EARLY RESPONSE OF INFLAMMATORY PROTEINS IN THE STRIATUM AND HIPPOCAMPUS OF NEWBORN PIGLETS FOLLOWING CARDIOPULMONARY BYPASS AND CIRCULATORY ARREST

P. Pastuszko¹, G.J. Schears², J. Kubin³, W.J. Greeley⁴, D.F. Wilson³, A. Pastuszko³

¹Department of Surgery, University of California, San Diego, San Diego, CA, ²Department of Anesthesiology and Critical Care, Mayo Clinic, Rochester, MN, ³Department of Biochemistry and Biophysics, University of Pennsylvania, ⁴Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA

Background and aims: Inflammation plays a key role in ischemic brain injury. We examined the levels of select inflammatory proteins in the striatum and hippocampus of newborn piglets in a cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA) ischemia model.

Methods: Piglets were placed on CPB, cooled to 18°C, subjected to 30min of DHCA and 1hr of low-flow (20ml/kg/min), rewarmed to 37°C, separated from CPB, monitored for 2hrs and then striatum and hippocampus were isolated for protein analysis. Protein levels are presented in arbitrary units (mean±SE).

Results:

<u>Striatum</u>: CPB/DHCA increased, as compared with sham operated animals, pro-inflammatory cytokines implicated in ischemic brain injury: interleukin 1 ($365\pm12.7 \text{ vs} 583\pm83$, p< 0.047) and tumor necrosis factor-alpha ($318\pm37 \text{ vs} 402\pm18$, p< 0.05); chemotactic cytokines: growth regulated protein (GRO) ($226\pm16 \text{ vs} 376\pm42$, p< 0.02), GRO-alpha ($178\pm16 \text{ vs} 297\pm17$, p< 0.001) and interleukin-8 ($591\pm47 \text{ vs} 728\pm40$, p< 0.05); chemokines: macrophage inflammatory protein-3 ($58\pm8 \text{ vs} 88\pm7$, p< 0.05) and eotaxin ($107\pm7 \text{ vs} 164\pm17$, p< 0.02). Vascular endothelial growth factor, potentially protective, was decreased ($25\pm5 \text{ vs} 11\pm3$, p< 0.05).

<u>Hippocampus</u>: There were no significant differences in the above proteins after CBP/DHCA. However, potentially protective proteins, interleukin-10 (338 ± 18 vs 405 ± 5 , p< 0.02) and transforming growth factor beta (389 ± 24 vs 460 ± 16 , p< 0.05), were increased.

Conclusions: In piglet model of CBP/DHCA, early response of proteins regulating inflammation in the brain is region-dependent: proteins exacerbating ischemic injury are increased in the striatum, whereas those with potential protective role are increased in the hippocampus.

Acknowledgements: Supported by NIH grant HL58669.