Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of epistatic SNP combinations in rheumatoid arthritis using LAMPLINK and Japanese cohorts

Abstract

Genome-wide association studies have enabled the identification of important genetic factors in many trait studies. However, only a fraction of the heritability can be explained by known genetic factors, even in the most common diseases. Genetic loci combinations, or epistatic contributions expressed by combinations of single nucleotide polymorphisms (SNPs), have been argued to be one of the critical factors explaining some of the missing heritability, especially in oligogenic/polygenic diseases. Rheumatoid arthritis (RA) is a complex disease with more than 100 reported SNP associations, as well as various HLA haplotypes and amino acids; however, many associations between RA and inter-chromosomal SNP combinations are unknown. To discover novel associations of epistatic interactions with high odds ratios in RA, we applied the LAMPLINK method, a systematic enumerative procedure for identifying high-order SNP combinations, to a Japanese RA cohort (discovery cohort; 4024 patients with RA and 7731 controls). We validated the identified associations in a different Japanese cohort (validation cohort; 810 RA patients and 6303 controls). In this study, we identified 90 significant genetic associations in the discovery cohort. Among these, 74 (82.2%) associations were replicated in the validation cohort, and eight combinations were inter-chromosomal, all of which comprised rs7765379 or rs35265698 located in the HLA region. These two SNPs exhibited strong correlations with valine at amino acid position 11 in HLA-DRB1 (HLA-DRB1-11-Val). Finally, we discovered that rs9624 showed an association with RA through an epistatic interaction with HLA-DRB1-11-Val. Overall, LAMPLINK showed high reliability for identifying epistatic genetic contributions hidden in complex traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tam V, Patel N, Turcotte M, Bosse Y, Pare G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20:467–84.

    Article  CAS  PubMed  Google Scholar 

  2. Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bayat A, Hosking B, Jain Y, Hosking C, Kodikara M, Reti D, et al. Fast and accurate exhaustive higher-order epistasis search with BitEpi. Sci Rep. 2021;11:15923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wan X, Yang C, Yang Q, Xue H, Fan X, Tang NLS, et al. BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies. Am J Hum Genet. 2010;87:325–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ma L, Brautbar A, Boerwinkle E, Sing CF, Clark AG, Keinan A. Knowledge-driven analysis identifies a gene–gene interaction affecting high-density lipoprotein cholesterol levels in multi-ethnic populations. PLOS Genet. 2012;8:e1002714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Terada A, Okada-Hatakeyama M, Tsuda K, Sese J. Statistical significance of combinatorial regulations. Proc Natl Acad Sci USA. 2013;110:12996–3001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Terada A, Yamada R, Tsuda K, Sese J. LAMPLINK: detection of statistically significant SNP combinations from GWAS data. Bioinformatics. 2016;32:3513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Minato S, Uno T, Tsuda K, Terada A, Sese J. A fast method of statistical assessment for combinatorial hypotheses based on frequent itemset enumeration. Machine Learning and Knowledge Discovery in Databases. 2014;8725:422–36.

  9. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506:376–81.

    Article  CAS  PubMed  Google Scholar 

  10. Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee HS, Jia X, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet. 2012;44:291–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qiao B, Huang CH, Cong L, Xie J, Lo SH, Zheng T. Genome-wide gene-based analysis of rheumatoid arthritis-associated interaction with PTPN22 and HLA-DRB1. BMC Proc. 2009;3:S132.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Genin E, Coustet B, Allanore Y, Ito I, Teruel M, Constantin A, et al. Epistatic interaction between BANK1 and BLK in rheumatoid arthritis: results from a large trans-ethnic meta-analysis. PLoS One. 2013;8:e61044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Diaz-Gallo LM, Ramskold D, Shchetynsky K, Folkersen L, Chemin K, Brynedal B, et al. Systematic approach demonstrates enrichment of multiple interactions between non-HLA risk variants and HLA-DRB1 risk alleles in rheumatoid arthritis. Ann Rheum Dis. 2018;77:1454–62.

    Article  CAS  PubMed  Google Scholar 

  14. Stahl EA, Wegmann D, Trynka G, Gutierrez-Achury J, Do R, Voight BF, et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat Genet. 2012;44:483–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nagai A, Hirata M, Kamatani Y, Muto K, Matsuda K, Kiyohara Y, et al. Overview of the BioBank Japan Project: Study design and profile. J Epidemiol. 2017;27:S2–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Setoh K, Matsuda F, Cohort Profile: The Nagahama Prospective Genome Cohort for Comprehensive Human Bioscience (The Nagahama Study). In: Yano M, Matsuda F, Sakuntabhai A, Hirota S, editors. Socio-Life Science and the COVID-19 Outbreak: Public Health and Public Policy [Internet]. Singapore: Springer Singapore; 2022. p. 127–43. Available from: https://doi.org/10.1007/978-981-16-5727-6_7.

