Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PYM binds the cytoplasmic exon-junction complex and ribosomes to enhance translation of spliced mRNAs

Abstract

Messenger RNAs produced by splicing are translated more efficiently than those produced from similar intronless precursor mRNAs (pre-mRNAs). The exon-junction complex (EJC) probably mediates this enhancement; however, the specific link between the EJC and the translation machinery has not been identified. The EJC proteins Y14 and magoh remain bound to spliced mRNAs after their export from the nucleus to the cytoplasm and are removed only when these mRNAs are translated. Here we show that PYM, a 29-kDa protein that binds the Y14–magoh complex in the cytoplasm, also binds, via a separate domain, to the small (40S) ribosomal subunit and the 48S preinitiation complex. Furthermore, PYM knockdown reduces the translation efficiency of a reporter protein produced from intron-containing, but not intronless, pre-mRNA. We suggest that PYM functions as a bridge between EJC-bearing spliced mRNAs and the translation machinery to enhance translation of the mRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PYM interacts selectively with the Y14–magoh complex.
Figure 2: PYM associates with the 40S ribosomal subunit and translation factors.
Figure 3: The C terminus of PYM is required for association with the 48S preinitiation complex.
Figure 4: Knockdown of PYM results in reduced expression from an intron-containing reporter.
Figure 5: Model of the assembly pathway and dynamics of the EJC and the role of PYM in the interaction of the EJC with the translation machinery.

Similar content being viewed by others

References

  1. Reed, R. Mechanisms of fidelity in pre-mRNA splicing. Curr. Opin. Cell Biol. 12, 340–345 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Hastings, M.L. & Krainer, A.R. Pre-mRNA splicing in the new millennium. Curr. Opin. Cell Biol. 13, 302–309 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, J., Sun, X., Qian, Y., LaDuca, J.P. & Maquat, L.E. At least one intron is required for the nonsense-mediated decay of triosephosphate isomerase mRNA: a possible link between nuclear splicing and cytoplasmic translation. Mol. Cell. Biol. 18, 5272–5283 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu, S. & Cullen, B.R. Analysis of the stimulatory effect of splicing on mRNA production and utilization in mammalian cells. RNA 9, 618–630 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nott, A., Meislin, S.H. & Moore, M.J. A quantitative analysis of intron effects on mammalian gene expression. RNA 9, 607–617 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matsumoto, K., Wassarman, K.M. & Wolffe, A.P. Nuclear history of a pre-mRNA determines the translational activity of cytoplasmic mRNA. EMBO J. 17, 2107–2121 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dostie, J. & Dreyfuss, G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 12, 1060–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Wiegand, H.L., Lu, S. & Cullen, B.R. Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc. Natl. Acad. Sci. USA 100, 11327–11332 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsu, I.-W. et al. Phosphorylation of Y14 modulates its interaction with proteins involved in mRNA metabolism and influences its methylation. J. Biol. Chem. 280, 34507–34512 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Nott, A., Le Hir, H. & Moore, M.J. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev. 18, 210–222 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kataoka, N., Diem, M.D., Kim, V.N., Yong, J. & Dreyfuss, G. Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. EMBO J. 20, 6424–6433 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kataoka, N. et al. Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol. Cell 6, 673–682 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, V.N., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science 293, 1832–1836 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Le Hir, H., Gatfield, D., Braun, I.C., Forler, D. & Izaurralde, E. The protein Mago provides a link between splicing and mRNA localization. EMBO Rep. 2, 1119–1124 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chan, C.C. et al. eIF4A3 is a novel component of the exon junction complex. RNA 10, 200–209 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Degot, S. et al. Association of the breast cancer protein MLN51 with the exon junction complex via its speckle localizer and RNA binding module. J. Biol. Chem. 279, 33702–33715 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Palacios, I.M., Gatfield, D., St. Johnston, D. & Izaurralde, E. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427, 753–757 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Shibuya, T., Tange, T.O., Sonenberg, N. & Moore, M.J. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat. Struct. Mol. Biol. 11, 346–351 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Ferraiuolo, M.A. et al. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc. Natl. Acad. Sci. USA 101, 4118–4123 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maquat, L.E. & Carmichael, G.G. Quality control of mRNA function. Cell 104, 173–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Hilleren, P. & Parker, R. Mechanisms of mRNA surveillance in eukaryotes. Annu. Rev. Genet. 33, 229–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Culbertson, M.R. RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer. Trends Genet. 15, 74–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Gehring, N.H., Neu-Yilik, G., Schell, T., Hentze, M.W. & Kulozik, A.E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell 11, 939–949 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Gehring, N.H. et al. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol. Cell 20, 65–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Kashima, I. et al. Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev. 20, 355–367 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hentze, M.W. & Kulozik, A.E. A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96, 307–310 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez, C.I., Bhattacharya, A., Wang, W. & Peltz, S.W. Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Gene 274, 15–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Wagner, E. & Lykke-Andersen, J. mRNA surveillance: the perfect persist. J. Cell Sci. 115, 3033–3038 (2002).

    CAS  PubMed  Google Scholar 

  30. Kim, V.N. et al. The Y14 protein communicates to the cytoplasm the position of exon-exon junctions. EMBO J. 20, 2062–2068 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tange, T.O., Shibuya, T., Jurica, M.S. & Moore, M.J. Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. RNA 11, 1869–1883 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ballut, L. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 12, 861–869 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Mohr, S.E., Dillon, S.T. & Boswell, R.E. The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Genes Dev. 15, 2886–2899 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Newmark, P.A., Mohr, S.E., Gong, L. & Boswell, R.E. mago nashi mediates the posterior follicle cell-to-oocyte signal to organize axis formation in Drosophila. Development 124, 3197–3207 (1997).

    CAS  PubMed  Google Scholar 

  35. Kawano, T., Kataoka, N., Dreyfuss, G. & Sakamoto, H. Ce-Y14 and MAG-1, components of the exon-exon junction complex, are required for embryogenesis and germline sexual switching in Caenorhabditis elegans. Mech. Dev. 121, 27–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Li, W., Boswell, R. & Wood, W.B. mag-1, a homolog of Drosophila mago nashi, regulates hermaphrodite germ-line sex determination in Caenorhabditis elegans. Dev. Biol. 218, 172–182 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Hachet, O. & Ephrussi, A. Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Curr. Biol. 11, 1666–1674 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Bono, F. et al. Molecular insights into the interaction of PYM with the Mago-Y14 core of the exon junction complex. EMBO Rep. 5, 304–310 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mechler, B. & Vassalli, P. Membrane-bound ribosomes of myeloma cells. I. Preparation of free and membrane-bound ribosomal fractions. Assessment of the methods and properties of the ribosomes. J. Cell Biol. 67, 1–15 (1975).

    Article  CAS  PubMed  Google Scholar 

  40. Ishigaki, Y., Li, X., Serin, G. & Maquat, L.E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chiu, S.Y., Lejeune, F., Ranganathan, A.C. & Maquat, L.E. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex. Genes Dev. 18, 745–754 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hosoda, N., Kim, Y.K., Lejeune, F. & Maquat, L.E. CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nat. Struct. Mol. Biol. 12, 893–901 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Merrick, W.C., Kemper, W.M. & Anderson, W.F. Purification and characterization of homogeneous initiation factor M2A from rabbit reticulocytes. J. Biol. Chem. 250, 5556–5562 (1975).

    CAS  PubMed  Google Scholar 

  45. Ventoso, I. et al. Translational resistance of late alphavirus mRNA to eIF2alpha phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR. Genes Dev. 20, 87–100 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Merz, C., Urlaub, H., Will, C.L. & Lührmann, R. Protein composition of human mRNPs spliced in vitro and differential requirements for mRNP protein recruitment. RNA 13, 116–128 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, Z. & Krainer, A.R. Splicing remodels messenger ribonucleoprotein architecture via eIF4A3-dependent and -independent recruitment of exon junction complex components. Proc. Natl. Acad. Sci. USA 104, 11574–11579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dreyfuss, G., Kim, V.N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3, 195–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Maquat, L.E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 5, 89–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Zoll, W.L., Horton, L.E., Komar, A.A., Hensold, J.O. & Merrick, W.C. Characterization of mammalian eIF2A and identification of the yeast homolog. J. Biol. Chem. 277, 37079–37087 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Komar, A.A. et al. Novel characteristics of the biological properties of the yeast Saccharomyces cerevisiae eukaryotic initiation factor 2A. J. Biol. Chem. 280, 15601–15611 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Friesen, W.J. & Dreyfuss, G. Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN). J. Biol. Chem. 275, 26370–26375 (2000).H

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratory, especially D. Battle and J. Yong, for stimulating discussions and comments on this manuscript; H. Sheng and R. Olszewski for technical assistance; S. Grill for secretarial assistance; I. Mattaj (European Molecular Biology Laboratory) for the CBP20 and CBP80 antibodies; G. Van Duyne (University of Pennsylvania) for the GST-TEV expression vector; and the New York University Protein Analysis Facility for protein microsequencing. G.D. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon Dreyfuss.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 507 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diem, M., Chan, C., Younis, I. et al. PYM binds the cytoplasmic exon-junction complex and ribosomes to enhance translation of spliced mRNAs. Nat Struct Mol Biol 14, 1173–1179 (2007). https://doi.org/10.1038/nsmb1321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing