Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Toward a more complete view of tRNA biology

Abstract

Transfer RNAs are ancient molecules present in all domains of life. In addition to translating the genetic code into protein and defining the second genetic code together with aminoacyl-tRNA synthetases, tRNAs act in many other cellular functions. Robust phenomenological observations on the role of tRNAs in translation, together with massive sequence and crystallographic data, have led to a deeper physicochemical understanding of tRNA architecture, dynamics and identity. In vitro studies complemented by cell biology data already indicate how tRNA behaves in cellular environments, in particular in higher Eukarya. From an opposite approach, reverse evolution considerations suggest how tRNAs emerged as simplified structures from the RNA world. This perspective discusses what basic questions remain unanswered, how these answers can be obtained and how a more rational understanding of the function and dysfunction of tRNA can have applications in medicine and biotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: tRNA architecture, mimicry and identity determinants.
Figure 2: Structural plasticity of tRNA seen by crystallography, depicted by six structures representing different functional states (shown under the same orientation).

Similar content being viewed by others

References

  1. Varshney, U. History of tRNA research. J. Biosci. 31, 437–496 (2006).

    Article  Google Scholar 

  2. Giegé, R. & Frugier, M. Transfer RNA structure and identity. in Translation Mechanisms (eds. Lapointe, J. & Brakier-Gringas, L.) 1–24 (Landes Sciences, Georgetown, TX, 2003).

    Google Scholar 

  3. Ibba, M., Francklyn, C. & Cusack, S. The Aminoacyl-tRNA Synthetases 1–420 (Landes Bioscience, Georgetown, TX, 2005).

    Google Scholar 

  4. Stewart, T.S., Roberts, R.J. & Strominger, J.L. Novel species of tRNA. Nature 230, 36–38 (1971).

    Article  CAS  Google Scholar 

  5. Dahlberg, J.E. tRNAs as primers for reverse transcriptase. in Transfer RNA: Biological Aspects (eds. Söll, D., Abelson, J.N. & Schimmel, P.R.) 507–514 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1980).

    Google Scholar 

  6. Jahn, D., Verkamp, E. & Söll, D. Glutamyl-transfer RNA—a precursor of heme and chlorophyll biosynthesis. Trends Biochem. Sci. 17, 215–218 (1992).

    Article  CAS  Google Scholar 

  7. Fechter, P., Rudinger-Thirion, J., Florentz, C. & Giegé, R. Novel features in the tRNA-like world of plant viral RNAs. Cell. Mol. Life Sci. 58, 1547–1561 (2001).

    Article  CAS  Google Scholar 

  8. Sheppard, K. et al. From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acids Res. 36, 1813–1825 (2008).

    Article  CAS  Google Scholar 

  9. Lee, T. & Feig, A.L. The RNA binding protein Hfq interacts specifically with tRNAs. RNA 14, 514–523 (2008).

    Article  CAS  Google Scholar 

  10. Hopper, A.K. & Phizicky, E.M. tRNA transfers to the limelight. Genes Dev. 17, 162–180 (2003).

    Article  CAS  Google Scholar 

  11. Dunin-Horkawicz, S. et al. MODOMICS: a database of RNA modification pathways. Nucleic Acids Res. 34, D145–D149 (2006).

    Article  CAS  Google Scholar 

  12. Agris, P.F., Vendeix, F.A. & Graham, W.D. tRNA's wobble decoding of the genome: 40 years of modification. J. Mol. Biol. 366, 1–13 (2007).

    Article  CAS  Google Scholar 

  13. Wolstenholme, D.R., Macfarlane, J.L., Okimoto, R., Clary, D.O. & Wahleithner, J.A. Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc. Natl. Acad. Sci. USA 84, 1324–1328 (1987).

    Article  CAS  Google Scholar 

  14. Helm, M. et al. Search for characteristic structural features of mammalian mitochondrial tRNAs. RNA 6, 1356–1379 (2000).

    Article  CAS  Google Scholar 

  15. Ishitani, R. et al. Alternative tertiary structure of tRNA for recognition by a posttranscriptional modification enzyme. Cell 113, 383–394 (2003).

    Article  CAS  Google Scholar 

  16. Tukalo, M., Yaremchuk, A., Fukunaga, R., Yokoyama, S. & Cusack, S. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation. Nat. Struct. Mol. Biol. 12, 923–930 (2005).

    Article  CAS  Google Scholar 

  17. McClain, W.H. Rules that govern tRNA identity in protein synthesis. J. Mol. Biol. 234, 257–280 (1993).

    Article  CAS  Google Scholar 

  18. Giegé, R., Sissler, M. & Florentz, C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26, 5017–5035 (1998).

    Article  Google Scholar 

  19. de Duve, C. The second genetic code. Nature 333, 117–118 (1988).

