Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

SIMIBI twins in protein targeting and localization

Abstract

Signal recognition particle, MinD and BioD (SIMIBI)-type nucleoside triphosphate–binding proteins are an ancient subfamily of nucleotide-binding proteins that serve in a wide range of cellular processes. Notably, this class comprises dimeric ATPases as well as GTPases (SIMIBI 'twins') and a subset of SIMIBI-type proteins, including SRP GTPases, MinD-type ATPases and the Get3 ATPase, is essential to protein targeting and localization. Here, we define common mechanistic principles and differences for these SIMIBI proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SIMIBI-class homo- and heterodimers.
Figure 2: Mechanistic model of SIMIBI twins.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Leipe, D.D., Wolf, Y.I., Koonin, E.V. & Aravind, L. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317, 41–72 (2002).

    Article  CAS  Google Scholar 

  2. Kimple, A.J., Bosch, D.E., Giguere, P.M. & Siderovski, D.P. Regulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets. Pharmacol. Rev. 63, 728–749 (2011).

    Article  CAS  Google Scholar 

  3. Wittinghofer, A. & Vetter, I.R. Structure-function relationships of the G domain, a canonical switch motif. Annu. Rev. Biochem. 80, 943–971 (2011).

    Article  CAS  Google Scholar 

  4. Bourne, H.R., Sanders, D.A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132 (1990).

    Article  CAS  Google Scholar 

  5. Gasper, R., Meyer, S., Gotthardt, K., Sirajuddin, M. & Wittinghofer, A. It takes two to tango: regulation of G proteins by dimerization. Nat. Rev. Mol. Cell Biol. 10, 423–429 (2009).

    Article  CAS  Google Scholar 

  6. Saraste, M., Sibbald, P.R. & Wittinghofer, A. The P-loop–a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430–434 (1990).

    Article  Google Scholar 

  7. Vetter, I.R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    Article  CAS  Google Scholar 

  8. Akopian, D., Shen, K., Zhang, X. & Shan, S.O. Signal recognition particle: an essential protein-targeting machine. Annu. Rev. Biochem. published online, http://dx.doi.org/10.1146/annurev-biochem-072711-164732 (13 February 2013).

  9. Grudnik, P., Bange, G. & Sinning, I. Protein targeting by the signal recognition particle. Biol. Chem. 390, 775–782 (2009).

    Article  CAS  Google Scholar 

  10. Freymann, D.M., Keenan, R.J., Stroud, R.M. & Walter, P. Structure of the conserved GTPase domain of the signal recognition particle. Nature 385, 361–364 (1997).

    Article  CAS  Google Scholar 

  11. Montoya, G., Svensson, C., Luirink, J. & Sinning, I. Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature 385, 365–368 (1997).

    Article  CAS  Google Scholar 

  12. Egea, P.F. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215–221 (2004).

    Article  CAS  Google Scholar 

  13. Focia, P.J., Shepotinovskaya, I.V., Seidler, J.A. & Freymann, D.M. Heterodimeric GTPase core of the SRP targeting complex. Science 303, 373–377 (2004).

    Article  CAS  Google Scholar 

  14. Estrozi, L.F., Boehringer, D., Shan, S.O., Ban, N. & Schaffitzel, C. Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor. Nat. Struct. Mol. Biol. 18, 88–90 (2011).

    Article  CAS  Google Scholar 

  15. Siu, F.Y., Spanggord, R.J. & Doudna, J.A. SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting. RNA 13, 240–250 (2007).

    Article  CAS  Google Scholar 

  16. Ataide, S.F. et al. The crystal structure of the signal recognition particle in complex with its receptor. Science 331, 881–886 (2011).

    Article  CAS  Google Scholar 

  17. Shen, K., Arslan, S., Akopian, D., Ha, T. & Shan, S.O. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 492, 271–275 (2012).

    Article  CAS  Google Scholar 

  18. Zhang, X. et al. Direct visualization reveals dynamics of a transient intermediate during protein assembly. Proc. Natl. Acad. Sci. USA 108, 6450–6455 (2011).

    Article  CAS  Google Scholar 

  19. Holtkamp, W. et al. Dynamic switch of the signal recognition particle from scanning to targeting. Nat. Struct. Mol. Biol. 19, 1332–1337 (2012).