  17. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for thousands of genomes. Nat Methods. 2011;9:179–81.

    Article  PubMed  Google Scholar 

  19. Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao X, Starmer J, Martin ER. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol. 2008;32:361–9.

    Article  PubMed  Google Scholar 

  21. Kendall MG. A new measure of rank correlation. Biometrika. 1938;30:81–93.

    Article  Google Scholar 

  22. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36:1–48.

    Article  Google Scholar 

  23. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47:D1005–12.

    Article  CAS  PubMed  Google Scholar 

  25. Naito T, Suzuki K, Hirata J, Kamatani Y, Matsuda K, Toda T, et al. A deep learning method for HLA imputation and trans-ethnic MHC fine-mapping of type 1 diabetes. Nat Commun. 2021;12:1639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okada Y, Kim K, Han B, Pillai NE, Ong RT, Saw WY, et al. Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum Mol Genet. 2014;23:6916–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pillai NE, Okada Y, Saw WY, Ong RTH, Wang X, Tantoso E, et al. Predicting HLA alleles from high-resolution SNP data in three Southeast Asian populations. Hum Mol Genet. 2014;23:4443–51.

    Article  CAS  PubMed  Google Scholar 

  28. Mitsuhashi N, Toyo-oka L, Katayama T, Kawashima M, Kawashima S, Miyazaki K, et al. TogoVar: A comprehensive Japanese genetic variation database. Hum Genome Var. 2022;9:1–9.

    Article  Google Scholar 

  29. Robinson J, Soormally AR, Hayhurst JD, Marsh SGE. The IPD-IMGT/HLA Database – New developments in reporting HLA variation. Hum Immunol. 2016;77:233–7.

    Article  CAS  PubMed  Google Scholar 

  30. Kawaguchi S, Matsuda F. High-definition genomic analysis of HLA genes via comprehensive HLA allele genotyping. Methods Mol Biol. 2020;2131:31–8.

    Article  PubMed  Google Scholar 

  31. Freudenberg J, Lee HS, Han BG, Shin HD, Kang YM, Sung YK, et al. Genome-wide association study of rheumatoid arthritis in Koreans: population-specific loci as well as overlap with European susceptibility loci. Arthritis Rheum. 2011;63:884–93.

    Article  CAS  PubMed  Google Scholar 

  32. Lefranc MP, Duprat E, Kaas Q, Tranne M, Thiriot A, Lefranc G. IMGT unique numbering for MHC groove G-DOMAIN and MHC superfamily (MhcSF) G-LIKE-DOMAIN. Dev Comp Immunol. 2005;29:917–38.

    Article  CAS  PubMed  Google Scholar 

  33. Holoshitz J, Liu Y, Fu J, Joseph J, Ling S, Colletta A, et al. An HLA-DRB1–coded signal transduction ligand facilitates inflammatory arthritis: a new mechanism of autoimmunity. J Immunol. 2013;190:48–57.

    Article  CAS  PubMed  Google Scholar 

  34. van Schaardenburg D, Nielen MMJ, Lems WF, Twisk JWR, Reesink HW, van de Stadt RJ, et al. Bone metabolism is altered in preclinical rheumatoid arthritis. Ann Rheum Dis. 2011;70:1173–4.

    Article  PubMed  Google Scholar 

  35. Kang K, Nam S, Kim B, Lim JH, Yang Y, Lee MS, et al. Inhibition of osteoclast differentiation by overexpression of NDRG2 in monocytes. Biochem Biophys Res Commun. 2015;468:611–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JST, CREST Grant Number JPMJCR1502 and JST, AIP Acceleration Research JPMJCR21U2, Japan. We express our gratitude to all the participants in the BioBank Japan Project and Nagahama Study. M.S. was supported by the Kyoto-McGill International Collaborative Program in Genomic Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuji Kawaguchi or Jun Sese.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibata, M., Terada, A., Kawaguchi, T. et al. Identification of epistatic SNP combinations in rheumatoid arthritis using LAMPLINK and Japanese cohorts. J Hum Genet (2024). https://doi.org/10.1038/s10038-024-01269-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s10038-024-01269-y

Search

Quick links