Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Correlates of exposure to phenols, parabens, and triclocarban in the Study of Environment, Lifestyle and Fibroids

Abstract

We performed a cross-sectional analysis to identify correlates of urinary concentrations of seven phenols (bisphenols A, F, and S; 2,4-dichlorophenol; 2,5-dichlorophenol; benzophenone-3; triclosan), triclocarban, and four parabens (butyl, ethyl, methyl, and propyl). We analyzed baseline data from 766 participants in the Study of Environment, Lifestyle, and Fibroids, a prospective cohort study of 1693 Black women aged 23–34 years residing in Detroit, Michigan (2010–2012). We collected data on demographic, behavioral, and anthropometric factors via telephone interviews, clinic visits, and self-administered questionnaires. For each biomarker, we used linear regression models to estimate mean differences in log-transformed, creatinine-corrected concentrations across factors of interest. Each biomarker was detected in >50% of participants. Median creatinine-corrected concentrations were the highest for methyl paraben (116.8 μg/g creatinine), propyl paraben (16.8 μg/g creatinine), and benzophenone-3 (13.4 μg/g creatinine). Variables most strongly associated with biomarker concentrations included season of urine collection, education, and body mass index (BMI). BMI was positively associated with bisphenol A and S and triclocarban concentrations and inversely associated with butyl and methyl paraben concentrations. In this cohort of Black women, exposure to phenols, parabens, and triclocarban was prevalent and several factors were associated with biomarker concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention (CDC) and Department of Health and Human Services. Fourth National Report on Human Exposure to Environmental Chemicals. Atlanta: CDC; 2009.

  2. Silva MJ, Barr DB, Reidy JA, Malek NA, Hodge CC, Caudill SP, et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. Environ Health Perspect. 2004;112:331–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Axelrad DA, Goodman S, Woodruff TJ. PCB body burdens in US women of childbearing age 2001–2002: an evaluation of alternate summary metrics of NHANES data. Environ Res. 2009;109:368–78.

    CAS  PubMed  Google Scholar 

  4. Axelrad DA, Cohen J. Calculating summary statistics for population chemical biomonitoring in women of childbearing age with adjustment for age-specific natality. Environ Res. 2011;111:149–55.

    CAS  PubMed  Google Scholar 

  5. Sjodin A, Jones RS, Caudill SP, Wong LY, Turner WE, Calafat AM. Polybrominated diphenyl ethers, polychlorinated biphenyls, and persistent pesticides in serum from the national health and nutrition examination survey: 2003-2008. Environ Sci Technol. 2014;48:753–60.

    CAS  PubMed  Google Scholar 

  6. Meeker JD, Cantonwine DE, Rivera-Gonzalez LO, Ferguson KK, Mukherjee B, Calafat AM, et al. Distribution, variability, and predictors of urinary concentrations of phenols and parabens among pregnant women in Puerto Rico. Environ Sci Technol. 2013;47:3439–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. James-Todd T, Senie R, Terry MB. Racial/ethnic differences in hormonally-active hair product use: a plausible risk factor for health disparities. J Immigr Minor Health. 2012;14:506–11.

    PubMed  Google Scholar 

  8. Ferguson KK, Colacino JA, Lewis RC, Meeker JD. Personal care product use among adults in NHANES: associations between urinary phthalate metabolites and phenols and use of mouthwash and sunscreen. J Expo Sci Environ Epidemiol. 2017;27:326–32.

    CAS  PubMed  Google Scholar 

  9. Braun JM, Just AC, Williams PL, Smith KW, Calafat AM, Hauser R. Personal care product use and urinary phthalate metabolite and paraben concentrations during pregnancy among women from a fertility clinic. J Expo Sci Environ Epidemiol. 2014;24:459–66.

    CAS  PubMed  Google Scholar 

  10. Nicole W. A question for women’s health: chemicals in feminine hygiene products and personal lubricants. Environ Health Perspect. 2014;122:A70–5.

    PubMed  PubMed Central  Google Scholar 

  11. Helm JS, Nishioka M, Brody JG, Rudel RA, Dodson RE. Measurement of endocrine disrupting and asthma-associated chemicals in hair products used by Black women. Environ Res. 2018;165:448–58.

    CAS  PubMed  Google Scholar 

  12. Darbre PD. Endocrine disruptors and obesity. Curr Obes Rep. 2017;6:18–27.

    PubMed  PubMed Central  Google Scholar 

  13. James-Todd TM, Chiu YH, Zota AR. Racial/ethnic disparities in environmental endocrine disrupting chemicals and women’s reproductive health outcomes: epidemiological examples across the life course. Curr Epidemiol Rep. 2016;3:161–80.

    PubMed  PubMed Central  Google Scholar 

  14. Zota AR, Shamasunder B. The environmental injustice of beauty: framing chemical exposures from beauty products as a health disparities concern. Am J Obstet Gynecol. 2017;217:418.e1–e6.

    CAS  Google Scholar 

  15. Fried SK, Lee MJ, Karastergiou K. Shaping fat distribution: new insights into the molecular determinants of depot- and sex-dependent adipose biology. Obesity (Silver Spring). 2015;23:1345–52.

    CAS  Google Scholar 

  16. Valencak TG, Osterrieder A, Schulz TJ. Sex matters: the effects of biological sex on adipose tissue biology and energy metabolism. Redox Biol. 2017;12:806–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ruiz D, Becerra M, Jagai JS, Ard K, Sargis RM. Disparities in environmental exposures to endocrine-disrupting chemicals and diabetes risk in vulnerable populations. Diabetes Care. 2018;41:193–205.

    CAS  PubMed  Google Scholar 

  18. Ye X, Wong LY, Zhou X, Calafat AM. Urinary concentrations of 2,4-dichlorophenol and 2,5-dichlorophenol in the U.S. population (National Health and Nutrition Examination Survey, 2003-2010): trends and predictors. Environ Health Perspect. 2014;122:351–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lehmler HJ, Liu B, Gadogbe M, Bao W. Exposure to bisphenol A, bisphenol F, and bisphenol S in U.S. adults and children: The National Health and Nutrition Examination Survey 2013-2014. ACS Omega. 2018;3:6523–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wei Y, Zhu J, Nguyen A. Urinary concentrations of dichlorophenol pesticides and obesity among adult participants in the U.S. National Health and Nutrition Examination Survey (NHANES) 2005-2008. Int J Hyg Environ Health. 2014;217:294–9.

    CAS  PubMed  Google Scholar 

  21. Liu B, Lehmler H-J, Sun Y, Xu G, Liu Y, Zong G, et al. Bisphenol A substitutes and obesity in US adults: analysis of a population-based, cross-sectional study. Lancet Planet Health. 2017;1:e114–22.

    PubMed  PubMed Central  Google Scholar 

  22. Braun JM, Kalkbrenner AE, Calafat AM, Bernert JT, Ye X, Silva MJ, et al. Variability and predictors of urinary bisphenol A concentrations during pregnancy. Environ Health Perspect. 2011;119:131–7.

    CAS  PubMed  Google Scholar 

  23. Li S, Zhao J, Wang G, Zhu Y, Rabito F, Krousel-Wood M, et al. Urinary triclosan concentrations are inversely associated with body mass index and waist circumference in the US general population: Experience in NHANES 2003-2010. Int J Hyg Environ Health. 2015;218:401–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015;36:E1–150.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li AJ, Xue J, Lin S, Al-Malki AL, Al-Ghamdi MA, Kumosani TA, et al. Urinary concentrations of environmental phenols and their association with type 2 diabetes in a population in Jeddah, Saudi Arabia. Environ Res. 2018;166:544–52.

    CAS  PubMed  Google Scholar 

  26. Aker AM, Watkins DJ, Johns LE, Ferguson KK, Soldin OP, Anzalota Del Toro LV, et al. Phenols and parabens in relation to reproductive and thyroid hormones in pregnant women. Environ Res. 2016;151:30–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liang H, Xu W, Chen J, Shi H, Zhu J, Liu X, et al. The association between exposure to environmental bisphenol A and gonadotropic hormone levels among men. PLoS ONE. 2017;12:e0169217.

