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Abstract
Background The Children’s Health Exposure Analysis Resource (CHEAR) program allows researchers to expand their research
goals by offering the assessment of environmental exposures in their previously collected biospecimens. Samples are analyzed in
one of CHEAR’s network of six laboratory hubs with the ability to assess a wide array of environmental chemicals. The ability
to assess inter-study variability is important for researchers who want to combine datasets across studies and laboratories.
Objective Herein we establish a process of evaluating inter-study variability for a given analytic method.
Methods Common quality control (QC) pools at two concentration levels (A and B) in urine were created within CHEAR
for insertion into each batch of samples tested at a rate of three samples of each pool per 100 study samples. We assessed
these QC pool results for seven phthalates analyzed for five CHEAR studies by three different lab hubs utilizing multivariate
control charts to identify out-of-control runs or sets of samples associated with a given QC sample. We then tested the
conditions that would lead to an out-of-control run by simulating outliers in an otherwise “in-control” set of 12 trace
elements in blood QC samples (NIST SRM 955c).
Results When phthalates were assessed within study, we identified a single out-of-control run for two of the five studies.
Combining QC results across lab hubs, all of the runs from these two studies were now in-control, while multiple runs from
two other studies were pushed out-of-control. In our simulation study we found that 3–6 analytes with outlier values (5xSD)
within a run would push that run out of control in 65–83% of simulations, respectively.
Significance We show how acceptable bounds of variability can be established for a given analytic method by evaluating
QC materials across studies using multivariate control charts.
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Introduction

The Children’s Health Exposure Analysis Resource
(CHEAR) program is a consortium that includes a network
of laboratories and provides the opportunity for the chil-
dren’s health research community to expand their research
goals by offering assessment of a wide range of environ-
mental chemicals utilizing a researcher’s existing biological
specimens [1]. Resulting data, along with participant epi-
demiological data, are eventually compiled in a publicly
accessible repository. In order to leverage the benefits of
consortium programs such as CHEAR, it is important to
have quality control (QC) systems available which allow
researchers to assess inter-study and inter-laboratory varia-
bility allowing for the combination of data across studies,
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the benefits of which include increased sample sizes and
improved generalizability [2].

The laboratory network within CHEAR includes six
laboratory hubs (LHs). In order to maintain consistency across
laboratories, each LH participates in multiple proficiency
assessment schemes per year. In addition, CHEAR has dis-
tributed common QC materials, CHEAR QC pools, to each
LH that are to be analyzed concurrently with study samples.
These common QC materials allow for the assessment of
variation within and between studies and LHs. Generally in
CHEAR, when assessing a class of environmental exposure
chemicals, the assigned LH runs a core set of analytes for that
analytic method. Considering the fact that each laboratory is
using different extraction methods, instrumental platforms and
quantification methods, variability is expected to be inherent
within and between assays. Nevertheless, it is important to
assess if such variabilities are in- or out-of-control within and
between assays.

Among various quality assurance and control protocols
followed in CHEAR labs, two sets of QC pools were ana-
lyzed with every batch of samples. We selected data for seven
phthalate metabolites in two sets of urine QC pools analyzed
by three laboratories on five different studies to examine
within and between LH variabilities. We demonstrate the use
of multivariate control charts with Hotelling’s T2 as the
charting statistic [3–5] to evaluate whether the values for the
core set of analytes were in-control for each run within and
across studies and LHs. Interpretation of out-of-control runs
observed in this evaluation motivated us to address the
question of how much variance in a single or multiple analyte
(s) would it take to cause a run to be designated as out-of-
control. We used QC pool data across 12 trace elements that
were determined to be in-control to simulate out-of-control
conditions to characterize use of the control charts.