    Article  CAS  Google Scholar 

  20. Parlitz, R. et al. Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J. Biol. Chem. 282, 32176–32184 (2007).

    Article  CAS  Google Scholar 

  21. Stjepanovic, G. et al. Lipids trigger a conformational switch that regulates signal recognition particle (SRP)-mediated protein targeting. J. Biol. Chem. 286, 23489–23497 (2011).

    Article  CAS  Google Scholar 

  22. de Leeuw, E. et al. Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO J. 19, 531–541 (2000).

    Article  CAS  Google Scholar 

  23. Bacher, G., Lutcke, H., Jungnickel, B., Rapoport, T.A. & Dobberstein, B. Regulation by the ribosome of the GTPase of the signal-recognition particle during protein targeting. Nature 381, 248–251 (1996).

    Article  CAS  Google Scholar 

  24. Bange, G. et al. Structural basis for the molecular evolution of SRP-GTPase activation by protein. Nat. Struct. Mol. Biol. 18, 1376–1380 (2011).

    Article  CAS  Google Scholar 

  25. Hegde, R.S. & Keenan, R.J. Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 12, 787–798 (2011).

    Article  CAS  Google Scholar 

  26. Formighieri, C., Cazzaniga, S., Kuras, R. & Bassi, R. Biogenesis of photosynthetic complexes in the chloroplast of Chlamydomonas reinhardtii requires ARSA1, a homolog of prokaryotic arsenite transporter and eukaryotic TRC40 for guided entry of tail-anchored proteins. Plant J. 73, 850–861 (2013).

    Article  CAS  Google Scholar 

  27. Suloway, C.J., Chartron, J.W., Zaslaver, M. & Clemons, W.M. Jr. Model for eukaryotic tail-anchored protein binding based on the structure of Get3. Proc. Natl. Acad. Sci. USA 106, 14849–14854 (2009).

    Article  CAS  Google Scholar 

  28. Denic, V., Doetsch, V. & Sinning, I. Endoplasmic reticulum targeting and insertion of tail-anchored membrane proteins by the GET pathway. Cold Spring Harb. Perspect. Biol. doi:10.1101/cshperspect.a013334 (in the press).

  29. Bozkurt, G. et al. Structural insights into tail-anchored protein binding and membrane insertion by Get3. Proc. Natl. Acad. Sci. USA 106, 21131–21136 (2009).

    Article  CAS  Google Scholar 

  30. Mateja, A. et al. The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461, 361–366 (2009).

    Article  CAS  Google Scholar 

  31. Chartron, J.W., Clemons, W.M. Jr. & Suloway, C.J. The complex process of GETting tail-anchored membrane proteins to the ER. Curr. Opin. Struct. Biol. 22, 217–224 (2012).

    Article  CAS  Google Scholar 

  32. Sinning, I., Bange, G. & Wild, K. It takes two to Get3. Structure 19, 1353–1355 (2011).

    Article  CAS  Google Scholar 

  33. Wang, F., Whynot, A., Tung, M. & Denic, V. The mechanism of tail-anchored protein insertion into the ER membrane. Mol. Cell 43, 738–750 (2011).

    Article  CAS  Google Scholar 

  34. Mariappan, M. et al. The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477, 61–66 (2011).

    Article  CAS  Google Scholar 

  35. Stefer, S. et al. Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex. Science 333, 758–762 (2011).

    Article  CAS  Google Scholar 

  36. Kubota, K., Yamagata, A., Sato, Y., Goto-Ito, S. & Fukai, S. Get1 stabilizes an open dimer conformation of Get3 ATPase by binding two distinct interfaces. J. Mol. Biol. 422, 366–375 (2012).

    Article  CAS  Google Scholar 

  37. Lutkenhaus, J. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 76, 539–562 (2007).

    Article  CAS  Google Scholar 

  38. Wu, W., Park, K.T., Holyoak, T. & Lutkenhaus, J. Determination of the structure of the MinD-ATP complex reveals the orientation of MinD on the membrane and the relative location of the binding sites for MinE and MinC. Mol. Microbiol. 79, 1515–1528 (2011).

    Article  CAS  Google Scholar 

  39. Szeto, T.H., Rowland, S.L., Rothfield, L.I. & King, G.F. Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts. Proc. Natl. Acad. Sci. USA 99, 15693–15698 (2002).

    Article  CAS  Google Scholar 

  40. Zhou, H. et al. Analysis of MinD mutations reveals residues required for MinE stimulation of the MinD ATPase and residues required for MinC interaction. J. Bacteriol. 187, 629–638 (2005).