    Article  CAS  Google Scholar 

  20. Ryckelynck, M., Giegé, R. & Frugier, M. Yeast tRNAAsp charging accuracy is threatened by the N-terminal extension of aspartyl-tRNA synthetase. J. Biol. Chem. 278, 9683–9690 (2003).

    Article  CAS  Google Scholar 

  21. Fechter, P., Rudinger-Thirion, J., Théobald-Dietrich, A. & Giegé, R. Identity of tRNA for yeast tyrosyl-tRNA synthetase: tyrosylation is more sensitive to identity nucleotides than to structural features. Biochemistry 39, 1725–1733 (2000).

    Article  CAS  Google Scholar 

  22. Pütz, J., Puglisi, J.D., Florentz, C. & Giegé, R. Identity elements for specific aminoacylation of yeast tRNAAsp by cognate aspartyl-tRNA synthetase. Science 252, 1696–1699 (1991).

    Article  Google Scholar 

  23. Bonnefond, L., Giegé, R. & Rudinger-Thirion, J. Evolution of the tRNATyr/TyrRS aminoacylation systems. Biochimie 87, 873–883 (2005).

    Article  CAS  Google Scholar 

  24. Hou, Y.-M. & Schimmel, P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature 333, 140–145 (1988).

    Article  CAS  Google Scholar 

  25. McClain, W.H. & Foss, K. Changing the identity of a tRNA by introducing a G-U wobble pair near the 3′ acceptor end. Science 240, 793–796 (1988).

    Article  CAS  Google Scholar 

  26. Musier-Forsyth, K. et al. Specificity for aminoacylation of an RNA helix: an unpaired, exocyclic amino group in the minor groove. Science 253, 784–786 (1991).

    Article  CAS  Google Scholar 

  27. Musier-Forsyth, K. & Schimmel, P. Atomic determinants for aminoacylation of RNA minihelices and relationship to genetic code. Acc. Chem. Res. 32, 368–375 (1999).

    Article  CAS  Google Scholar 

  28. Chang, K.Y., Varani, G., Bhattacharya, S., Choi, H. & McClain, W.H. Correlation of deformability at a tRNA recognition site and aminoacylation specificity. Proc. Natl. Acad. Sci. USA 96, 11764–11769 (1999).

    Article  CAS  Google Scholar 

  29. Kikovska, E., Brannvall, M. & Kirsebom, L.A. The exocyclic amine at the RNase P cleavage site contributes to substrate binding and catalysis. J. Mol. Biol. 359, 572–584 (2006).

    Article  CAS  Google Scholar 

  30. Seeman, N.C., Rosenberg, J.M. & Rich, A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl. Acad. Sci. USA 73, 804–808 (1976).

    Article  CAS  Google Scholar 

  31. Freyhult, E., Moulton, V. & Ardell, D.H. Visualizing bacterial tRNA identity determinants and antideterminants using function logos and inverse function logos. Nucleic Acids Res. 34, 905–916 (2006).

    Article  CAS  Google Scholar 

  32. Jako, E. et al. In silico detection of tRNA sequence features characteristic to aminoacyl-tRNA synthetase class membership. Nucleic Acids Res. 35, 5593–5609 (2007).

    Article  CAS  Google Scholar 

  33. Lehn, J.-M. Supramolecular chemistry: from molecular information towards self-organization and complex matter. Rep. Prog. Phys. 67, 249–265 (2004).

    Article  Google Scholar 

  34. Tomita, K., Ishitani, R., Fukai, S. & Nureki, O. Complete crystallographic analysis of the dynamics of CCA sequence addition. Nature 443, 956–960 (2006).

    Article  CAS  Google Scholar 

  35. Hirsh, D. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58, 439–458 (1971).

    Article  CAS  Google Scholar 

  36. Cochella, L. & Green, R. An active role for tRNA in decoding beyond codon: anticodon pairing. Science 308, 1178–1180 (2005).

    Article  CAS  Google Scholar 

  37. Pütz, J., Puglisi, J.D., Florentz, C. & Giegé, R. Additive, cooperative and anti-cooperative effects between identity nucleotides of a tRNA. EMBO J. 12, 2949–2957 (1993).

    Article  Google Scholar 

  38. Frugier, M., Florentz, C. & Giegé, R. Efficient aminoacylation of resected RNA helices by class II aspartyl-tRNA synthetase dependent on a single nucleotide. EMBO J. 13, 2218–2226 (1994).

    Article  CAS  Google Scholar 

  39. Eriani, G. & Gangloff, J. Yeast aspartyl-tRNA synthetase residues interacting with tRNAAsp identity bases connectively contribute to tRNAAsp binding in the ground and transition state complex and discriminate against non-cognate tRNAs. J. Mol. Biol. 291, 761–773 (1999).