Methods

QC pool creation (phthalates)

Ten liters urine (10 L) were collected from anonymous donors
at Emory University using an Institutional Review Board-
approved protocol for collecting urine for QC pools. Indivi-
dual samples were pooled and mixed thoroughly. In addition,
500mL urine was collected anonymously from smokers at the
University of Minnesota and were shipped on dry ice, over-
night to Emory University. Pool A consisted of the pooled
urine from Emory. Pool B was created to mimic second-hand
tobacco exposures by combining the 500mL smokers’ urine
with 4.5 L of Pool A. After mixing, 1.5 mL aliquots were
pipetted into vials, labeled and frozen. The labels corre-
sponded to typical CHEAR sample identification labels so that
the samples were blinded to the analyst and that Pools A and

B could not be differentiated. The key for the samples was
provided to the CHEAR Data Center [1]. Each LH was
shipped equal amounts of pools A and B, overnight on dry
ice, and were instructed to have a sample coordinator (not the
analyst) insert 3 of each pool into each grouping of 100 ran-
domized samples for every organic chemical analysis in urine.

Study design

Assessment of phthalate metabolites in urine

Internal controls were included for multiple studies in CHEAR
to allow for intra- and inter-study and LH evaluations. For the
analyses of phthalate metabolites in urine, the CHEAR QC
pools A and B were evaluated across batches analyzed for
multiple studies in three CHEAR LHs. There were between 4
and 33 aliquots of each CHEAR QC pool analyzed per study.
Statistical analyses were conducted based on single run values.
For these analyses we define a run as a set of analytic samples
within a batch associated with a given QC sample, where there
may be more than one run per batch. There were 7 common
analytes within the phthalate metabolite method across these
studies including mono-benzyl phthalate (MBZP), mono-2-
ethyl-5-carboxypentyl phthalate (MECPP), mono-2-ethyl-5-
hydroxyhexyl phthalate (MEHHP), mono-2-ethyl-5-oxohexyl
phthalate (MEOHP), mono-ethyl phthalate (MEP), mono-iso-
butyl phthalate (MIBP), and mono-n-butyl phthalate (MNBP).
All phthalate concentrations were log10 transformed prior to
evaluation of intra- and inter-study variability using multi-
variate control charts. Studies #1 and #2 were analyzed at Lab
X, studies #3 & #4 were analyzed at Lab Y, and study #5 was
analyzed by Lab Z.

Simulation study

A simulation study was conducted in order to characterize
the sensitivity of multivariate control charts to identify
outliers. To accomplish this we looked to simulate outliers
in a real-world ‘in-control’ dataset with an adequate sample
size and a sizeable number of components. We utilized data
from a single CHEAR study from one LH evaluating trace
elements in whole blood that fit these requirements to create
a baseline dataset. Two NIST samples, SRM995c levels 2
and 3, were run over ten batches in this CHEAR study.
There were three runs of each NIST level per batch; runs
were averaged by batch for these analyses. A criterion was
implemented to only include trace elements with an overall
coefficient of variance (CV) less than 20%, resulting in an
‘in-control’ baseline dataset with 12 elements, including
Mg, Mn, Cu, Zn, As, Se, Mo, Cd, Sn, Cs, Ba, and Pb.
Measured concentrations of SRM at both levels were well
beyond limits of detection (LOD) (greater than 5 × LOD)
for all elements included in this dataset.
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Simulated datasets were created by randomly selecting 1–6
of the 12 elements in a single batch of the baseline dataset for
each NIST sample and increasing the batch average con-
centrations by 12.5%, 25%, 50%, 100%, 200%, or 400%.
Values were then log10 transformed. One hundred datasets
were created per batch for each manipulation condition and
analyzed utilizing the multivariate control charts for a total of
1000 models tested for each manipulation condition. We
calculated the percent of models that were out of control at
each condition for both NIST samples combined.

We then created simulated datasets by utilizing a similar
method, but instead of a fixed percent increase, the batch
average concentrations of 1 to 6 elements were increased by
multiples of the standard deviation of the log10 transformed
values for a given element. Like the previous set of simu-
lated datasets, 100 datasets were created per batch for each
manipulation condition and analyzed utilizing the multi-
variate control charts for a total of 1000 models tested for
each condition. The percent of models that were out of
control at each condition for both NIST samples were cal-
culated and plotted.

Laboratory methods

Lab X phthalates

Urine samples were randomized prior to analysis to reduce
the amount of analytic bias introduced into the data. A 1-mL
aliquot of urine was spiked with isotopically labeled analogs
of the target phthalate metabolites and subjected to an
enzymatic hydrolysis to liberate glucuronide-bound con-
jugates. The hydrolysate was extracted using an ABS Elut-
NEXUS solid-phase extraction (SPE) column, eluting with
acetonitrile and ethyl acetate. The extract was concentrated
to dryness and reconstituted in mobile phase for analysis
using liquid chromatography-tandem mass spectrometry
(LC–MS/MS). Analyte concentrations were calculated using
an isotope-dilution method. LOD ranged from 0.1–0.5 ng/
mL, typically. Two bench QC materials (one high and one
low) and one blank sample were analyzed concurrently with
each set of 28 samples. Further quality assurance measures
were included in the sample analyses including NIST SRM
3672 and 3673 (one of each per 100 samples), CHEAR QC
pools, and bi-annual participation in the German External
Quality Assessment Scheme (G-EQUAS).

Lab Y phthalates

Lab Y followed the analytical method of the Centers for
Disease Control and Prevention for phthalate metabolites in
urine [6] with minor modifications [7]. Quantification
was based on an isotope-dilution liquid chromatography
and tandem mass spectrometry method [8]. In brief, 13C4- or

D4-labeled internal standards were added to each sample,
metabolites were treated with β-glucuronidase from Escher-
ichia coli-K12 (product # 3707601001, Roche Diagnostics
through Sigma Aldrich), followed by SPE with an Oasis HLB
hydrophilic-lipophilic balanced reversed-phase 96-well plate
(30mg sorbent per well, 30 µm particle size; Waters Cor-
poration, Milford, MA). The procedure was automated using
a liquid handler (epMotion 5075vtc; Eppendorf, Hauppauge,
NY). The LC–MS/MS (UHPLC Nexera XR, Shimadzu and
Sciex 6500 triple quadruple MS, AB Sciex; Framingham,
MA) was operated in electrospray negative mode for ioniza-
tion and multiple reaction monitoring for quantification.
Chromatographic separation was achieved on a Kinetex
biphenyl, 2.6 µm, 50 × 2.1mm analytical column with 2 × 2.1
mm guard cartridge (Phenomenex Inc., Torrance, CA) using a
mobile phase gradient with 0.1% acetic acid in LC–MS grade
water and acetonitrile, respectively. The LOD for phthalate
metabolites ranged from 0.05–0.50 ng/mL. As with Lab X, in
addition to CHEAR QC pools A and B, Lab Y included NIST
SRM 3672 for study #3 (three per 100 study samples), NIST
SRM 3673 for both studies #3 and #4 (three per 100 study
samples), and participates bi-annually in the German External
Quality Assessment Scheme (G-EQUAS).

Lab Z phthalates

Lab Z used methods similar to those of the other two labs.
Quantitative detection of phthalate metabolites was achieved
utilizing a solid-phase extraction (SPE) method followed by
enzymatic deconjugation of the glucuronidated phthalate
monoesters coupled with HPLC-ESI-MS/MS, as previously
described [9]. Assay precision is improved by incorporating
13C4- or D4-isotopically labeled internal standards for each of
the phthalate metabolites. This selective method allowed for
rapid detection of metabolites of phthalates with the majority
of LOD in the range of 0.01–0.20 ng/mL (Table S1). Quality
assurance measures included the insertion of CHEAR QC
pools A and B, NIST SRM 3672 and 3673 (one per
100 samples), and bi-annual participation in the German
External Quality Assessment Scheme (G-EQUAS).