    PubMed  PubMed Central  Google Scholar 

  28. Aker AM, Johns L, McElrath TF, Cantonwine DE, Mukherjee B, Meeker JD. Associations between maternal phenol and paraben urinary biomarkers and maternal hormones during pregnancy: a repeated measures study. Environ Int. 2018;113:341–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang X, Ouyang F, Feng L, Wang X, Liu Z, Zhang J. Maternal urinary triclosan concentration in relation to maternal and neonatal thyroid hormone levels: a prospective study. Environ Health Perspect. 2017;125:067017.

    PubMed  PubMed Central  Google Scholar 

  30. Aung MT, Johns LE, Ferguson KK, Mukherjee B, McElrath TF, Meeker JD. Thyroid hormone parameters during pregnancy in relation to urinary bisphenol A concentrations: a repeated measures study. Environ Int. 2017;104:33–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Calsolaro V, Pasqualetti G, Niccolai F, Caraccio N, Monzani F. Thyroid disrupting chemicals. Int J Mol Sci. 2017;18:2583.

    PubMed Central  Google Scholar 

  32. Watkins DJ, Ferguson KK, Anzalota Del Toro LV, Alshawabkeh AN, Cordero JF, Meeker JD. Associations between urinary phenol and paraben concentrations and markers of oxidative stress and inflammation among pregnant women in Puerto Rico. Int J Hyg Environ Health. 2015;218:212–9.

    CAS  PubMed  Google Scholar 

  33. Ferguson KK, Cantonwine DE, McElrath TF, Mukherjee B, Meeker JD. Repeated measures analysis of associations between urinary bisphenol-A concentrations and biomarkers of inflammation and oxidative stress in pregnancy. Reprod Toxicol. 2016;66:93–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Meeker JD, Sathyanarayana S, Swan SH. Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans R Soc Lond B Biol Sci. 2009;364:2097–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Faniband M, Lindh CH, Jonsson BA. Human biological monitoring of suspected endocrine-disrupting compounds. Asian J Androl. 2014;16:5–16.

    PubMed  Google Scholar 

  36. Liu J, Martin JW. Prolonged exposure to bisphenol A from single dermal contact events. Environ Sci Technol. 2017;51:9940–9.

    CAS  PubMed  Google Scholar 

  37. Gerona RR, Pan J, Zota AR, Schwartz JM, Friesen M, Taylor JA, et al. Direct measurement of Bisphenol A (BPA), BPA glucuronide and BPA sulfate in a diverse and low-income population of pregnant women reveals high exposure, with potential implications for previous exposure estimates: a cross-sectional study. Environ Health. 2016;15:50.

    PubMed  PubMed Central  Google Scholar 

  38. Stahlhut RW, Welshons WV, Swan SH. Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ Health Perspect. 2009;117:784–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Volkel W, Colnot T, Csanady GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chem Res Toxicol. 2002;15:1281–7.

    PubMed  Google Scholar 

  40. Haines DA, Murray J. Human biomonitoring of environmental chemicals--early results of the 2007-2009 Canadian Health Measures Survey for males and females. Int J Hyg Environ Health. 2012;215:133–7.

    CAS  PubMed  Google Scholar 

  41. Choi W, Kim S, Baek YW, Choi K, Lee K, Kim S, et al. Exposure to environmental chemicals among Korean adults-updates from the second Korean National Environmental Health Survey (2012-2014). Int J Hyg Environ Health. 2017;220:29–35.

    CAS  PubMed  Google Scholar 

  42. Covaci A, Den Hond E, Geens T, Govarts E, Koppen G, Frederiksen H, et al. Urinary BPA measurements in children and mothers from six European member states: overall results and determinants of exposure. Environ Res. 2015;141:77–85.

    CAS  PubMed  Google Scholar 

  43. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect. 2008;116:39–44.

    CAS  PubMed  Google Scholar 

  44. Hartle JC, Navas-Acien A, Lawrence RS. The consumption of canned food and beverages and urinary bisphenol A concentrations in NHANES 2003-2008. Environ Res. 2016;150:375–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rochester JR, Bolden AL. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect. 2015;123:643–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Karrer C, Roiss T, von Goetz N, Gramec Skledar D, Peterlin Masic L, Hungerbuhler K. Physiologically based pharmacokinetic (PBPK) modeling of the bisphenols BPA, BPS, BPF, and BPAF with new experimental metabolic parameters: comparing the pharmacokinetic behavior of BPA with its substitutes. Environ Health Perspect. 2018;126:077002.

    PubMed  PubMed Central  Google Scholar 

  47. Oh J, Choi JW, Ahn YA, Kim S. Pharmacokinetics of bisphenol S in humans after single oral administration. Environ Int. 2018;112:127–33.

    CAS  PubMed  Google Scholar 

  48. Dhillon GS, Kaur S, Pulicharla R, Brar SK, Cledon M, Verma M, et al. Triclosan: current status, occurrence, environmental risks and bioaccumulation potential. Int J Environ Res Public Health. 2015;12:5657–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yoshida T, Andoh K, Fukuhara M. Urinary 2,5-dichlorophenol as biological index for p-dichlorobenzene exposure in the general population. Arch Environ Contam Toxicol. 2002;43:481–5.

    CAS  PubMed  Google Scholar 

  50. Somani SM, Khalique A. Distribution and metabolism of 2,4-dichlorophenol in rats. J Toxicol Environ Health. 1982;9:889–97.

    CAS  PubMed  Google Scholar 

  51. Ryan RP, Terry CE, Leffingwell SS. 2,4-Dichlorophenol. In: Toxicology desk reference: the toxic exposure & medical monitoring index. Philadelphia, PA: Taylor & Francis 1999, p. 507–9.

  52. Philippat C, Bennett D, Calafat AM, Picciotto IH. Exposure to select phthalates and phenols through use of personal care products among Californian adults and their children. Environ Res. 2015;140:369–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dodson RE, Nishioka M, Standley LJ, Perovich LJ, Brody JG, Rudel RA. Endocrine disruptors and asthma-associated chemicals in consumer products. Environ Health Perspect. 2012;120:935–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zamoiski RD, Cahoon EK, Michal Freedman D, Linet MS. Self-reported sunscreen use and urinary benzophenone-3 concentrations in the United States: NHANES 2003-2006 and 2009-2012. Environ Res. 2015;142:563–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim S, Choi K. Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: a mini-review. Environ Int. 2014;70:143–57.

    CAS  PubMed  Google Scholar 

  56. Calafat AM, Wong LY, Ye X, Reidy JA, Needham LL. Concentrations of the sunscreen agent benzophenone-3 in residents of the United States: National Health and Nutrition Examination Survey 2003--2004. Environ Health Perspect. 2008;116:893–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sandborgh-Englund G, Adolfsson-Erici M, Odham G, Ekstrand J. Pharmacokinetics of triclosan following oral ingestion in humans. J Toxicol Environ Health A. 2006;69:1861–73.

    CAS  PubMed  Google Scholar 

  58. Queckenberg C, Meins J, Wachall B, Doroshyenko O, Tomalik-Scharte D, Bastian B, et al. Absorption, pharmacokinetics, and safety of triclosan after dermal administration. Antimicrob Agents Chemother. 2010;54:570–2.

    CAS  PubMed  Google Scholar 

  59. Rochester JR, Bolden AL, Pelch KE, Kwiatkowski CF. Potential developmental and reproductive impacts of triclocarban: a scoping review. J Toxicol. 2017;2017:9679738.

    PubMed  PubMed Central  Google Scholar 

  60. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Urinary concentrations of triclosan in the U.S. population: 2003-2004. Environ Health Perspect. 2008;116:303–7.

    CAS  PubMed  Google Scholar 

  61. Ye X, Wong LY, Dwivedi P, Zhou X, Jia T, Calafat AM. Urinary concentrations of the antibacterial agent triclocarban in United States residents: 2013-2014 National Health and Nutrition Examination Survey. Environ Sci Technol. 2016;50:13548–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Safety and effectiveness of consumer antiseptics; topical antimicrobial drug products for over-the-counter human use (21 CFR 310). U.S. Food and Drug Administration; 2016. p. 61106–130.

  63. Halden RU, Lindeman AE, Aiello AE, Andrews D, Arnold WA, Fair P, et al. The Florence Statement on Triclosan and Triclocarban. Environ Health Perspect. 2017;125:064501.

    PubMed  PubMed Central  Google Scholar 

  64. Janjua NR, Frederiksen H, Skakkebaek NE, Wulf HC, Andersson AM. Urinary excretion of phthalates and paraben after repeated whole-body topical application in humans. Int J Androl. 2008;31:118–30.

    CAS  PubMed  Google Scholar 

  65. Abbas S, Greige-Gerges H, Karam N, Piet MH, Netter P, Magdalou J. Metabolism of parabens (4-hydroxybenzoic acid esters) by hepatic esterases and UDP-glucuronosyltransferases in man. Drug Metab Pharmacokinet. 2010;25:568–77.

    CAS  PubMed  Google Scholar 

  66. Aubert N, Ameller T, Legrand JJ. Systemic exposure to parabens: pharmacokinetics, tissue distribution, excretion balance and plasma metabolites of [14C]-methyl-, propyl- and butylparaben in rats after oral, topical or subcutaneous administration. Food Chem Toxicol. 2012;50:445–54.

    CAS  PubMed  Google Scholar 

  67. Calafat AM, Ye X, Wong LY, Bishop AM, Needham LL. Urinary concentrations of four parabens in the U.S. population: NHANES 2005-2006. Environ Health Perspect. 2010;118:679–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Baird DD, Harmon QE, Upson K, Moore KR, Barker-Cummings C, Baker S, et al. A prospective, ultrasound-based study to evaluate risk factors for uterine fibroid incidence and growth: methods and results of recruitment. J Womens Health (Larchmt). 2015;24:907–15.

    Google Scholar 

  69. Ye X, Kuklenyik Z, Needham LL, Calafat AM. Measuring environmental phenols and chlorinated organic chemicals in breast milk using automated on-line column-switching-high performance liquid chromatography-isotope dilution tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2006;831:110–5.

    CAS  Google Scholar 

  70. Ye X, Kuklenyik Z, Needham LL, Calafat AM. Automated on-line column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine. Anal Chem. 2005;77:5407–13.

    CAS  PubMed  Google Scholar 

  71. Laboratory procedure manual: benzophenone-3, bisphenol A, 2,4-dichlorophenol, 2,5-dichlorophenol, methyl-, ethyl-, propyl-, and butyl parabens, triclosan. CDC Environmental Health; 2013.

  72. Wolak ME, Fairbairn DJ, Paulsen YR. Guidelines for estimating repeatability. Methods Ecol Evol. 2012;3:129–37.

    Google Scholar 

  73. Morgan MK, Nash M, Barr DB, Starr JM, Scott Clifton M, Sobus JR. Distribution, variability, and predictors of urinary bisphenol A levels in 50 North Carolina adults over a six-week monitoring period. Environ Int. 2018;112:85–99.

    CAS  PubMed  Google Scholar 

  74. Arbuckle TE, Marro L, Davis K, Fisher M, Ayotte P, Belanger P, et al. Exposure to free and conjugated forms of bisphenol A and triclosan among pregnant women in the MIREC cohort. Environ Health Perspect. 2015;123:277–84.

    CAS  PubMed  Google Scholar 

  75. Arbuckle TE, Fraser WD, Fisher M, Davis K, Liang CL, Lupien N, et al. Cohort profile: the maternal-infant research on environmental chemicals research platform. Paediatr Perinat Epidemiol. 2013;27:415–25.

    PubMed  Google Scholar 

  76. Messerlian C, Williams PL, Ford JB, Chavarro JE, Minguez-Alarcon L, Dadd R, et al. The Environment and Reproductive Health (EARTH) study: a prospective preconception cohort. Hum Reprod Open. 2018;2018:hoy001.

  77. Gautam P, Carsella JS, Kinney CA. Presence and transport of the antimicrobials triclocarban and triclosan in a wastewater-dominated stream and freshwater environment. Water Res. 2014;48:247–56.

    CAS  PubMed  Google Scholar 

  78. Starling AP, Brinton JT, Glueck DH, Shapiro AL, Harrod CS, Lynch AM, et al. Associations of maternal BMI and gestational weight gain with neonatal adiposity in the Healthy Start study. Am J Clin Nutr. 2015;101:302–9.

    CAS  PubMed  Google Scholar 

  79. Polinski KJ, Dabelea D, Hamman RF, Adgate JL, Calafat AM, Ye X, et al. Distribution and predictors of urinary concentrations of phthalate metabolites and phenols among pregnant women in the Healthy Start Study. Environ Res. 2018;162:308–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Stacy SL, Eliot M, Etzel T, Papandonatos G, Calafat AM, Chen A, et al. Patterns, variability, and predictors of urinary triclosan concentrations during pregnancy and childhood. Environ Sci Technol. 2017;51:6404–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Braun JM, Kalloo G, Chen A, Dietrich KN, Liddy-Hicks S, Morgan S, et al. Cohort Profile: The Health Outcomes and Measures of the Environment (HOME) study. Int J Epidemiol. 2017;46:24.

    PubMed  Google Scholar 

  82. Mortensen ME, Calafat AM, Ye X, Wong LY, Wright DJ, Pirkle JL, et al. Urinary concentrations of environmental phenols in pregnant women in a pilot study of the National Children’s Study. Environ Res. 2014;129:32–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Alvarez-Munoz D, Rodriguez-Mozaz S, Jacobs S, Serra-Compte A, Caceres N, Sioen I, et al. Pharmaceuticals and endocrine disruptors in raw and cooked seafood from European market: Concentrations and human exposure levels. Environ Int. 2018;119:570–81.

    CAS  PubMed  Google Scholar 

  84. Jahns L, Raatz SK, Johnson LK, Kranz S, Silverstein JT, Picklo MJ. Intake of seafood in the US varies by age, income, and education level but not by race-ethnicity. Nutrients. 2014;6:6060–75.

    PubMed  PubMed Central  Google Scholar 

  85. Tyrrell J, Melzer D, Henley W, Galloway TS, Osborne NJ. Associations between socioeconomic status and environmental toxicant concentrations in adults in the USA: NHANES 2001-2010. Environ Int. 2013;59:328–35.

    CAS  PubMed  Google Scholar 

  86. Patel CJ, Ioannidis JP, Cullen MR, Rehkopf DH. Systematic assessment of the correlations of household income with infectious, biochemical, physiological, and environmental factors in the United States, 1999-2006. Am J Epidemiol. 2015;181:171–9.

    PubMed  PubMed Central  Google Scholar 

  87. Park H, Kim K. Concentrations of 2,4-dichlorophenol and 2,5-dichlorophenol in urine of korean adults. Int J Environ Res Public Health. 2018;15:589.

    PubMed Central  Google Scholar 

  88. Belova A, Greco SL, Riederer AM, Olsho LE, Corrales MA. A method to screen U.S. environmental biomonitoring data for race/ethnicity and income-related disparity. Environ Health. 2013;12:114.

    PubMed  PubMed Central  Google Scholar 

  89. Philips EM, Jaddoe VWV, Asimakopoulos AG, Kannan K, Steegers EAP, Santos S, et al. Bisphenol and phthalate concentrations and its determinants among pregnant women in a population-based cohort in the Netherlands, 2004-5. Environ Res. 2018;161:562–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Legeay S, Faure S. Is bisphenol A an environmental obesogen? Fundam Clin Pharmacol. 2017;31:594–609.

    CAS  PubMed  Google Scholar 

  91. Boucher JG, Gagne R, Rowan-Carroll A, Boudreau A, Yauk CL, Atlas E, Bisphenol A, Bisphenol S. Induce distinct transcriptional profiles in differentiating human primary preadipocytes. PLoS ONE. 2016;11:e0163318.

    PubMed  PubMed Central  Google Scholar 

  92. Ranciere F, Lyons JG, Loh VH, Botton J, Galloway T, Wang T, et al. Bisphenol A and the risk of cardiometabolic disorders: a systematic review with meta-analysis of the epidemiological evidence. Environ Health. 2015;14:46.

    PubMed  PubMed Central  Google Scholar 

  93. Verbanck M, Canouil M, Leloire A, Dhennin V, Coumoul X, Yengo L, et al. Low-dose exposure to bisphenols A, F and S of human primary adipocyte impacts coding and non-coding RNA profiles. PLoS ONE. 2017;12:e0179583.

    PubMed  PubMed Central  Google Scholar 

  94. Boucher JG, Ahmed S, Atlas E. Bisphenol S induces adipogenesis in primary human preadipocytes from female donors. Endocrinology. 2016;157:1397–407.

    CAS  PubMed  Google Scholar 

  95. Verbraecken J, Van de Heyning P, De Backer W, Van Gaal L. Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metabolism. 2006;55:515–24.

    CAS  PubMed  Google Scholar 

  96. Smith KW, Braun JM, Williams PL, Ehrlich S, Correia KF, Calafat AM, et al. Predictors and variability of urinary paraben concentrations in men and women, including before and during pregnancy. Environ Health Perspect. 2012;120:1538–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Buttke DE, Sircar K, Martin C. Exposures to endocrine-disrupting chemicals and age of menarche in adolescent girls in NHANES (2003-2008). Environ Health Perspect. 2012;120:1613–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. McGuinn LA, Ghazarian AA, Joseph Su L, Ellison GL. Urinary bisphenol A and age at menarche among adolescent girls: evidence from NHANES 2003-2010. Environ Res. 2015;136:381–6.

    CAS  PubMed  Google Scholar 

  99. Wolff MS, Pajak A, Pinney SM, Windham GC, Galvez M, Rybak M, et al. Associations of urinary phthalate and phenol biomarkers with menarche in a multiethnic cohort of young girls. Reprod Toxicol. 2017;67:56–64.

    CAS  PubMed  Google Scholar 

  100. Biro FM, Galvez MP, Greenspan LC, Succop PA, Vangeepuram N, Pinney SM, et al. Pubertal assessment method and baseline characteristics in a mixed longitudinal study of girls. Pediatrics. 2010;126:e583–90.

    PubMed  Google Scholar 

  101. Corvalan C, Uauy R, Stein AD, Kain J, Martorell R. Effect of growth on cardiometabolic status at 4 y of age. Am J Clin Nutr. 2009;90:547–55.

    CAS  PubMed  Google Scholar 

  102. Binder AM, Corvalan C, Calafat AM, Ye X, Mericq V, Pereira A, et al. Childhood and adolescent phenol and phthalate exposure and the age of menarche in Latina girls. Environ Health. 2018;17:32.

    PubMed  PubMed Central  Google Scholar 

  103. Reinen J, Vermeulen NP. Biotransformation of endocrine disrupting compounds by selected phase I and phase II enzymes--formation of estrogenic and chemically reactive metabolites by cytochromes P450 and sulfotransferases. Curr Med Chem. 2015;22:500–27.

    CAS  PubMed  Google Scholar 

  104. Karapanou O, Papadimitriou A. Determinants of menarche. Reprod Biol Endocrinol. 2010;8:115.

    PubMed  PubMed Central  Google Scholar 

  105. Ahmed ML, Ong KK, Dunger DB. Childhood obesity and the timing of puberty. Trends Endocrinol Metab. 2009;20:237–42.

    CAS  PubMed  Google Scholar 

  106. Pollack AZ, Perkins NJ, Sjaarda L, Mumford SL, Kannan K, Philippat C, et al. Variability and exposure classification of urinary phenol and paraben metabolite concentrations in reproductive-aged women. Environ Res. 2016;151:513–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ye X, Wong LY, Bishop AM, Calafat AM. Variability of urinary concentrations of bisphenol A in spot samples, first morning voids, and 24-hour collections. Environ Health Perspect. 2011;119:983–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Koch HM, Aylward LL, Hays SM, Smolders R, Moos RK, Cocker J, et al. Inter- and intra-individual variation in urinary biomarker concentrations over a 6-day sampling period. Part 2. Personal care product ingredients. Toxicol Lett. 2014;231:261–9.

    CAS  PubMed  Google Scholar 

  109. Wactawski-Wende J, Schisterman EF, Hovey KM, Howards PP, Browne RW, Hediger M, et al. BioCycle study: design of the longitudinal study of the oxidative stress and hormone variation during the menstrual cycle. Paediatr Perinat Epidemiol. 2009;23:171–84.

    PubMed  PubMed Central  Google Scholar 

  110. Weiss L, Arbuckle TE, Fisher M, Ramsay T, Mallick R, Hauser R, et al. Temporal variability and sources of triclosan exposure in pregnancy. Int J Hyg Environ Health. 2015;218:507–13.

    CAS  PubMed  Google Scholar 

  111. Romano ME, Kalloo G, Etzel T, Braun JM. Re: Seasonal variation in exposure to endocrine-disrupting chemicals. Epidemiology. 2017;28:e42–3.

    PubMed  PubMed Central  Google Scholar 

  112. Calafat AM, Longnecker MP, Koch HM, Swan SH, Hauser R, Goldman LR, et al. Optimal exposure biomarkers for nonpersistent chemicals in environmental epidemiology. Environ Health Perspect. 2015;123:A166–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Perrier F, Giorgis-Allemand L, Slama R, Philippat C. Within-subject pooling of biological samples to reduce exposure misclassification in biomarker-based studies. Epidemiology. 2016;27:378–88.

    PubMed  PubMed Central  Google Scholar 

  114. Slama R, Vernet C, Nassan FL, Hauser R, Philippat C. Characterizing the effect of endocrine disruptors on human health: the role of epidemiological cohorts. C R Biol. 2017;340:421–31.

    PubMed  Google Scholar 

  115. Haseman JK, Bailer AJ, Kodell RL, Morris R, Portier K. Statistical issues in the analysis of low-dose endocrine disruptor data. Toxicol Sci. 2001;61:201–10.

    CAS  PubMed  Google Scholar 

  116. Helm JS, Nishioka M, Brody JG, Rudel RA, Dodson RE. Measurement of endocrine disrupting and asthma-associated chemicals in hair products used by Black women. Environ Res. 2018. https://doi.org/10.1016/j.envres.2018.03.030.

    CAS  PubMed  Google Scholar 

  117. James-Todd T, Senie R, Terry MB. Racial/ethnic differences in hormonally-active hair product use: a plausible risk factor for health disparities. J Immigr Minor Health. 2011. https://doi.org/10.1007/s10903-011-9482-5.

    Google Scholar 

  118. Pycke BF, Geer LA, Dalloul M, Abulafia O, Halden RU. Maternal and fetal exposure to parabens in a multiethnic urban U.S. population. Environ Int. 2015;84:193–200.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Institute of Environmental Health Sciences (R01ES024749 and Intramural Research Program) and the American Recovery and Reinvestment Act. The authors wish to thank Prabha Dwivedi, Xiaoliu Zhou, and Tao Jia for the quantification of the chemical biomarkers, as well as Ganesa Wegienka, Birgit Claus Henn, Hanna Gerlovin, and Alexandra McHale for technical assistance. We also thank Gregory Travlos and Ralph Wilson (NIEHS, Clinical Pathology Core) for the quantification of creatinine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Traci N. Bethea.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the CDC. Use of trade names is for identification only and does not imply endorsement by the CDC, the Public Health Service, or the U.S. Department of Health and Human Services.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bethea, T.N., Wesselink, A.K., Weuve, J. et al. Correlates of exposure to phenols, parabens, and triclocarban in the Study of Environment, Lifestyle and Fibroids. J Expo Sci Environ Epidemiol 30, 117–136 (2020). https://doi.org/10.1038/s41370-019-0114-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-019-0114-9

Keywords

This article is cited by

Search

Quick links