    Article  CAS  Google Scholar 

  40. Sampson, J.R., DiRenzo, A.B., Behlen, L.S. & Uhlenbeck, O.C. Nucleotides in yeast tRNAPhe required for the specific recognition by its cognate synthetase. Science 243, 1363–1366 (1989).

    Article  CAS  Google Scholar 

  41. Frugier, M., Helm, M., Felden, B., Giegé, R. & Florentz, C. Sequences outside recognition sets are not neutral for tRNA aminoacylation: evidence for non-permissive combinations of nucleotides in the acceptor stem of yeast tRNAPhe. J. Biol. Chem. 273, 11605–11610 (1998).

    Article  CAS  Google Scholar 

  42. Hou, Y.M. & Schimmel, P. Functional compensation of a recognition-defective transfer RNA by a distal base pair substitution. Biochemistry 31, 10310–10314 (1992).

    Article  CAS  Google Scholar 

  43. Li, W. & Frank, J. Transfer RNA in the hybrid P/E state: correlating molecular dynamics simulations with cryo-EM data. Proc. Natl. Acad. Sci. USA 104, 16540–16545 (2007).

    Article  CAS  Google Scholar 

  44. Budiman, M.E., Knaggs, M.H., Fetrow, J.S. & Alexander, R.W. Using molecular dynamics to map interaction networks in an aminoacyl-tRNA synthetase. Proteins 68, 670–689 (2007).

    Article  CAS  Google Scholar 

  45. Eargle, J., Black, A.A., Sethi, A., Trabuco, L.G. & Luthey-Schulten, Z. Dynamics of recognition between tRNA and elongation factor Tu. J. Mol. Biol. 377, 1382–1405 (2008).

    Article  CAS  Google Scholar 

  46. Jacobson, K.B. Reaction of aminoacyl-tRNA synthetases with heterologous tRNA's. Prog. Nucleic Acid Res. Mol. Biol. 11, 461–488 (1971).

    Article  CAS  Google Scholar 

  47. Stehlin, C. et al. Species-specific differences in the operational code for aminoacylation of tRNAPro. Biochemistry 37, 8605–8613 (1998).

    Article  CAS  Google Scholar 

  48. Helm, M., Giegé, R. & Florentz, C.A. Watson-Crick base-pair disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys. Biochemistry 38, 13338–13346 (1999).

    Article  CAS  Google Scholar 

  49. Nameki, N. et al. E. coli tRNAAsp recognition mechanism differing from that of the yeast system. Biochem. Biophys. Res. Commun. 189, 856–862 (1992).

    Article  CAS  Google Scholar 

  50. Moulinier, L. et al. The structure of an AspRS-tRNAAsp complex reveals a tRNA-dependant control mechanism. EMBO J. 20, 5290–5301 (2001).

    Article  CAS  Google Scholar 

  51. Bonnefond, L. et al. Crystal structure of human mitochondrial tyrosyl-tRNA synthetase reveals common and idiosyncratic features. Structure 15, 1505–1516 (2007).

    Article  CAS  Google Scholar 

  52. Tworowski, D., Feldman, A.V. & Safro, M.G. Electrostatic potential of aminoacyl-tRNA synthetase navigates tRNA on its pathway to the binding site. J. Mol. Biol. 350, 866–882 (2005).

    Article  CAS  Google Scholar 

  53. Tryoen-Tóth, P. et al. Proteomic consequences of a human mitochondrial tRNA mutation beyond the frame of mitochondrial translation. J. Biol. Chem. 278, 24314–24323 (2003).

    Article  Google Scholar 

  54. Gindulyte, A. et al. The transition state for formation of the peptide bond in the ribosome. Proc. Natl. Acad. Sci. USA 103, 13327–13332 (2006).

    Article  CAS  Google Scholar 

  55. Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001).

    Article  CAS  Google Scholar 

  56. Korostelev, A., Trakhanov, S., Laurberg, M. & Noller, H.F. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126, 1065–1077 (2006).

    Article  CAS  Google Scholar 

  57. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  Google Scholar 

  58. Frank, J., Gao, H.X., Sengupta, J., Gao, N. & Taylor, D.J. The process of mRNA-tRNA translocation. Proc. Natl. Acad. Sci. USA 104, 19671–19678 (2007).

    Article  CAS  Google Scholar 

  59. Fei, J., Kosuri, P., MacDougall, D.D. & Gonzalez, R.L., Jr . Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol. Cell 30, 348–359 (2008).

    Article  CAS  Google Scholar 

  60. Stapulionis, R. & Deutscher, M.P. A channeled tRNA cycle during mammalian protein synthesis. Proc. Natl. Acad. Sci. USA 92, 7158–7161 (1995).