Trace element analysis in blood

In brief, blood samples (200 µl) were diluted with a diluent
solution (8.8 ml containing 0.5 % HNO3, 0.005% Triton X-
100, mixed internal standard) in a 15 ml polypropylene trace
metal-free Falcon tubes (VWR® Metal-Free Centrifuge
Tubes). All sample preparation was performed in an ISO
Cass 5 laminar flow clean hood in the ISO Class 6 clean
room. Analytes were quantified from matrix matched cali-
bration standards using Agilent 8800 ICP Triple Quad (ICP-
QQQ) (Agilent technologies, Inc., Wilmington, Delaware,
USA) MS/MS with appropriate cell gases to eliminate
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molecular ion interferences. Internal standards (yttrium,
indium, tellurium and lutetium) were used to correct for the
differences sample introduction, ionization and reaction rates
in the reaction cell. All runs included 5% QC samples,
blinded prior to receipt in the lab, including duplicates, field
blanks and NIST SRM 955c (Toxic elements in Caprine
Blood, Gaithersburg, MD). QA/QC procedures included
analyses of initial calibration verification standards and
continuous calibration verification standards (CCVS) mixed
element standards at two different concentration levels,
procedural blanks, duplicates and in-house-pooled blood
sample (IHB) to monitor the accuracy and reproducibility of
the analysis. CCVS and IHB were run after analysis of every
ten samples. All lab recovery rates for QC standards and
spiked samples were 85–115% and precision (given as %
RSD) was <10% for samples with concentrations >LOQ.
The LOD for analytes were between 0.02 and 2 ng/mL and
LOQ ranged between 0.07 and 6.4 ng/mL.

Statistical methods

Summary statistics for phthalate metabolites in urine

Means and percent CV were calculated for each phthalate
per study and overall. Spearman rank correlation coeffi-
cients were calculated for each study.

Multivariate control charts

We assume that repeated evaluations of the QC pools (used
for inter-study evaluation of phthalates) or NIST standards
(used as basis for simulation study) are generally “in-con-
trol” so that the population means and covariance structures
can be estimated by sample statistics. To set notation, fol-
lowing Tracy et al. [3], assume n samples of p components

comprise a p-variate vector Xi ¼
Xi1

..

.

Xip

2
64

3
75 with estimated

mean vector X ¼
X1

..

.

Xp

2
64

3
75 and estimated covariance matrix

S ¼ 1
n�1

Pn
i¼1 Xi � X

� �
Xi � X
� �0

. The Hotelling’s T2

statistic charting statistic is defined as Qi ¼
Xi � X
� �0

S�1 Xi � X
� �

. Conveniently, the T2 statistic is
equivalent to the sum of standardized principal components
(PCs) of the covariance matrix for each QC pool or NIST
standards. However, with p large and n small, we approx-
imate T2 using a subset (S) of the PCs; thus, T2 is

approximated as
PS

j¼1
PCj

SEðPCjÞ
� �2

. Control limits can be

calculated when the number of observations is greater than

the number of components in the statistic plus two. Upper
and lower limits were calculated using the 99% confidence
interval from the distribution of the T2 statistic for the inter-
study analyses and simulation study.

Statistical analyses were conducted with SAS 9.4 (Cary,
NC). A template for SAS code is provided in supplemental
material (Template S1).

Results

Variability assessment of phthalate metabolites in
urine

The summary statistics for the seven common phthalates in
the CHEAR QC urine pool over five CHEAR studies are
shown in Table 1 (source data in Table S2). For both
CHEAR QC pools A and B, 4 of the 7 phthalates, MECPP,
MEHHP, MEP, and MIBP, had an overall CV greater than
20. Looking at intra-study precision, study #1 showed a
single phthalate, MIBP, with a CV above 50% in both QC
pools. Study #3 showed 2 of the 7 phthalates with a CV
above 20%, MBZP and MEOHP, but for QC pool A only.
For study #5, MBZP and MECPP had CVs above 20% in
both QC pools, while MEHHP had a CV above 20% for QC
pool B only.

Looking at the Spearman correlation coefficients among
the phthalates by study, there were stronger correlations
between analytes for both CHEAR QC pools in studies #1
[range: Pool A: −1.0, 1.0, Pool B: −0.8, 1.0] and #3
[range: Pool A: −0.54, 0.93, Pool B: −0.89, 0.82], than in
studies #2 [range: Pool A: 0.09, 0.84 Pool B: 0.01, 0.65],
#4 [range: Pool A: −0.20, 0.65 Pool B: −0.31, 0.42], and
#5 [range: Pool A: −0.37, 0.67 Pool B: −0.38, 0.57]
(Fig. 1). The sample sizes were smaller in studies #1 and
#3 (N= 4 and 7, respectively) compared to studies #2, #4,
and #5 (N= 25, 33, and 21, respectively), making the
comparison somewhat tenuous. However, the point is that
comparison of measures of QC pools involves point esti-
mates of means and standard deviations, but should also
accommodate comparisons of bivariate correlation and
covariance patterns.

