezing. These respiratory episodes

Results from LASSO regression

terms Predictor
Coefficient

( × 10 )

1 -2.40

2 3.17

3 6.98

4 3.10

5 1.29

6 0.80

7 3.29

8 -1.57

9 -0.08

10 -4.09

11 1.67

std error 0.00098
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Fig. 5 (Left) Standard error from the LASSO regression for the training and test data decreases with the inclusion of more polynomial
terms. The inset in the left figure of the BIC shows that ~11 polynomial terms are sufficient for a good BIC. (Right) 11 polynomial terms and
corresponding coefficients used for the regression model.
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lead to higher pressure in the mask, which pushes the mask away
from the face and forms larger gaps. We are working on answering
these with an advanced fluid-structure interaction model that
utilizes 3D morphing faces, deformable mask models and
immersed boundary flow simulation technique.
To summarize, due to the interaction between the face, mask,

and airflow, picking an appropriate mask for everyone is a more
complex problem than picking outfits, and a lot more work is now
getting done to build a streamlined process to provide better
protection.

CONCLUSIONS
In this study, we aim to understand how facial feature changes
lead to mask leakage. The geometrically weighted PCA algorithm
is proposed to modify specific parts of the 3D face model based
on real face scans. A minimum-energy based, quasi-static model is
utilized to deploy masks with various configurations to the faces.
Finally, a new mask leakage metric, hydraulic resistance, that
considers the airflow traveling path from the mouth to the
escaping perimeter on top of the opening is considered to capture
the aerosol leakage better. From the results, we concluded that
the leakage location and extent are jointly decided by the mask
configurations and the facial features. We are now working on
answering various questions regarding mask leakage, and we are
excited to be able to bridge the knowledge gap for providing
better protection to the public.
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