    Article  CAS  Google Scholar 

  41. Lackner, L.L., Raskin, D.M. & de Boer, P.A. ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro. J. Bacteriol. 185, 735–749 (2003).

    Article  CAS  Google Scholar 

  42. Cordell, S.C., Anderson, R.E. & Lowe, J. Crystal structure of the bacterial cell division inhibitor MinC. EMBO J. 20, 2454–2461 (2001).

    Article  CAS  Google Scholar 

  43. Shen, B. & Lutkenhaus, J. Examination of the interaction between FtsZ and MinCN in E. coli suggests how MinC disrupts Z rings. Mol. Microbiol. 75, 1285–1298 (2010).

    Article  CAS  Google Scholar 

  44. Hu, Z. & Lutkenhaus, J. Analysis of MinC reveals two independent domains involved in interaction with MinD and FtsZ. J. Bacteriol. 182, 3965–3971 (2000).

    Article  CAS  Google Scholar 

  45. Park, K.T., Wu, W., Lovell, S. & Lutkenhaus, J. Mechanism of the asymmetric activation of the MinD ATPase by MinE. Mol. Microbiol. 85, 271–281 (2012).

    Article  CAS  Google Scholar 

  46. Park, K.T. et al. The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell 146, 396–407 (2011).

    Article  CAS  Google Scholar 

  47. Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997).

    Article  CAS  Google Scholar 

  48. Chevance, F.F. & Hughes, K.T. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455–465 (2008).

    Article  CAS  Google Scholar 

  49. Bulyha, I., Hot, E., Huntley, S. & Sogaard-Andersen, L. GTPases in bacterial cell polarity and signalling. Curr. Opin. Microbiol. 14, 726–733 (2011).

    Article  CAS  Google Scholar 

  50. Green, J.C. et al. Recruitment of the earliest component of the bacterial flagellum to the old cell division pole by a membrane-associated signal recognition particle family GTP-binding protein. J. Mol. Biol. 391, 679–690 (2009).

    Article  CAS  Google Scholar 

  51. Guttenplan, S.B., Shaw, S. & Kearns, D.B. The cell biology of peritrichous flagella in Bacillus subtilis. Mol. Microbiol. 87, 211–229 (2013).

    Article  CAS  Google Scholar 

  52. Bange, G., Petzold, G., Wild, K., Parlitz, R.O. & Sinning, I. The crystal structure of the third signal-recognition particle GTPase FlhF reveals a homodimer with bound GTP. Proc. Natl. Acad. Sci. USA 104, 13621–13625 (2007).

    Article  CAS  Google Scholar 

  53. Lutkenhaus, J. & Sundaramoorthy, M. MinD and role of the deviant Walker A motif, dimerization and membrane binding in oscillation. Mol. Microbiol. 48, 295–303 (2003).

    Article  CAS  Google Scholar 

  54. Daumke, O., Weyand, M., Chakrabarti, P.P., Vetter, I.R. & Wittinghofer, A. The GTPase-activating protein Rap1GAP uses a catalytic asparagine. Nature 429, 197–201 (2004).

    Article  CAS  Google Scholar 

  55. Bange, G., Wild, K. & Sinning, I. Protein translocation: checkpoint role for SRP GTPase activation. Curr. Biol. 17, R980–R982 (2007).

    Article  CAS  Google Scholar 

  56. Leonard, T.A., Butler, P.J. & Lowe, J. Bacterial chromosome segregation: structure and DNA binding of the Soj dimer–a conserved biological switch. EMBO J. 24, 270–282 (2005).

    Article  CAS  Google Scholar 

  57. Lutkenhaus, J. The ParA/MinD family puts things in their place. Trends Microbiol. 20, 411–418 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.B. thanks the Peter & Traudl Engelhorn Foundation for support. I.S. is supported as an investigator of the Cluster of Excellence: CellNetworks and thanks the Deutsche Forschungsgemeinschaft for funding through the SFB638. The authors apologize that, owing to restrictions in the number of citations, it was not possible to give credit to all relevant publications.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gert Bange or Irmgard Sinning.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bange, G., Sinning, I. SIMIBI twins in protein targeting and localization. Nat Struct Mol Biol 20, 776–780 (2013). https://doi.org/10.1038/nsmb.2605

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2605

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing