Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The structural basis of autotransporter translocation by TamA

Abstract

TamA is an Escherichia coli Omp85 protein involved in autotransporter biogenesis. It comprises a 16-stranded transmembrane β-barrel and three POTRA domains. The 2.3-Å crystal structure reveals that the TamA barrel is closed at the extracellular face by a conserved lid loop. The C-terminal β-strand of the barrel forms an unusual inward kink, which weakens the lateral barrel wall and creates a gate for substrate access to the lipid bilayer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TamA structure and interactions of its POTRA domains.
Figure 2: The closed lid and the lateral gate of TamA.
Figure 3: Proposed mechanism for substrate assembly through hybrid-barrel formation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Chacinska, A., Koehler, C.M., Milenkovic, D., Lithgow, T. & Pfanner, N. Cell 138, 628–644 (2009).

    Article  CAS  Google Scholar 

  2. Walther, D.M., Rapaport, D. & Tommassen, J. Cell. Mol. Life Sci. 66, 2789–2804 (2009).

    Article  CAS  Google Scholar 

  3. Kim, S. et al. Science 317, 961–964 (2007).

    Article  CAS  Google Scholar 

  4. Fan, E., Fiedler, S., Jacob-Dubuisson, F. & Müller, M. J. Biol. Chem. 287, 2591–2599 (2012).

    Article  CAS  Google Scholar 

  5. Hagan, C.L., Silhavy, T.J. & Kahne, D. Annu. Rev. Biochem. 80, 189–210 (2011).

    Article  CAS  Google Scholar 

  6. Wiedemann, N. et al. Nature 424, 565–571 (2003).

    Article  CAS  Google Scholar 

  7. Jacob-Dubuisson, F., Guérin, J., Baelen, S. & Clantin, B. Res. Microbiol. 164, 583–595 (2013).

    Article  CAS  Google Scholar 

  8. Clantin, B. et al. Science 317, 957–961 (2007).

    Article  CAS  Google Scholar 

  9. Stegmeier, J.F., Glück, A., Sukumaran, S., Mäntele, W. & Andersen, C. Biol. Chem. 388, 37–46 (2007).

    Article  CAS  Google Scholar 

  10. Selkrig, J. et al. Nat. Struct. Mol. Biol. 19, 506–510 (2012).

    Article  CAS  Google Scholar 

  11. Vestweber, D., Brunner, J., Baker, A. & Schatz, G. Nature 341, 205–209 (1989).

    Article  CAS  Google Scholar 

  12. Pusnik, M. et al. Curr. Biol. 21, 1738–1743 (2011).

    Article  CAS  Google Scholar 

  13. Gatzeva-Topalova, P.Z., Warner, L.R., Pardi, A. & Sousa, M.C. Structure 18, 1492–1501 (2010).

    Article  CAS  Google Scholar 

  14. Delattre, A.S. et al. Mol. Microbiol. 81, 99–112 (2011).

    Article  CAS  Google Scholar 

  15. Delattre, A.S. et al. FEBS J. 277, 4755–4765 (2010).

    Article  CAS  Google Scholar 

  16. Pavlova, O., Peterson, J.H., Ieva, R. & Bernstein, H.D. Proc. Natl. Acad. Sci. USA 110, E938–E947 (2013).

    Article  CAS  Google Scholar 

  17. Guédin, S. et al. J. Biol. Chem. 275, 30202–30210 (2000).

    Article  Google Scholar 

  18. van den Berg, B. J. Mol. Biol. 396, 627–633 (2010).

    Article  CAS  Google Scholar 

  19. Bernstein, H.D. Trends Microbiol. 15, 441–447 (2007).

    Article  CAS  Google Scholar 

  20. Saurí, A., Ten Hagen-Jongman, C.M., van Ulsen, P. & Luirink, J. J. Mol. Biol. 416, 335–345 (2012).

    Article  Google Scholar 

  21. Noinaj, N. et al. Nature doi:10.1038/nature12521 (1 September 2013).

  22. Betancor, L., Fernández, M.J., Weissman, K.J. & Leadlay, P.F. ChemBioChem 9, 2962–2966 (2008).

    Article  CAS  Google Scholar 

  23. Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  24. Sheldrick, G.M. Acta Crystallogr. D Biol. Crystallogr. 66, 479–485 (2010).

    Article  CAS  Google Scholar 

  25. McCoy, A.J. et al. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  26. Langer, G., Cohen, S.X., Lamzin, V.S. & Perrakis, A. Nat. Protoc. 3, 1171–1179 (2008).

    Article  CAS  Google Scholar 

  27. Emsley, P. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  28. Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  29. Sievers, F. et al. Mol. Syst. Biol. 7, 539 (2011).

    Article  Google Scholar 

  30. Goujon, M. et al. Nucleic Acids Res. 38, W695–W699 (2010).

    Article  CAS  Google Scholar 

  31. Pei, J. & Grishin, N.V. Bioinformatics 17, 700–712 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Crystallographic experiments were performed at PXIII (Swiss Light Source, Paul Scherrer Institute, Switzerland). We thank M. Wang and V. Olieric for support at the beamline, T. Schirmer for discussion and L. Betancor and P.F. Leadlay (University of Cambridge) for the pL1SL2 plasmid. This work was supported by the Swiss National Science Foundation (Grant PP00P3_128419 to S.H.) and the European Research Council (FP7 contract MOMP 281764 to S.H.). F.G. acknowledges a fellowship by the Werner-Siemens Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.H. and T.M. designed the study and guided the research experiments. F.G., F.Z., R.P.J. and B.M.B. carried out the experiments. All authors analyzed data. F.G., S.H. and T.M. wrote the paper.

Corresponding authors

Correspondence to Sebastian Hiller or Timm Maier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 2325 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruss, F., Zähringer, F., Jakob, R. et al. The structural basis of autotransporter translocation by TamA. Nat Struct Mol Biol 20, 1318–1320 (2013). https://doi.org/10.1038/nsmb.2689

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2689

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing