Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The Yin and Yang of Toll-like receptors in cancer

Abstract

Recognition of non-self molecular patterns by pattern recognition receptors is a cornerstone of innate immunity. Toll-like receptors (TLRs) exert a key role in recognizing pathogen-associated molecular patterns (PAMPs) but have also been implicated in the recognition of damage-associated molecular patterns (DAMPs). As such, TLRs regulate a wide range of biological responses including inflammatory and immune responses during carcinogenesis. The high expression of TLRs by antigen-presenting cells, including dendritic cells, and their ability to induce antitumor mediators such as type I interferon has led to efforts to utilize TLR agonists in tumor therapy in order to convert the often tolerant immune response toward antitumor responses. However, TLRs are also increasingly recognized as regulators of tumor-promoting inflammation and promoters of tumor survival signals. Here, we will review in detail the dichotomous role of TLRs in tumor biology, focusing on relevant TLR-dependent pro- and antitumor pathways, and discuss clinical applications of TLR-targeted therapies for tumor prevention and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Trinchieri G . Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol 2012; 30: 677–706.

    CAS  PubMed  Google Scholar 

  2. Balkwill F, Mantovani A . Inflammation and cancer: back to Virchow? Lancet 2001; 357: 539–545.

    Article  CAS  PubMed  Google Scholar 

  3. Parkin DM . The global health burden of infection-associated cancers in the year 2002. Int J Cancer 2006; 118: 3030–3044.

    CAS  PubMed  Google Scholar 

  4. Coussens LM, Zitvogel L, Palucka AK . Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 2013; 339: 286–291.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR et al. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 2007; 220: 60–81.

    CAS  PubMed  Google Scholar 

  6. Gregor MF, Hotamisligil GS . Inflammatory mechanisms in obesity. Annu Rev Immunol 2011; 29: 415–445.

    CAS  PubMed  Google Scholar 

  7. Goldszmid RS, Trinchieri G . The price of immunity. Nat Immunol 2012; 13: 932–938.

    CAS  PubMed  Google Scholar 

  8. Newton K, Dixit VM . Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 2012; 4: pii a006049.

    PubMed Central  PubMed  Google Scholar 

  9. Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012; 21: 504–516.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Fukata M, Chen A, Vamadevan AS, Cohen J, Breglio K, Krishnareddy S et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 2007; 133: 1869–1881.

    Article  CAS  PubMed  Google Scholar 

  11. Tye H, Kennedy CL, Najdovska M, McLeod L, McCormack W, Hughes N et al. STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell 2012; 22: 466–478.

    CAS  PubMed  Google Scholar 

  12. Ochi A, Graffeo CS, Zambirinis CP, Rehman A, Hackman M, Fallon N et al. Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans. J Clin Invest 2012; 122: 4118–4129.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S, Barilla R et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med 2012; 209: 1671–1687.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Kuraishy A, Karin M, Grivennikov SI . Tumor promotion via injury- and death-induced inflammation. Immunity 2011; 35: 467–477.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ . Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011; 29: 235–271.

    CAS  PubMed  Google Scholar 

  16. Schreiber RD, Old LJ, Smyth MJ . Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331: 1565–1570.

    Article  CAS  PubMed  Google Scholar 

  17. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD . Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3: 991–998.

    CAS  PubMed  Google Scholar 

  18. Bruns P . Die Heilwirkung des Erysipelas auf Geschwülste. Beitr Klin Chir 1888; 3: 443.

    Google Scholar 

  19. Busch W . Aus der Stizung der medizinischen section vom 13. November 1867. Berl Klin Wochenschr 1868; 5: 137.

    Google Scholar 

  20. Coley WB . Treatment of inoperable malignant tumors with the toxins of erysipelas and the Bacillus prodigiosus. Trans Amer Surg Assn 1894; 12: 183–212.

    Google Scholar 

  21. Starnes CO . Coley’s toxins in perspective. Nature 1992; 357: 11–12.

    CAS  PubMed  Google Scholar 

  22. Goutagny N, Estornes Y, Hasan U, Lebecque S, Caux C . Targeting pattern recognition receptors in cancer immunotherapy. Target Oncol 2012; 7: 29–54.

    PubMed  Google Scholar 

  23. Hennessy EJ, Parker AE, O’Neill LA . Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov 2010; 9: 293–307.

    CAS  PubMed  Google Scholar 

  24. Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C et al. Trial watch: experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1: 699–716.

    PubMed Central  PubMed  Google Scholar 

  25. Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C et al. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1: 894–907.