In order to examine the variance and covariance of the
phthalates in aggregate, the T2 statistic was calculated for
each run by study. The T2 statistic was calculated from the
sum of two PCs for study #1, accounting for 95% of the
total variability, 7 PCs for study #2 (100% of variability), 5
PCs for study #3 (100% of variability), 7 PCs for study #4
(100% of variability), and 7 PCs for study #5 (100% of
variability). When calculated separately by study, the mul-
tivariate control charts show that each run within studies #1,
#2, and #5 is in control for both QC pools, i.e., the T2 for
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each run is below the upper confidence limit (UCL), while a
single run is out-of-control in study #3 for QC pool B and in
study #4 for QC pool A (Fig. 2). A run is “out-of-control” if
the T2 for that run falls above the UCL. The gray area in the
figures represents the middle 99% of the distribution of the
test statistic. Note the distribution is more skewed when the
sample size is small.

To allow for both inter-lab and inter-study comparisons,
the T2 statistics per run were recalculated to include the data
of the seven common phthalates in CHEAR QC pools A
and B from all five studies, thereby resetting the confidence
intervals for the control charts. The T2 statistic was calcu-
lated from the sum of 7 PCs for the 5 combined studies,
accounting for 100% of the variability. The combination of
these sets of data readjusted the mean, variance, and cov-
ariance estimates such that all runs in studies #3 and #4 are
now in control, while, for both QC pools, a single run in
study #1 and multiple runs in study #5 are now out of
control (Fig. 3).

We then examined the five study T2 statistic contribution
plots (Figs. S1 and S2) for the out-of-control runs from
study #1, runs 4 and 1 for pools A and B, respectively. For
both runs, MIBP was the largest contributing phthalate to
this value as identified based on contribution plots. Follow-
up examination of z-scores for the combined dataset
(Table S3) revealed MIBP to be 3.6 standard deviations
below the mean in run 4 for QC pool A and 5.8 standard
deviations above the mean in run 1 of QC pool B. An
outlier MIBP value for a single run in both QC pools for
study #1 can also be seen in the box plots of the log10
transformed values in Fig. 4.

Simulation study using 12 trace elements

In order to determine how much variance in a single or
multiple analyte(s) it would take to cause a run to be desig-
nated as out-of-control, we created simulation datasets from a
baseline in-control dataset of 12 trace elements run over 10
batches, utilizing batch average values of the runs (Fig. S3).
We augmented the batch average value of 1–6 randomly
selected elements by a set of multipliers, increasing these
batch average values by 13% up to 400% (Fig. 5) and counted
the percent of 2000 scenarios, 1000 per NIST sample,
resulting in T2 statistics that exceeded the UCL. For example,
when a random batch average value of a single element out of
12 in this otherwise in-control dataset was doubled, the batch
was out of control in about 40% of simulated models. Aug-
mented batches were out-of-control in all of the simulated
models when a third of the elements (4 out of 12) were
doubled. To test a subtler shift, the batch average values for
half of the elements (6 out of 12) in a single random batch
were increased by 25%, resulting in an out-of-control batch in
roughly 90% of the simulated models.

Since the effect of the percent increase in a batch average
value would be influenced by the variance of a selected
analyte, we also simulated datasets by augmenting the batch
average values of the same in control baseline dataset by
multiples of the standard deviation for a given element
(Fig. 5). The results of this simulation estimated, for
example, that if the batch average value for a third of the
elements (4 out of 12) within a batch were outliers
(~average + 4xSD), then that batch would be out-of-control
in roughly half of the models.

Table 1 Summary statistics for
CHEAR QC pools A and B by
study showing mean values for
each of the seven common
phthalates by study and overall
and the intra- and inter-study
percent CVs.

Overall Study #

(N= 90) 1 (N= 4) 2 (N= 25) 3 (N= 7) 4 (N= 33) 5 (N= 21)

Mean %CV Mean %CV Mean %CV Mean %CV Mean %CV Mean %CV

Pool Analyte

A MBZP 1.00 16 0.84 11 0.99 8 0.98 27 1.02 12 1.02 22

MECPP 4.71 39 5.13 1 7.28 3 3.91 15 4.28 9 2.50 30

MEHHP 2.89 25 2.77 4 2.92 6 2.19 11 2.36 11 3.94 17

MEOHP 2.13 20 1.75 3 2.04 5 2.47 22 2.47 13 1.67 18

MEP 16.0 21 13.50 13 15.31 4 13.07 9 13.82 9 21.80 1

MIBP 3.82 23 2.60 51 2.88 16 3.92 14 4.31 11 4.38 13

MNBP 7.86 20 5.41 11 6.17 6 7.93 13 8.26 10 9.70 6

B MBZP 1.41 16 1.26 6 1.39 4 1.59 12 1.52 11 1.23 24

MECPP 6.05 38 6.28 2 9.05 4 5.26 14 5.91 9 2.95 31

MEHHP 4.34 29 4.24 4 4.18 8 3.17 13 3.54 7 6.19 21

MEOHP 2.76 18 2.42 5 2.63 2 3.27 7 3.18 11 2.15 16

MEP 16.9 21 13.33 14 16.42 5 13.29 11 14.57 7 22.87 1

MIBP 4.60 26 5.93 62 3.51 19 4.69 11 4.91 12 5.13 17

MNBP 8.26 18 6.93 13 6.36 5 8.25 7 8.89 10 9.79 6
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Fig. 1 Spearman correlation matrices for the 7 common phthalates
by QC pool for each of the 5 CHEAR studies and overall. The
three color scale was used to indicate a correlation coefficients

approaching −1 (red), 0 (yellow), or 1 (green); significant correlation
coefficients in bold (color figure online).
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Discussion

We have demonstrated the utility of using multivariate
control charts for the CHEAR QC pools A and B in dif-
ferent contexts, i.e., evaluating intra-study data, and inter-
study, inter-lab data. The charting statistic identifies batch

runs that are outliers and the contribution plots demonstrate
which component(s) most contribute to the extreme statistic
[10, 11]. Through simulation, we characterized the degree
(in units of percentage and standard deviations) to which a
batch would be altered to change the set to be determined
out of control.

It is imperative in consortia programs, such as CHEAR
which has multiple labs, that a tool is available that allows
one to track intra- and inter-laboratory measures and eval-
uate the consistency required to combine study data. For
example, consider the scenario where environmental expo-
sure data from two studies measured from two labs are to be
combined. Differences in exposure concentrations should
be due to true exposure differences and not laboratory bias.
The insertion of the common QC pools by all of the parti-
cipating CHEAR LHs for every run within each study
provides the opportunity to track consistency over time,
study, and laboratory, using statistical tools such as multi-
variate control charts. Other QC materials can be used for
these purposes, such as NIST SRMs, but there is a cost
consideration that may limit the ability to insert at the

Fig. 2 Multivariate control charts for 7 phthalates from CHEAR
QC pools A (left panel) & B (right panel) from 5 CHEAR
studies assessed by 3 different CHEAR lab hubs. The control charts
show the T2 statistic plotted by run order for each study. The area
shaded in gray represents the in control range with reference lines for
the median, upper confidence limit (UCL), and lower confidence
limit (LCL).

Fig. 3 Multivariate control charts for 7 phthalates run for the
CHEAR QC pools A (top panel) & B (bottom panel) from a
combination of five CHEAR studies assessed by three different
CHEAR lab hubs. The control charts show the T2 statistic plotted by
run order for each study. The area shaded in gray represents the in
control range with reference lines for the median, upper confidence
limit (UCL) and lower confidence limit (LCL). Batches from separate
studies are separated by a vertical dotted line and labeled with the
study number. White plot background indicates a study analyzed by
Lab Y (studies 1 and 2), the orange indicates a study analyzed by Lab
Y (studies 3 and 4), and purple Lab Z (study 5). Out of control runs are
circled in red (color figure online).
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appropriate rates. Within the CHEAR program, as an
example, the common QC pools are inserted by LHs at a
rate of 3 samples of each pool per 100 study samples. These
charts from QC materials permit the visualization of data
that accommodates differences in means and standard
deviations across analytes and complex covariance patterns
between analytes for a given analytic method.

Multivariate control charts can be applied to determine
if all runs, across datasets considered for combination, are
in-control. The identification of out-of-control runs within
a study could trigger follow-up investigation to the cause

of the variation. As the simulation study demonstrated, a
single analyte may be the main contributor to the varia-
bility. In this case, that one analyte can be omitted from
the combined dataset. Alternatively, there may be a single
run or batch in one of the studies that is highly variable
and can be omitted. Or it can be determined that the dif-
ferences in the QC results are such that the datasets should
not be combined.

The practice of using study-wide coefficients of var-
iance to evaluate “in-control” conditions is limited. A
given quality objective for precision, e.g., %CV< 20, may

Fig. 4 Plot of log10
transformed phthalate
concentrations from QC pools
A (top panel) and B (bottom
panel) run for the 5 CHEAR
studies with overlaid box plot
analysis to indicate outlier
values. Square, triangular, and
circular markers indicate
analyses run by Labs X, Y, and
Z, respectively.
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not always be relevant for certain analytes in an analytic
method whose measurements can be highly variable, or if
the measured values in a common pool are approaching
the LOD for an analyte [12, 13]. In addition, CVs alone
can indicate changes in variance but not whether the
covariance between analytes in a given analytic method
for a specific run is consistent with the overall covariance
structure. The ability to evaluate both the variance and
covariance using the T2 statistic is advantageous in these
evaluations.

In addition, the approximation of the T2 statistic using a
subset of PCs permits the advantage of using it as a charting
statistic for the case where the number of components (p)
greatly exceeds the sample size (n)—i.e., the p > n case
[14]. The CHEAR Data Center is proposing the use of the
charting statistic in QC evaluations for more expansive
analytic methods such as in metabolomics where there may
be tens of thousands of components.

There are currently limited studies with overlapping
analytic methods, leading to a sample size too small to
establish reliable estimates of the true means and covariance
structure for each of the CHEAR QC pools. Furthermore,
since the true mean and covariance structure is not estab-
lished and the number of QC samples run within each study
varies, the T2 statistics are biased toward the study with the
largest N, study #4 in the case of phthalates. These issues
will be mitigated when more studies are included in the
analyses resulting in a larger overall sample size. In the long
term, the historical data will provide improved estimates of
the mean and covariance structure with negligible change in
estimates with additional data.

An additional limitation to this approach is that it relies
on the presence of a consistent common core of exposure
analytes for a given method. For example, in our phthalates
analyses, Labs X and Y each measured nine phthalates and
Lab Z measured twenty phthalates. There was a common set
of seven phthalates amongst these studies which determined
the common core of exposure analytes. This may not
always be feasible. The optimal core set of exposure ana-
lytes may vary over time, such as when replacement che-
micals are included in a method. The process may require
being “re-initiated” with changes in the core set for a given
method. It also notable that the QC urine pools contained
concentrations of 7 phthalate metabolites below the national
average and therefore expected to result in greater varia-
bility at such low levels of analysis.

Conclusions

For the CHEAR program, as well as similar consortia
programs, it is essential to develop systems that allow for
the assessment of consistency over time and with differing
laboratories, allowing for the combination of datasets. With
the evaluation of QC materials common across studies by
all participating LHs within our consortia and the utilization
of multivariate control charts to evaluate the results from
these QC materials over time, we have established a system
that can both be used for intra-study QC, identifying runs
requiring further examination or re-analysis, and inter-study
evaluation of fitness for combinability.
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