Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Solo or doppio: how many CENP-As make a centromeric nucleosome?

Subjects

Whether centromere-specific CENP-A–containing nucleosomes comprise one molecule each of CENP-A and histones H4, H2A and H2B (forming a tetramer or hemisome) or two molecules of all four histones (forming an octamer) has been controversial. Three new studies now address this controversy using complementary in vitro and in vivo approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Features of histone H3 and CENP-A nucleosome models.
Figure 2: Model for inheritance of human CENP-A octamers during the cell cycle.

References

  1. Allshire, R.C. & Karpen, G.H. Nat. Rev. Genet. 9, 923–937 (2008).

    Article  CAS  Google Scholar 

  2. Black, B.E. & Cleveland, D.W. Cell 144, 471–479 (2011).

    Article  CAS  Google Scholar 

  3. Heun, P. et al. Dev. Cell 10, 303–315 (2006).

    Article  CAS  Google Scholar 

  4. Olszak, A.M. et al. Nat. Cell Biol. 13, 799–808 (2011).

    Article  CAS  Google Scholar 

  5. Miell, M.D.D. et al. Nat. Struct. Mol. Biol. 20, 687–695 (2013).

    Article  Google Scholar 

  6. Hasson, D. et al. Nat. Struct. Mol. Biol. 20, 763–765 (2013).

    Article  Google Scholar 

  7. Padeganeh, A. et al. Curr. Biol. 23, 764–769 (2013).

    Article  CAS  Google Scholar 

  8. Panchenko, T. et al. Proc. Natl. Acad. Sci. USA 108, 16588–16593 (2011).

    Article  CAS  Google Scholar 

  9. Camahort, R. et al. Mol. Cell 35, 794–805 (2009).

    Article  CAS  Google Scholar 

  10. Conde e Silva, N. et al. J. Mol. Biol. 370, 555–573 (2007).

    Article  CAS  Google Scholar 

  11. Yoda, K. et al. Proc. Natl. Acad. Sci. USA 97, 7266–7271 (2000).

    Article  CAS  Google Scholar 

  12. Black, B.E., Brock, M.A., Bedard, S., Woods, V.L. Jr. & Cleveland, D.W. Proc. Natl. Acad. Sci. USA 104, 5008–5013 (2007).

    Article  CAS  Google Scholar 

  13. Tachiwana, H. et al. Nature 476, 232–235 (2011).

    Article  CAS  Google Scholar 

  14. Furuyama, T., Codomo, C.A. & Henikoff, S. Nucleic Acids Res. published online, http://dx.doi.org/10.1093/nar/gkt314 (24 April 2013).

  15. Shelby, R.D., Vafa, O. & Sullivan, K.F. J. Cell Biol. 136, 501–513 (1997).

    Article  CAS  Google Scholar 

  16. Foltz, D.R. et al. Nat. Cell Biol. 8, 458–469 (2006).

    Article  CAS  Google Scholar 

  17. Bassett, E.A. et al. Dev. Cell 22, 749–762 (2012).

    Article  CAS  Google Scholar 

  18. Zhang, W., Colmenares, S.U. & Karpen, G.H. Mol. Cell 45, 263–269 (2012).

    Article  CAS  Google Scholar 

  19. Dalal, Y., Wang, H., Lindsay, S. & Henikoff, S. PLoS Biol. 5, e218 (2007).

    Article  Google Scholar 

  20. Dimitriadis, E.K., Weber, C., Gill, R.K., Diekmann, S. & Dalal, Y. Proc. Natl. Acad. Sci. USA 107, 20317–20322 (2012).

    Article  Google Scholar 

  21. Bui, M. et al. Cell 150, 317–326 (2012).

    Article  CAS  Google Scholar 

  22. Shivaraju, M. et al. Cell 150, 304–316 (2012).

    Article  CAS  Google Scholar 

  23. Black, B.E. et al. Nature 430, 578–582 (2004).

    Article  CAS  Google Scholar 

  24. Black, B.E. & Bassett, E.A. Curr. Opin. Cell Biol. 20, 91–100 (2008).

    Article  CAS  Google Scholar 

  25. Tachiwana, H., Kagawa, W. & Kurumizaka, H. Nucleus 3, 6–11 (2012).

    Article  Google Scholar 

  26. Sekulic, N., Bassett, E.A., Rogers, D.J. & Black, B.E. Nature 467, 347–351 (2010).

    Article  CAS  Google Scholar 

  27. Lochmann, B. & Ivanov, D. PLoS Genet. 8, e1002739 (2012).

    Article  CAS  Google Scholar 

  28. Blower, M.D., Sullivan, B.A. & Karpen, G.H. Dev. Cell 2, 319–330 (2002).

    Article  CAS  Google Scholar 

  29. Dunleavy, E.M., Almouzni, G. & Karpen, G.H. Nucleus 2, 146–157 (2011).

    Article  Google Scholar 

  30. Dunleavy, E.M. et al. Cell 137, 485–497 (2009).

    Article  CAS  Google Scholar 

  31. Foltz, D.R. et al. Cell 137, 472–484 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elaine M Dunleavy or Gary H Karpen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunleavy, E., Zhang, W. & Karpen, G. Solo or doppio: how many CENP-As make a centromeric nucleosome?. Nat Struct Mol Biol 20, 648–650 (2013). https://doi.org/10.1038/nsmb.2602

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2602

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing