Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genotypic and phenotypic characteristics of sodium channel—associated epilepsy in Chinese population

Abstract

Variants in voltage-gated sodium channel (VGSC) genes are implicated in seizures, epilepsy, and neurodevelopmental disorders, constituting a significant aspect of hereditary epilepsy in the Chinese population. Through retrospective analysis utilizing next-generation sequencing (NGS), we examined the genotypes and phenotypes of VGSC-related epilepsy cases from a cohort of 691 epilepsy subjects. Our findings revealed that 5.1% of subjects harbored VGSC variants, specifically 22 with SCN1A, 9 with SCN2A, 1 with SCN8A, and 3 with SCN1B variants; no SCN3A variants were detected. Among these, 14 variants were previously reported, while 21 were newly identified. SCN1A variant carriers predominantly presented with Dravet Syndrome (DS) and Genetic Epilepsy with Febrile Seizures Plus (GEFS + ), featuring a heightened sensitivity to fever-induced seizures. Statistically significant disparities emerged between the SCN1A-DS and SCN1A-GEFS+ groups concerning seizure onset and genetic diagnosis age, incidence of status epilepticus, mental retardation, anti-seizure medication (ASM) responsiveness, and familial history. Notably, subjects with SCN1A variants affecting the protein’s pore region experienced more frequent cluster seizures. All SCN2A variants were of de novo origin, and 88.9% of individuals with SCN2A variations exhibited cluster seizures. This research reveals a significant association between variations in VGSC-related genes and the clinical phenotype diversity of epilepsy subjects in China, emphasizing the pivotal role of NGS screening in establishing accurate disease diagnoses and guiding the selection of ASM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in National Genomics Data Center (Nucleic Acids Res 2022), China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (GSA-Human: HRA004273) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa-human.

References

  1. Ademuwagun IA, Rotimi SO, Syrbe S, Ajamma YU, Adebiyi E. Voltage gated sodium channel genes in epilepsy: mutations, functional studies, and treatment dimensions. Front Neurol. 2021;12:600050.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kaplan DI, Isom LL, Petrou S. Role of sodium channels in epilepsy. Cold Spring Harb Perspect Med. 2016;6:a022814.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Oliva M, Berkovic SF, Petrou S. Sodium channels and the neurobiology of epilepsy. Epilepsia. 2012;53:1849–59.

    Article  CAS  PubMed  Google Scholar 

  4. Lamar T, Vanoye CG, Calhoun J, Wong JC, Dutton SBB, Jorge BS, et al. SCN3A deficiency associated with increased seizure susceptibility. Neurobiol Dis. 2017;102:38–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Al-Zoubi T, Zhou Y, Yin X, Janicek B, Sun C, Schulz CE, et al. Preparation of nonprecious metal electrocatalysts for the reduction of oxygen using a low-temperature sacrificial metal. J Am Chem Soc. 2020;142:5477–81.

    Article  CAS  PubMed  Google Scholar 

  6. Du J, Simmons S, Brunklaus A, Adiconis X, Hession CC, Fu Z, et al. Differential excitatory vs inhibitory SCN expression at single cell level regulates brain sodium channel function in neurodevelopmental disorders. Eur J Paediatr Neurol. 2020;24:129–33.

    Article  PubMed  Google Scholar 

  7. Dang LT, Quinonez SC, Becka BR, Isom LL, Joshi SM. Dramatic improvement in seizures with phenytoin treatment in an individual with refractory epilepsy and a SCN1B variant. Pediatr Neurol. 2020;108:121–22.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brunklaus A, Lal D. Sodium channel epilepsies and neurodevelopmental disorders: from disease mechanisms to clinical application. Developmental Med Child Neurol. 2020;62:784–92.

    Article  Google Scholar 

  9. Lal D, May P, Perez-Palma E, Samocha KE, Kosmicki JA, Robinson EB, et al. Gene family information facilitates variant interpretation and identification of disease-associated genes in neurodevelopmental disorders. Genome Med. 2020;12:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fang Z-X, Hong S-Q, Li T-S, Wang J, Xie L-L, Han W, et al. Genetic and phenotypic characteristics of SCN1A-related epilepsy in Chinese children. NeuroReport. 2019;30:671–80.

    Article  CAS  PubMed  Google Scholar 

  11. Cetica V, Chiari S, Mei D, Parrini E, Grisotto L, Marini C, et al. Clinical and genetic factors predicting Dravet syndrome in infants with SCN1A mutations. Neurology. 2017;88:1037–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brunklaus A, Brünger T, Feng T, Fons C, Lehikoinen A, Panagiotakaki E, et al. The gain of function SCN1A disorder spectrum: novel epilepsy phenotypes and therapeutic implications. Brain. 2022;145:3816–31.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wolff M, Johannesen KM, Hedrich UBS, Masnada S, Rubboli G, Gardella E, et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain : a J Neurol. 2017;140:1316–36.

    Article  Google Scholar 

  14. Reynolds C, King MD, Gorman KM. The phenotypic spectrum of SCN2A-related epilepsy. Eur J Paediatr Neurol. 2020;24:117–22.

    Article  PubMed  Google Scholar 

  15. Zeng Q, Yang Y, Duan J, Niu X, Chen Y, Wang D, et al. SCN2A-related epilepsy: the phenotypic spectrum, treatment and prognosis. Front Mol Neurosci. 2022;15:809951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zaman T, Helbig I, Božović IB, DeBrosse SD, Bergqvist AC, Wallis K, et al. Mutations in SCN3A cause early infantile epileptic encephalopathy. Ann Neurol. 2018;83:703–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu C, Luo T, Wang Y. Phenotypic and genetic spectrum in Chinese children with SCN8A-related disorders. Seizure. 2022;95:38–49.

    Article  PubMed  Google Scholar 

  18. Gardella E, Moller RS. Phenotypic and genetic spectrum of SCN8A-related disorders, treatment options, and outcomes. Epilepsia. 2019;60:S77–S85.

    Article  PubMed  Google Scholar 

  19. Gardella E, Marini C, Trivisano M, Fitzgerald MP, Alber M, Howell KB, et al. The phenotype of SCN8A developmental and epileptic encephalopathy. Neurology. 2018;91:e1112–e24.

    Article  PubMed  Google Scholar 

  20. Ramadan W, Patel N, Anazi S, Kentab AY, Bashiri FA, Hamad MH, et al. Confirming the recessive inheritance of SCN1B mutations in developmental epileptic encephalopathy. Clin Genet. 2017;92:327–31.

    Article  CAS  PubMed  Google Scholar 

  21. Darras N, Ha TK, Rego S, Martin PM, Barroso E, Slavotinek AM, et al. Developmental and epileptic encephalopathy in two siblings with a novel, homozygous missense variant in SCN1B. Am J Med Genet Part A. 2019;179:2190–95.

    Article  CAS  PubMed  Google Scholar 

  22. Steward CA, Roovers J, Suner M-M, Gonzalez JM, Uszczynska-Ratajczak B, Pervouchine D, et al. Re-annotation of 191 developmental and epileptic encephalopathy-associated genes unmasks de novo variants in SCN1A. NPJ Genom Med. 2019;4:31.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Claes LRF, Deprez L, Suls A, Baets J, Smets K, Van Dyck T, et al. TheSCN1Avariant database: a novel research and diagnostic tool. Hum Mutat. 2009;30:E904–E20.

    Article  PubMed  Google Scholar 

  25. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58:512–21.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ma H, Guo Y, Chen Z, Wang L, Tang Z, Zhang J, et al. Mutations in the sodium channel genes SCN1A, SCN3A, and SCN9A in children with epilepsy with febrile seizures plus(EFS+). Seizure. 2021;88:146–52.

    Article  PubMed  Google Scholar 

  27. Xie Y, Ng NN, Safrina OS, Ramos CM, Ess KC, Schwartz PH, et al. Comparisons of dual isogenic human iPSC pairs identify functional alterations directly caused by an epilepsy associated SCN1A mutation. Neurobiol Dis. 2020;134:104627.

    Article  CAS  PubMed  Google Scholar 

  28. Brunklaus A, Du J, Steckler F, Ghanty II, Johannesen KM, Fenger CD, et al. Biological concepts in human sodium channel epilepsies and their relevance in clinical practice. Epilepsia. 2020;61:387–99.

    Article  CAS  PubMed  Google Scholar 

  29. Barela AJ, Waddy SP, Lickfett JG, Hunter J, Anido A, Helmers SL, et al. An epilepsy mutation in the sodium ChannelSCN1AThat decreases channel excitability. J Neurosci. 2006;26:2714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marini C, Scheffer IE, Nabbout R, Suls A, De Jonghe P, Zara F, et al. The genetics of Dravet syndrome. Epilepsia. 2011;52:24–9.

    Article  CAS  PubMed  Google Scholar 

  31. Escayg A, Goldin AL. Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia. 2010;51:1650–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brunklaus A, Ellis R, Reavey E, Forbes GH, Zuberi SM. Prognostic, clinical and demographic features in SCN1A mutation-positive Dravet syndrome. Brain. 2012;135:2329–36.

    Article  CAS  PubMed  Google Scholar 

  33. Hedrich UBS, Lauxmann S, Lerche H. SCN2A channelopathies: mechanisms and models. Epilepsia. 2019;60:S68–S76.

    Article  CAS  PubMed  Google Scholar 

  34. Liao Y, Deprez L, Maljevic S, Pitsch J, Claes L, Hristova D, et al. Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain. 2010;133:1403–14.