    PubMed Central  PubMed  Google Scholar 

  26. Takeda K, Kaisho T, Akira S . Toll-like receptors. Annu Rev Immunol 2003; 21: 335–376.

    CAS  PubMed  Google Scholar 

  27. Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S et al. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu Rev Immunol 2006; 24: 353–389.

    CAS  PubMed  Google Scholar 

  28. Kawai T, Akira S . The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11: 373–384.

    CAS  PubMed  Google Scholar 

  29. Pahl HL . Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999; 18: 6853–6866.

    CAS  PubMed  Google Scholar 

  30. Gilmore TD . The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene 1999; 18: 6842–6844.

    CAS  PubMed  Google Scholar 

  31. Grivennikov SI, Karin M . Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis 2011; 70 (Suppl 1): i104–i108.

    CAS  PubMed  Google Scholar 

  32. Balkwill F . Tumour necrosis factor and cancer. Nat Rev Cancer 2009; 9: 361–371.

    CAS  PubMed  Google Scholar 

  33. Apte RN, Voronov E . Is interleukin-1 a good or bad 'guy' in tumor immunobiology and immunotherapy? Immunol Rev 2008; 222: 222–241.

    CAS  PubMed  Google Scholar 

  34. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009; 15: 103–113.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S et al. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 2008; 118: 560–570.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007; 317: 121–124.

    CAS  PubMed  Google Scholar 

  37. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 2010; 140: 197–208.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G et al. Hepatocyte necrosis induced by oxidative stress and IL-1alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 2008; 14: 156–165.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Cataisson C, Salcedo R, Hakim S, Moffitt BA, Wright L, Yi M et al. IL-1R-MyD88 signaling in keratinocyte transformation and carcinogenesis. J Exp Med 2012; 209: 1689–1702.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 2008; 14: 408–419.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 2009; 457: 102–106.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Maeda S, Kamata H, Luo JL, Leffert H, Karin M . IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121: 977–990.

    CAS  PubMed  Google Scholar 

  43. Karin M . NF-kappaB and cancer: mechanisms and targets. Mol Carcinog 2006; 45: 355–361.

    CAS  PubMed  Google Scholar 

  44. Naik E, Dixit VM . Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 2011; 208: 417–420.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 2010; 467: 972–976.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Cotter TG . Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 2009; 9: 501–507.

    CAS  PubMed  Google Scholar 

  47. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  48. Dutta J, Fan Y, Gupta N, Fan G, Gelinas C . Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene 2006; 25: 6800–6816.

    CAS  PubMed  Google Scholar 

  49. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr . NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998; 281: 1680–1683.

    CAS  PubMed  Google Scholar 

  50. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R . Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 2004; 118: 229–241.

    Article  CAS  PubMed  Google Scholar 

  51. Yu LX, Yan HX, Liu Q, Yang W, Wu HP, Dong W et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 2010; 52: 1322–1333.

    CAS  PubMed  Google Scholar 

  52. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 2005; 11: 1173–1179.

    CAS  PubMed  Google Scholar 

  53. Fukata M, Chen A, Klepper A, Krishnareddy S, Vamadevan AS, Thomas LS et al. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology 2006; 131: 862–877.

    CAS  PubMed  Google Scholar 

  54. Cherfils-Vicini J, Platonova S, Gillard M, Laurans L, Validire P, Caliandro R et al. Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. J Clin Invest 2010; 120: 1285–1297.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res 2005; 65: 5009–5014.

    CAS  PubMed  Google Scholar 

  56. Dvorak HF . Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650–1659.

    CAS  PubMed  Google Scholar 

  57. Dolberg DS, Hollingsworth R, Hertle M, Bissell MJ . Wounding and its role in RSV-mediated tumor formation. Science 1985; 230: 676–678.

    CAS  PubMed  Google Scholar 

  58. Seki E, Tsutsui H, Iimuro Y, Naka T, Son G, Akira S et al. Contribution of Toll-like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration. Hepatology 2005; 41: 443–450.

    CAS  PubMed  Google Scholar 

  59. Campbell JS, Riehle KJ, Brooling JT, Bauer RL, Mitchell C, Fausto N . Proinflammatory cytokine production in liver regeneration is Myd88-dependent, but independent of Cd14, Tlr2, and Tlr4. J Immunol 2006; 176: 2522–2528.

    CAS  PubMed  Google Scholar 

  60. Cornell RP, Liljequist BL, Bartizal KF . Depressed liver regeneration after partial hepatectomy of germ-free, athymic and lipopolysaccharide-resistant mice. Hepatology 1990; 11: 916–922.

    CAS  PubMed  Google Scholar 

  61. Pull SL, Doherty JM, Mills JC, Gordon JI, Stappenbeck TS . Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci USA 2005; 102: 99–104.

    CAS  PubMed  Google Scholar 

  62. Macedo L, Pinhal-Enfield G, Alshits V, Elson G, Cronstein BN, Leibovich SJ . Wound healing is impaired in MyD88-deficient mice: a role for MyD88 in the regulation of wound healing by adenosine A2A receptors. Am J Pathol 2007; 171: 1774–1788.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Neufert C, Becker C, Türeci Ö, Waldner MJ, Backert I, Floh K et al. Tumor fibroblast–derived epiregulin promotes growth of colitis-associated neoplasms through ERK. J Clin Invest 2013; 123: 1428–1443.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Paik YH, Lee KS, Lee HJ, Yang KM, Lee SJ, Lee DK et al. Hepatic stellate cells primed with cytokines upregulate inflammation in response to peptidoglycan or lipoteichoic acid. Lab Invest 2006; 86: 676–686.

    CAS  PubMed  Google Scholar 

  65. Pierer M, Rethage J, Seibl R, Lauener R, Brentano F, Wagner U et al. Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Toll-like receptor 2 ligands. J Immunol 2004; 172: 1256–1265.

    CAS  PubMed  Google Scholar 

  66. Kurt-Jones EA, Sandor F, Ortiz Y, Bowen GN, Counter SL, Wang TC et al. Use of murine embryonic fibroblasts to define Toll-like receptor activation and specificity. J Endotoxin Res 2004; 10: 419–424.

    CAS  PubMed  Google Scholar 

  67. Wolf G, Bohlender J, Bondeva T, Roger T, Thaiss F, Wenzel UO . Angiotensin II upregulates Toll-like receptor 4 on mesangial cells. J Am Soc Nephrol 2006; 17: 1585–1593.

    CAS  PubMed  Google Scholar 

  68. Otte JM, Rosenberg IM, Podolsky DK . Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology 2003; 124: 1866–1878.

    CAS  PubMed  Google Scholar 

  69. Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA . Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 2003; 37: 1043–1055.

    CAS  PubMed  Google Scholar 

  70. Watanabe A, Hashmi A, Gomes DA, Town T, Badou A, Flavell RA et al. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via Toll-like receptor 9. Hepatology 2007; 46: 1509–1518.

    CAS  PubMed  Google Scholar 

  71. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007; 13: 1324–1332.

    CAS  PubMed  Google Scholar 

  72. Isayama F, Hines IN, Kremer M, Milton RJ, Byrd CL, Perry AW et al. LPS signaling enhances hepatic fibrogenesis caused by experimental cholestasis in mice. Am J Physiol Gastrointest Liver Physiol 2006; 290: G1318–G1328.

    CAS  PubMed  Google Scholar 

  73. Csak T, Velayudham A, Hritz I, Petrasek J, Levin I, Lippai D et al. Deficiency in myeloid differentiation factor-2 and Toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice. Am J Physiol Gastrointest Liver Physiol 2011; 300: G433–G441.

    PubMed Central  PubMed  Google Scholar 

  74. Minmin S, Xiaoqian X, Hao C, Baiyong S, Xiaxing D, Junjie X et al. Single nucleotide polymorphisms of Toll-like receptor 4 decrease the risk of development of hepatocellular carcinoma. PLoS One 2011; 6: e19466.

    PubMed Central  PubMed  Google Scholar 

  75. Huebener P, Schwabe RF . Regulation of wound healing and organ fibrosis by Toll-like receptors. Biochim Biophys Acta 2013; 1832: 1005–1017.

    CAS  PubMed  Google Scholar 

  76. Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P, Ferrone S . Immunotherapy of cancer in 2012. CA Cancer J Clin 2012 62: 309–335.

    Google Scholar 

  77. Palucka K, Banchereau J . Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12: 265–277.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Heath WR, Carbone FR . Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 2001; 19: 47–64.

    CAS  PubMed  Google Scholar 

  79. Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault JM et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 2011; 208: 1989–2003.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J Exp Med 2011; 208: 2005–2016.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Mantovani A, Romero P, Palucka AK, Marincola FM . Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 2008; 371: 771–783.

    CAS  PubMed  Google Scholar 

  82. Garaude J, Kent A, van Rooijen N, Blander JM . Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses. Sci Transl Med 2012; 4: 120ra116.

