Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA sequencing and target long-read sequencing reveal an intronic transposon insertion causing aberrant splicing

Abstract

More than half of cases with suspected genetic disorders remain unsolved by genetic analysis using short-read sequencing such as exome sequencing (ES) and genome sequencing (GS). RNA sequencing (RNA-seq) and long-read sequencing (LRS) are useful for interpretation of candidate variants and detection of structural variants containing repeat sequences, respectively. Recently, adaptive sampling on nanopore sequencers enables target LRS more easily. Here, we present a Japanese girl with premature chromatid separation (PCS)/mosaic variegated aneuploidy (MVA) syndrome. ES detected a known pathogenic maternal heterozygous variant (c.1402-5A>G) in intron 10 of BUB1B (NM_001211.6), a known responsive gene for PCS/MVA syndrome with autosomal recessive inheritance. Minigene splicing assay revealed that almost all transcripts from the c.1402-5G allele have mis-splicing with 4-bp insertion. GS could not detect another pathogenic variant, while RNA-seq revealed abnormal reads in intron 2. To extensively explore variants in intron 2, we performed adaptive sampling and identified a paternal 3.0 kb insertion. Consensus sequence of 16 reads spanning the insertion showed that the insertion consists of Alu and SVA elements. Realignment of RNA-seq reads to the new reference sequence containing the insertion revealed that 16 reads have 5’ splice site within the insertion and 3’ splice site at exon 3, demonstrating causal relationship between the insertion and aberrant splicing. In addition, immunoblotting showed severely diminished BUB1B protein level in patient derived cells. These data suggest that detection of transcriptomic abnormalities by RNA-seq can be a clue for identifying pathogenic variants, and determination of insert sequences is one of merits of LRS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hanks S, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D, et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet. 2004;36:1159–61.

    Article  CAS  PubMed  Google Scholar 

  2. Garcia-Castillo H, Vasquez-Velasquez AI, Rivera H, Barros-Nunez P. Clinical and genetic heterogeneity in patients with mosaic variegated aneuploidy: delineation of clinical subtypes. Am J Med Genet A. 2008;146A:1687–95.

    Article  PubMed  Google Scholar 

  3. van Vuuren RJ, Visagie MH, Theron AE, Joubert AM. Antimitotic drugs in the treatment of cancer. Cancer Chemother Pharm. 2015;76:1101–12.

    Article  Google Scholar 

  4. Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol. 2007;8:379–93.

    Article  CAS  PubMed  Google Scholar 

  5. Matsuura S, Matsumoto Y, Morishima K, Izumi H, Matsumoto H, Ito E, et al. Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. Am J Med Genet A. 2006;140:358–67.

    Article  PubMed  Google Scholar 

  6. Kato M, Kato T, Hosoba E, Ohashi M, Fujisaki M, Ozaki M, et al. PCS/MVA syndrome caused by an Alu insertion in the BUB1B gene. Hum Genome Var. 2017;4:17021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ochiai H, Miyamoto T, Kanai A, Hosoba K, Sakuma T, Kudo Y, et al. TALEN-mediated single-base-pair editing identification of an intergenic mutation upstream of BUB1B as causative of PCS (MVA) syndrome. Proc Natl Acad Sci USA. 2014;111:1461–6.

    Article  CAS  PubMed  Google Scholar 

  8. Lionel AC, Costain G, Monfared N, Walker S, Reuter MS, Hosseini SM, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med. 2018;20:435–43.

    Article  CAS  PubMed  Google Scholar 

  9. Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet. 2017;18:14.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Palmer EE, Sachdev R, Macintosh R, Melo US, Mundlos S, Righetti S, et al. Diagnostic yield of whole genome sequencing after nondiagnostic exome sequencing or gene panel in developmental and epileptic encephalopathies. Neurology. 2021;96:e1770–e1782.

    Article  CAS  PubMed  Google Scholar 

  11. Kremer LS, Bader DM, Mertes C, Kopajtich R, Pichler G, Iuso A, et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun. 2017;8:15824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee H, Huang AY, Wang LK, Yoon AJ, Renteria G, Eskin A, et al. Diagnostic utility of transcriptome sequencing for rare Mendelian diseases. Genet Med. 2020;22:490–9.

    Article  CAS  PubMed  Google Scholar 

  13. Murdock DR, Dai H, Burrage LC, Rosenfeld JA, Ketkar S, Muller MF, et al. Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing. J Clin Invest. 2021;131:e141500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hiraide T, Shimizu K, Miyamoto S, Aoto K, Nakashima M, Yamaguchi T, et al. Genome sequencing and RNA sequencing of urinary cells reveal an intronic FBN1 variant causing aberrant splicing. J Hum Genet. 2022;67:387–92.

    Article  CAS  PubMed  Google Scholar 

  15. Aicher JK, Jewell P, Vaquero-Garcia J, Barash Y, Bhoj EJ. Mapping RNA splicing variations in clinically accessible and nonaccessible tissues to facilitate Mendelian disease diagnosis using RNA-seq. Genet Med. 2020;22:1181–90.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, et al. Segmental duplications and their variation in a complete human genome. Science 2022;376:eabj6965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mastrorosa FK, Miller DE, Eichler EE. Applications of long-read sequencing to Mendelian genetics. Genome Med. 2023;15:42.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Song Z, Liang Y, Yang J. Nanopore detection assisted DNA information processing. Nanomaterials. 2022;12:3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller DE, Sulovari A, Wang T, Loucks H, Hoekzema K, Munson KM, et al. Targeted long-read sequencing identifies missing disease-causing variation. Am J Hum Genet. 2021;108:1436–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Loose M, Malla S, Stout M. Real-time selective sequencing using nanopore technology. Nat Methods. 2016;13:751–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Watanabe K, Nakashima M, Kumada S, Mashimo H, Enokizono M, Yamada K, et al. Identification of two novel de novo TUBB variants in cases with brain malformations: case reports and literature review. J Hum Genet. 2021;66:1193–7.

    Article  CAS  PubMed  Google Scholar 

  22. Tadaka S, Hishinuma E, Komaki S, Motoike IN, Kawashima J, Saigusa D, et al. jMorp updates in 2020: large enhancement of multi-omics data resources on the general Japanese population. Nucleic Acids Res. 2021;49:D536–D544.

    Article  CAS  PubMed  Google Scholar 

  23. Wai HA, Lord J, Lyon M, Gunning A, Kelly H, Cibin P, et al. Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance. Genet Med. 2020;22:1005–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.e524.

    Article  CAS  PubMed  Google Scholar 

  25. Cheng J, Nguyen TYD, Cygan KJ, Celik MH, Fairbrother WG, Avsec Z, et al. MMSplice: modular modeling improves the predictions of genetic variant effects on splicing. Genome Biol. 2019;20:48.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zeng T, Li YI. Predicting RNA splicing from DNA sequence using Pangolin. Genome Biol. 2022;23:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hiraide T, Shimizu K, Okumura Y, Miyamoto S, Nakashima M, Ogata T, et al. A deep intronic TCTN2 variant activating a cryptic exon predicted by SpliceRover in a patient with Joubert syndrome. J Hum Genet. 2023;68:499–505.

    Article  CAS  PubMed  Google Scholar 

  28. Mitsuhashi S, Ohori S, Katoh K, Frith MC, Matsumoto N. A pipeline for complete characterization of complex germline rearrangements from long DNA reads. Genome Med. 2020;12:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pavone P, Pappalardo XG, Mustafa N, Falsaperla R, Marino SD, Corsello G, et al. Pathogenic correlation between mosaic variegated aneuploidy 1 (MVA1) and a novel BUB1B variant: a reappraisal of a severe syndrome. Neurol Sci. 2022;43:6529–38.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Miyamoto T, Porazinski S, Wang H, Borovina A, Ciruna B, Shimizu A, et al. Insufficiency of BUBR1, a mitotic spindle checkpoint regulator, causes impaired ciliogenesis in vertebrates. Hum Mol Genet. 2011;20:2058–70.

    Article  CAS  PubMed  Google Scholar 

  31. Zaidi D, Chinnappa K, Francis F. Primary cilia influence progenitor function during cortical development. Cells 2022;11:2895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Simmons AJ, Park R, Sterling NA, Jang MH, van Deursen JMA, Yen TJ, et al. Nearly complete deletion of BubR1 causes microcephaly through shortened mitosis and massive cell death. Hum Mol Genet. 2019;28:1822–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Choi CI, Yoo KH, Hussaini SM, Jeon BT, Welby J, Gan H, et al. The progeroid gene BubR1 regulates axon myelination and motor function. Aging. 2016;8:2667–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hancks DC, Kazazian HH Jr. Roles for retrotransposon insertions in human disease. Mob DNA. 2016;7:9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chu C, Zhao B, Park PJ, Lee EA. Identification and genotyping of transposable element insertions from genome sequencing data. Curr Protoc Hum Genet. 2020;107:e102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mohamed M, Dang NT, Ogyama Y, Burlet N, Mugat B, Boulesteix M, et al. A transposon story: from TE content to TE dynamic invasion of drosophila genomes using the single-molecule sequencing technology from Oxford nanopore. Cells. 2020;9:1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the patients for participating in this work. This work was supported by the Japan Agency for Medical Research and Development (AMED) (JP23ek0109549 to TO and JP23ek01099674, JP23ek0109637 to HS), Grants-in-Aid for Scientific Research (B) (JP20H03641 and JP23H02875 to HS), Grant-in-Aid for Early-Career Scientists (23K14944 to TH), Grant-in-Aid for Research Activity Start-up (22K20852 to TH) from the Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan Intractable Diseases (Nanbyo) Research Foundation (2020A02), and the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

HS contributed to the conception and design of the study. RK, TH, KW, SM, KH, KK, HI, KS, MM, KY, TF, IM, TO, and HS contributed to the acquisition and analysis of data. RK, TH, and HS contributed to drafting the text and preparing the figure. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hirotomo Saitsu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawakami, R., Hiraide, T., Watanabe, K. et al. RNA sequencing and target long-read sequencing reveal an intronic transposon insertion causing aberrant splicing. J Hum Genet 69, 91–99 (2024). https://doi.org/10.1038/s10038-023-01211-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01211-8

Search

Quick links