    Article  PubMed  Google Scholar 

  35. Xue Z, Liu K, Liu Q, Li Y, Li M, Su CY, et al. Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat Commun. 2019;10:5048.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nakamura K, Kato M, Osaka H, Yamashita S, Nakagawa E, Haginoya K, et al. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology. 2013;81:992–8.

    Article  CAS  PubMed  Google Scholar 

  37. Ben-Shalom R, Keeshen CM, Berrios KN, An JY, Sanders SJ, Bender KJ. Opposing effects on Na(V)1.2 function underlie differences between SCN2A variants observed in individuals with autism spectrum disorder or infantile seizures. Biol Psychiatry. 2017;82:224–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Flor-Hirsch H, Heyman E, Livneh A, Reish O, Watemberg N, Litmanovits I, et al. Lacosamide for SCN2A-related intractable neonatal and infantile seizures. Epileptic Disord. 2018;20:440–46.

    Article  PubMed  Google Scholar 

  39. Dilena R, Striano P, Gennaro E, Bassi L, Olivotto S, Tadini L, et al. Efficacy of sodium channel blockers in SCN2A early infantile epileptic encephalopathy. Brain Dev. 2017;39:345–48.

    Article  PubMed  Google Scholar 

  40. Bernardo S, Marchionni E, Prudente S, De Liso P, Spalice A, Giancotti A, et al. Unusual association of SCN2A epileptic encephalopathy with severe cortical dysplasia detected by prenatal MRI. Eur J Paediatr Neurol. 2017;21:587–90.

    Article  PubMed  Google Scholar 

  41. Sanders SJ, Campbell AJ, Cottrell JR, Moller RS, Wagner FF, Auldridge AL, et al. Progress in understanding and treating SCN2A-mediated disorders. Trends Neurosci. 2018;41:442–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johannesen KM, Liu Y, Koko M, Gjerulfsen CE, Sonnenberg L, Schubert J, et al. Genotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications. Brain. 2022;145:2991–3009.

    Article  PubMed  Google Scholar 

  43. Butler KM, da Silva C, Shafir Y, Weisfeld-Adams JD, Alexander JJ, Hegde M, et al. De novo and inherited SCN8A epilepsy mutations detected by gene panel analysis. Epilepsy Res. 2017;129:17–25.

    Article  CAS  PubMed  Google Scholar 

  44. Epifanio R, Zanotta N, Giorda R, Bardoni A, Zucca C. Novel epilepsy phenotype associated to a known SCN8A mutation. Seizure. 2019;67:15–17.

    Article  PubMed  Google Scholar 

  45. Ranza E, Z’Graggen W, Lidgren M, Beghetti M, Guipponi M, Antonarakis SE, et al. SCN8A heterozygous variants are associated with anoxic-epileptic seizures. Am J Med Genet A. 2020;182:1209–16.

    Article  CAS  PubMed  Google Scholar 

  46. Myers KA, Scheffer IE, Berkovic SF, Commission IG. Genetic literacy series: genetic epilepsy with febrile seizures plus. Epileptic Disord. 2018;20:232–38.

    Article  PubMed  Google Scholar 

  47. Wallace RH, Wang DW, Singh R, Scheffer IE, George AL, Phillips HA. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel β1 subunit gene SCN1B. Nat Genet. 1998;19:366–70.

    Article  CAS  PubMed  Google Scholar 

  48. Fendri-Kriaa N, Kammoun F, Salem IH, Kifagi C, Mkaouar-Rebai E, Hsairi I, et al. New mutation c.374C>T and a putative disease-associated haplotype within SCN1B gene in Tunisian families with febrile seizures. Eur J Neurol. 2011;18:695–702.

    Article  CAS  PubMed  Google Scholar 

  49. Lindy AS, Stosser MB, Butler E, Downtain-Pickersgill C, Shanmugham A, Retterer K, et al. Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders. Epilepsia. 2018;59:1062–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the subjects and their families for their participation and contribution to the work.

Funding

This work was supported by the National Natural Science Foundation of China (81671362 & 32000075), the financial funding from Department of Science and Technology of Shandong Province (ZR2020QC066 & ZR2020QH102), the financial funding from Jinan Science and Technology Bureau (201907007).

Author information

Authors and Affiliations

Authors

Contributions

XL, ZG and YL conceived and designed this study. Experiments were conducted by RD, HZ, KZ, and YL. Data were analyzed by RD, MX, and YL. Clinical diagnosis of the subjects was undertaken by RJ and HZ. The paper was written by RD and YL.

Corresponding authors

Correspondence to Xiaoying Li or Yi Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, R., Jin, R., Zhang, H. et al. Genotypic and phenotypic characteristics of sodium channel—associated epilepsy in Chinese population. J Hum Genet (2024). https://doi.org/10.1038/s10038-024-01257-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s10038-024-01257-2

Search

Quick links