    Google Scholar 

  83. Drobits B, Holcmann M, Amberg N, Swiecki M, Grundtner R, Hammer M et al. Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J Clin Invest 2012; 122: 575–585.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Fiebiger E, Maurer D, Holub H, Reininger B, Hartmann G, Woisetschlager M et al. Serum IgG autoantibodies directed against the alpha chain of Fc epsilon RI: a selective marker and pathogenetic factor for a distinct subset of chronic urticaria patients? J Clin Invest 1995; 96: 2606–2612.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Stary G, Bangert C, Tauber M, Strohal R, Kopp T, Stingl G . Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J Exp Med 2007; 204: 1441–1451.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Cubillos-Ruiz JR, Engle X, Scarlett UK, Martinez D, Barber A, Elgueta R et al. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J Clin Invest 2009; 119: 2231–2244.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Nierkens S, den Brok MH, Garcia Z, Togher S, Wagenaars J, Wassink M et al. Immune adjuvant efficacy of CpG oligonucleotide in cancer treatment is founded specifically upon TLR9 function in plasmacytoid dendritic cells. Cancer Res 2011; 71: 6428–6437.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Trinchieri G, Santoli D . Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis. J Exp Med 1978; 147: 1314–1333.

    CAS  PubMed  Google Scholar 

  89. Ebihara T, Azuma M, Oshiumi H, Kasamatsu J, Iwabuchi K, Matsumoto K et al. Identification of a polyI:C-inducible membrane protein that participates in dendritic cell-mediated natural killer cell activation. J Exp Med 2010; 207: 2675–2687.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Asano M, Toda M, Sakaguchi N, Sakaguchi S . Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 1996; 184: 387–396.

    CAS  PubMed  Google Scholar 

  91. Pasare C, Medzhitov R . Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 2003; 299: 1033–1036.

    CAS  PubMed  Google Scholar 

  92. Peng G, Guo Z, Kiniwa Y, Voo KS, Peng W, Fu T et al. Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 2005; 309: 1380–1384.

    CAS  PubMed  Google Scholar 

  93. Shime H, Matsumoto M, Oshiumi H, Tanaka S, Nakane A, Iwakura Y et al. Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc Natl Acad Sci USA 2012; 109: 2066–2071.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Damiano V, Garofalo S, Rosa R, Bianco R, Caputo R, Gelardi T et al. A novel Toll-like receptor 9 agonist cooperates with trastuzumab in trastuzumab-resistant breast tumors through multiple mechanisms of action. Clin Cancer Res 2009; 15: 6921–6930.

    CAS  PubMed  Google Scholar 

  95. De Palma M, Mazzieri R, Politi LS, Pucci F, Zonari E, Sitia G et al. Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 2008; 14: 299–311.

    CAS  PubMed  Google Scholar 

  96. Pfeffer LM . Biologic activities of natural and synthetic type I interferons. Semin Oncol 1997; 24: S9-63–S69-69.

    Google Scholar 

  97. Sidky YA, Borden EC . Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res 1987; 47: 5155–5161.

    CAS  PubMed  Google Scholar 

  98. Reddy BS, Watanabe K . Effect of intestinal microflora on 2,2'-dimethyl-4-aminobiphenyl-induced carcinogenesis in F344 rats. J Natl Cancer Inst 1978; 61: 1269–1271.

    CAS  PubMed  Google Scholar 

  99. Reddy BS, Weisburger JH, Narisawa T, Wynder EL . Colon carcinogenesis in germ-free rats with 1,2-dimethylhydrazine and N-methyl-n'-nitro-N-nitrosoguanidine. Cancer Res 1974; 34: 2368–2372.

    CAS  PubMed  Google Scholar 

  100. Lofgren JL, Whary MT, Ge Z, Muthupalani S, Taylor NS, Mobley M et al. Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology 2011; 140: 210–220.

    PubMed  Google Scholar 

  101. Fukata M, Hernandez Y, Conduah D, Cohen J, Chen A, Breglio K et al. Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors. Inflamm Bowel Dis 2009; 15: 997–1006.

    PubMed  Google Scholar 

  102. Fukata M, Shang L, Santaolalla R, Sotolongo J, Pastorini C, Espana C et al. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis. Inflamm Bowel Dis 2011; 17: 1464–1473.

    PubMed  Google Scholar 

  103. Rakoff-Nahoum S, Medzhitov R . Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 2007; 317: 124–127.

    CAS  PubMed  Google Scholar 

  104. Li Y, Kundu P, Seow SW, de Matos CT, Aronsson L, Chin KC et al. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 2012; 33: 1231–1238.

    CAS  PubMed  Google Scholar 

  105. Li Y, Teo WL, Low MJ, Meijer L, Sanderson I, Pettersson S et al. Constitutive TLR4 signalling in intestinal epithelium reduces tumor load by increasing apoptosis in APC(Min/+) mice. Oncogene 2013; 33: 369–377.

    PubMed  Google Scholar 

  106. Zhang HL, Yu LX, Yang W, Tang L, Lin Y, Wu H et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J Hepatol 2012; 57: 803–812.

    PubMed  Google Scholar 

  107. Wang Z, Yan J, Lin H, Hua F, Wang X, Liu H et al. TLR4 activity protects against hepatocellular tumorigenesis and progression via regulating the expression of DNA repair protein Ku70(1). Hepatology 2013; 57: 1869–1881.

    CAS  PubMed  Google Scholar 

  108. Mittal D, Saccheri F, Venereau E, Pusterla T, Bianchi ME, Rescigno M . TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells. EMBO J 2010; 29: 2242–2252.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Yusuf N, Nasti TH, Long JA, Naseemuddin M, Lucas AP, Xu H et al. Protective role of Toll-like receptor 4 during the initiation stage of cutaneous chemical carcinogenesis. Cancer Res 2008; 68: 615–622.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Bauer AK, Dixon D, DeGraff LM, Cho HY, Walker CR, Malkinson AM et al. Toll-like receptor 4 in butylated hydroxytoluene-induced mouse pulmonary inflammation and tumorigenesis. J Natl Cancer Inst 2005; 97: 1778–1781.

    CAS  PubMed  Google Scholar 

  111. Ahmed A, Wang JH, Redmond HP . Silencing of TLR4 increases tumor progression and lung metastasis in a murine model of breast cancer. Ann Surg Oncol (epub ahead of print 14 August 2012; doi:10.1245/s10434-012-2595-9).

    Google Scholar 

  112. Naseemuddin M, Iqbal A, Nasti TH, Ghandhi JL, Kapadia AD, Yusuf N . Cell mediated immune responses through TLR4 prevents DMBA-induced mammary carcinogenesis in mice. Int J Biol Sci 2012; 130: 765–774.

    CAS  Google Scholar 

  113. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007; 13: 1050–1059.

    CAS  PubMed  Google Scholar 

  114. Srivastava K, Srivastava A, Kumar A, Mittal B . Significant association between Toll-like receptor gene polymorphisms and gallbladder cancer. Liver Int 2010; 30: 1067–1072.

    CAS  PubMed  Google Scholar 

  115. Rigoli L, Di Bella C, Fedele F, Procopio V, Amorini M, Lo Giudice G et al. TLR4 and NOD2/CARD15 genetic polymorphisms and their possible role in gastric carcinogenesis. Anticancer Res 2010; 30: 513–517.

    CAS  PubMed  Google Scholar 

  116. Kutikhin AG . Impact of Toll-like receptor 4 polymorphisms on risk of cancer. Hum Immunol 2011; 72: 193–206.

    CAS  PubMed  Google Scholar 

  117. Lin H, Yan J, Wang Z, Hua F, Yu J, Sun W et al. Loss of immunity-supported senescence enhances susceptibility to hepatocellular carcinogenesis and progression in Toll-like receptor 2-deficient mice. Hepatology 2013; 57: 171–182.

    CAS  PubMed  Google Scholar 

  118. Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med 2010; 207: 1625–1636.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Lowe EL, Crother TR, Rabizadeh S, Hu B, Wang H, Chen S et al. Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer. PloS one 2010; 5: e13027.

    PubMed Central  PubMed  Google Scholar 

  120. de Oliveira JG, Rossi AF, Nizato DM, Miyasaki K, Silva AE . Profiles of gene polymorphisms in cytokines and Toll-like receptors with higher risk for gastric cancer. Dig Dis Sci 2013; 58: 978–988.

    PubMed  Google Scholar 

  121. Pandey S, Mittal RD, Srivastava M, Srivastava K, Singh S, Srivastava S et al. Impact of Toll-like receptors [TLR] 2 (-196 to -174 del) and TLR 4 (Asp299Gly, Thr399Ile) in cervical cancer susceptibility in North Indian women. Gynecol Oncol 2009; 114: 501–505.

    CAS  PubMed  Google Scholar 

  122. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011; 470: 115–119.

    CAS  PubMed  Google Scholar 

  123. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med 2012; 367: 826–833.

    CAS  PubMed  Google Scholar 

  124. Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA 2012; 109: 3879–3884.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Swann J, Vesely M, Silva A, Sharkey J, Akira S, Schreiber R et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci USA 2008; 105: 652–656.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wald D, Qin J, Zhao Z, Qian Y, Naramura M, Tian L et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 2003; 4: 920–927.

    CAS  PubMed  Google Scholar 

  127. Xiao H, Gulen MF, Qin J, Yao J, Bulek K, Kish D et al. The Toll-interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis. Immunity 2007; 26: 461–475.

    CAS  PubMed  Google Scholar 

  128. Yu P, Lubben W, Slomka H, Gebler J, Konert M, Cai C et al. Nucleic acid-sensing Toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors. Immunity 2012; 37: 867–879.

    CAS  PubMed  Google Scholar 

  129. Chin AI, Miyahira AK, Covarrubias A, Teague J, Guo B, Dempsey PW et al. Toll-like receptor 3-mediated suppression of TRAMP prostate cancer shows the critical role of type I interferons in tumor immune surveillance. Cancer Res 2010; 70: 2595–2603.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Forte G, Rega A, Morello S, Luciano A, Arra C, Pinto A et al. Polyinosinic-polycytidylic acid limits tumor outgrowth in a mouse model of metastatic lung cancer. J Immunol 2012; 188: 5357–5364.

    CAS  PubMed  Google Scholar 

  131. Chew V, Tow C, Huang C, Bard-Chapeau E, Copeland NG, Jenkins NA et al. Toll-like receptor 3 expressing tumor parenchyma and infiltrating natural killer cells in hepatocellular carcinoma patients. J Natl Cancer Inst 2012; 104: 1796–1807.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Hasan UA, Caux C, Perrot I, Doffin AC, Menetrier-Caux C, Trinchieri G et al. Cell proliferation and survival induced by Toll-like receptors is antagonized by type I IFNs. Proc Natl Acad Sci USA 2007; 104: 8047–8052.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee J, Sayed N, Hunter A, Au KF, Wong WH, Mocarski ES et al. Activation of innate immunity is required for efficient nuclear reprogramming. Cell 2012; 151: 547–558.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Rhee SH, Im E, Pothoulakis C . Toll-like receptor 5 engagement modulates tumor development and growth in a mouse xenograft model of human colon cancer. Gastroenterology 2008; 135: 518–528.

    CAS  PubMed  Google Scholar 

  135. Cai Z, Sanchez A, Shi Z, Zhang T, Liu M, Zhang D . Activation of Toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth. Cancer Res 2011; 71: 2466–2475.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Schon MP, Schon M . TLR7 and TLR8 as targets in cancer therapy. Oncogene 2008; 27: 190–199.

    CAS  PubMed  Google Scholar 

  137. Sidky YA, Borden EC, Weeks CE, Reiter MJ, Hatcher JF, Bryan GT . Inhibition of murine tumor growth by an interferon-inducing imidazoquinolinamine. Cancer Res 1992; 52: 3528–3533.

    CAS  PubMed  Google Scholar 

  138. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002; 3: 196–200.

    CAS  PubMed  Google Scholar 

  139. Gibson SJ, Lindh JM, Riter TR, Gleason RM, Rogers LM, Fuller AE et al. Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell Immunol 2002; 218: 74–86.

    CAS  PubMed  Google Scholar 

  140. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 2012; 109: E2110–E2116.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bourquin C, Schmidt L, Lanz AL, Storch B, Wurzenberger C, Anz D et al. Immunostimulatory RNA oligonucleotides induce an effective antitumoral NK cell response through the TLR7. J Immunol 2009; 183: 6078–6086.

    CAS  PubMed  Google Scholar 

  142. Lan T, Kandimalla ER, Yu D, Bhagat L, Li Y, Wang D et al. Stabilized immune modulatory RNA compounds as agonists of Toll-like receptors 7 and 8. Proc Natl Acad Sci USA 2007; 104: 13750–13755.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Krieg AM . Development of TLR9 agonists for cancer therapy. J Clin Invest 2007; 117: 1184–1194.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Baines J, Celis E . Immune-mediated tumor regression induced by CpG-containing oligodeoxynucleotides. Clin Cancer Res 2003; 9: 2693–2700.

    CAS  PubMed  Google Scholar 

  145. Brignole C, Marimpietri D, Di Paolo D, Perri P, Morandi F, Pastorino F et al. Therapeutic targeting of TLR9 inhibits cell growth and induces apoptosis in neuroblastoma. Cancer Res 2010; 70: 9816–9826.

    CAS  PubMed  Google Scholar 

  146. Carpentier A, Chen L, Maltonti F, Delattre J . Oligodeoxynucleotides containing CpG motifs can induce rejection of a neuroblastoma in mice. Cancer Res 1999; 59: 5429–5432.

    CAS  PubMed  Google Scholar 

  147. Heckelsmiller K, Rall K, Beck S, Schlamp A, Seiderer J, Jahrsdörfer B et al. Peritumoral CpG DNA elicits a coordinated response of CD8 T cells and innate effectors to cure established tumors in a murine colon carcinoma model. J Immunol 2002; 169: 3892–3899.

    CAS  PubMed  Google Scholar 

  148. Kortylewski M, Swiderski P, Herrmann A, Wang L, Kowolik C, Kujawski M et al. In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol 2009; 27: 925–932.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Krieg AM . Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene 2008; 27: 161–167.

    CAS  PubMed  Google Scholar 

  150. Ballas ZK, Rasmussen WL, Krieg AM . Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 1996; 157: 1840–1845.

    CAS  PubMed  Google Scholar 

  151. Hartmann G, Weiner GJ, Krieg AM . CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci USA 1999; 96: 9305–9310.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kadowaki N, Antonenko S, Liu YJ . Distinct CpG DNA and polyinosinic-polycytidylic acid double-stranded RNA, respectively, stimulate CD11c- type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN. J Immunol 2001; 166: 2291–2295.

    CAS  PubMed  Google Scholar 

  153. Krieg AM . Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 2006; 5: 471–484.

    CAS  PubMed  Google Scholar 

  154. So EY, Ouchi T . The application of Toll like receptors for cancer therapy. Int J Biol Sci 2010; 6: 675–681.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Droemann D, Albrecht D, Gerdes J, Ulmer A, Branscheid D, Vollmer E et al. Human lung cancer cells express functionally active Toll-like receptor 9. Respir Res 2005; 6: 1.

    PubMed Central  PubMed  Google Scholar 

  156. Ren T, Xu L, Jiao S, Wang Y, Cai Y, Liang Y et al. TLR9 signaling promotes tumor progression of human lung cancer cell in vivo. Pathol Oncol Res 2009; 15: 623–630.

    CAS  PubMed  Google Scholar 

  157. Ren T, Wen Z-K, Liu Z-M, Liang Y-J, Guo Z-L, Xu L . Functional expression of TLR9 is associated to the metastatic potential of human lung cancer cell: functional active role of TLR9 on tumor metastasis. Cancer Biol Ther 2007; 6: 1704–1709.

    CAS  PubMed  Google Scholar 

  158. Merrell M, Ilvesaro J, Lehtonen N, Sorsa T, Gehrs B, Rosenthal E et al. Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol Cancer Res 2006; 4: 437–447.

    CAS  PubMed  Google Scholar 

  159. Guha M, Anticancer TLR . agonists on the ropes. Nat Rev Drug Discov 2012; 11: 503–505.

    PubMed  Google Scholar 

  160. Smits EL, Ponsaerts P, Berneman ZN, Van Tendeloo VF . The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 2008; 13: 859–875.

    CAS  PubMed  Google Scholar 

  161. Geisse J, Caro I, Lindholm J, Golitz L, Stampone P, Owens M . Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from two phase III, randomized, vehicle-controlled studies. J Am Acad Dermatol 2004; 50: 722–733.

    PubMed  Google Scholar 

  162. Love WE, Bernhard JD, Bordeaux JS . Topical imiquimod or fluorouracil therapy for basal and squamous cell carcinoma: a systematic review. Arch Dermatol 2009; 145: 1431–1438.

    CAS  PubMed  Google Scholar 

  163. Rajpar SF, Marsden JR . Imiquimod in the treatment of lentigo maligna. Br J Dermatol 2006; 155: 653–656.

    CAS  PubMed  Google Scholar 

  164. Bong AB, Bonnekoh B, Franke I, Schon M, Ulrich J, Gollnick H . Imiquimod, a topical immune response modifier, in the treatment of cutaneous metastases of malignant melanoma. Dermatology 2002; 205: 135–138.

    CAS  PubMed  Google Scholar 

  165. Wolf IH, Smolle J, Binder B, Cerroni L, Richtig E, Kerl H . Topical imiquimod in the treatment of metastatic melanoma to skin. Arch Dermatol 2003; 139: 273–276.

    PubMed  Google Scholar 

  166. Smyth EC, Flavin M, Pulitzer MP, Gardner GJ, Costantino PD, Chi DS et al. Treatment of locally recurrent mucosal melanoma with topical imiquimod. J Clin Oncol 2011; 29: e809–e811.

    PubMed  Google Scholar 

  167. Adams S, Kozhaya L, Martiniuk F, Meng TC, Chiriboga L, Liebes L et al. Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clin Cancer Res 2012; 18: 6748–6757.

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Sfondrini L, Rossini A, Besusso D, Merlo A, Tagliabue E, Menard S et al. Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J Immunol 2006; 176: 6624–6630.

    CAS  PubMed  Google Scholar 

  169. Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D et al. An agonist of Toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 2008; 320: 226–230.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Bekierkunst A, Levij IS, Yarkoni E . Suppression of urethan-induced lung adenomas in mice treated with trehalose-6,6-dimycolate (cord factor) and living bacillus Calmette Guerin. Science 1971; 174: 1240–1242.

    CAS  PubMed  Google Scholar 

  171. Sjogren HO, Ankerst J . Effect of BCG and allogeneic tumor cells on adenovirus type 12 tumorigenesis in mice. Nature 1969; 221: 863–864.

    CAS  PubMed  Google Scholar 

  172. Zbar B, Bernstein I, Tanaka T, Rapp HJ . Tumor immunity produced by the intradermal inoculation of living tumor cells and living Mycobacterium bovis (strain BCG). Science 1970; 170: 1217–1218.

    CAS  PubMed  Google Scholar 

  173. Zbar B, Tanaka T . Immunotherapy of cancer: regression of tumors after intralesional injection of living Mycobacterium bovis. Science 1971; 172: 271–273.

    CAS  PubMed  Google Scholar 

  174. Morales A, Eidinger D, Bruce AW . Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol 1976; 116: 180–183.

    CAS  PubMed  Google Scholar 

  175. Hall MC, Chang SS, Dalbagni G, Pruthi RS, Seigne JD, Skinner EC et al. Guideline for the management of nonmuscle invasive bladder cancer (stages Ta, T1, and Tis): 2007 update. J Urol 2007; 178: 2314–2330.

    PubMed  Google Scholar 

  176. Babjuk M, Oosterlinck W, Sylvester R, Kaasinen E, Bohle A, Palou-Redorta J et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. Eur Urol 2011; 59: 997–1008.

    PubMed  Google Scholar 

  177. Kroemer G, Zitvogel L, Galluzzi L . Victories and deceptions in tumor immunology: Stimuvax. Oncoimmunology 2013; 2: e23687.

    PubMed Central  PubMed  Google Scholar 

  178. Kolida S, Gibson GR . Synbiotics in health and disease. Annu Rev Food Sci Technol 2011; 2: 373–393.

    PubMed  Google Scholar 

  179. Le Leu RK, Hu Y, Brown IL, Woodman RJ, Young GP . Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis 2010; 31: 246–251.

    CAS  PubMed  Google Scholar 

  180. Rowland IR, Rumney CJ, Coutts JT, Lievense LC . Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis 1998; 19: 281–285.

    CAS  PubMed  Google Scholar 

  181. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012; 491: 254–258.

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest 2013; 123: 700–711.

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Bass NM, Mullen KD, Sanyal A, Poordad F, Neff G, Leevy CB et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med 2010; 362: 1071–1081.

    CAS  PubMed  Google Scholar 

  184. Fort MM, Mozaffarian A, Stover AG, Correia Jda S, Johnson DA, Crane RT et al. A synthetic TLR4 antagonist has anti-inflammatory effects in two murine models of inflammatory bowel disease. J Immunol 2005; 174: 6416–6423.

    CAS  PubMed  Google Scholar 

  185. Rossignol DP, Lynn M . Antagonism of in vivo and ex vivo response to endotoxin by E5564, a synthetic lipid A analogue. J Endotoxin Res 2002; 8: 483–488.

    CAS  PubMed  Google Scholar 

  186. Sha T, Sunamoto M, Kitazaki T, Sato J, Ii M, Iizawa Y . Therapeutic effects of TAK-242, a novel selective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model. Eur J Pharmacol 2007; 571: 231–239.

    CAS  PubMed  Google Scholar 

  187. Arslan F, Houtgraaf JH, Keogh B, Kazemi K, de Jong R, McCormack WJ et al. Treatment with OPN-305, a humanized anti-Toll-Like receptor-2 antibody, reduces myocardial ischemia/reperfusion injury in pigs. Circ Cardiovasc Interv 2012; 5: 279–287.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants U54CA163111, R01DK076920 and R01AA020211 (to RFS). Dianne H Dapito was supported by NIH grant F31DK091980.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R F Schwabe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradere, JP., Dapito, D. & Schwabe, R. The Yin and Yang of Toll-like receptors in cancer. Oncogene 33, 3485–3495 (2014). https://doi.org/10.1038/onc.2013.302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.302

Keywords

This article is cited by

Search

Quick links