    Article  CAS  Google Scholar 

  61. Moore, S.D. & Sauer, R.T. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. 76, 101–124 (2007).

    Article  CAS  Google Scholar 

  62. Bessho, Y. et al. Structural basis for functional mimicry of long-variable-arm tRNA by transfer-messenger RNA. Proc. Natl. Acad. Sci. USA 104, 8293–8298 (2007).

    Article  CAS  Google Scholar 

  63. Bailly, M., Blaise, M., Lorber, B., Becker, H.D. & Kern, D. The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNA-dependent asparagine biosynthesis. Mol. Cell 28, 228–239 (2007).

    Article  CAS  Google Scholar 

  64. Romby, P. & Springer, M. Bacterial translational control at atomic resolution. Trends Genet. 19, 155–161 (2003).

    Article  CAS  Google Scholar 

  65. Ryckelynck, M., Masquida, B., Giegé, R. & Frugier, M. An intricate RNA structure with two tRNA-derived motives directs complex formation between yeast aspartyl-tRNA synthetase and its mRNA. J. Mol. Biol. 354, 614–629 (2005).

    Article  CAS  Google Scholar 

  66. Schimmel, P., Giegé, R., Moras, D. & Yokoyama, S. An operational RNA code for amino acids and possible relationship to genetic code. Proc. Natl. Acad. Sci. USA 90, 8763–8768 (1993).

    Article  CAS  Google Scholar 

  67. Sun, F.J. & Caetano-Anolles, G. The origin and evolution of tRNA inferred from phylogenetic analysis of structure. J. Mol. Evol. 66, 21–35 (2007).

    Article  Google Scholar 

  68. Rodin, S., Rodin, A. & Ohno, S. The presence of codon-anticodon pairs in the acceptor stem of tRNAs. Proc. Natl. Acad. Sci. USA 93, 4537–4542 (1996).

    Article  CAS  Google Scholar 

  69. Blaise, M. et al. A minimalist glutamyl-tRNA synthetase dedicated to aminoacylation of the tRNAAsp QUC anticodon. Nucleic Acids Res. 32, 2768–2775 (2004).

    Article  CAS  Google Scholar 

  70. Salazar, J.C., Ambrogelly, A., Crain, P.F., McCloskey, J.A. & Söll, D. A truncated aminoacyl-tRNA synthetase modifies RNA. Proc. Natl. Acad. Sci. USA 101, 7536–7541 (2004).

    Article  CAS  Google Scholar 

  71. Maizels, N. & Weiner, A.M. Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc. Natl. Acad. Sci. USA 91, 6729–6734 (1994).

    Article  CAS  Google Scholar 

  72. Yakhnin, A.V. A model for the origin of protein synthesis as coreplicational scanning of nascent RNA. Orig. Life Evol. Biosph. 37, 523–536 (2007).

    Article  CAS  Google Scholar 

  73. Guo, J., Wang, J., Anderson, J.C. & Schultz, P.G. Addition of an a-hydroxy acid to the genetic code of bacteria. Angew. Chem. Int. Ed. 47, 722–725 (2008).

    Article  CAS  Google Scholar 

  74. Florentz, C., Sohm, B., Tryoen-Tóth, P., Pütz, J. & Sissler, M. Human mitochondrial tRNAs in health and disease. Cell. Mol. Life Sci. 60, 1356–1375 (2003).

    Article  CAS  Google Scholar 

  75. Kuchino, Y., Borek, E., Grunberger, D., Mushinski, J.F. & Nishimura, S. Changes of post-transcriptional modification of wye base in tumor-specific tRNAPhe. Nucleic Acids Res. 10, 6421–6432 (1982).

    Article  CAS  Google Scholar 

  76. Randerath, K., Agrawal, H.P. & Randerath, E. tRNA alterations in cancer. Recent Results Cancer Res. 84, 103–120 (1983).

    CAS  PubMed  Google Scholar 

  77. Brandon, M., Baldi, P. & Wallace, D.C. Mitochondrial mutations in cancer. Oncogene 25, 4647–4662 (2006).

    Article  CAS  Google Scholar 

  78. Salinas, T. et al. The voltage-dependent anion channel, a major component of the tRNA import machinery in plant mitochondria. Proc. Natl. Acad. Sci. USA 103, 18362–18367 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This perspective is based on an invited talk given at the 22nd tRNA Workshop in Uppsala (November 1–6, 2007). It has benefited from the input of my Strasbourg colleagues and students and the exchange over years of ideas and knowledge with many contributors from the tRNA community. Because of space limitations, all contributors could not be explicitly mentioned and I apologize for this. Particular thanks are due to C. Florentz, W. Hosseini and L. Kirsebom for comments on the manuscript. A. Gaudry and C. Sauter are acknowledged for help in figure preparation. This work was supported by the Centre National de la Recherche Scientifique, Université Louis Pasteur, and ACI BCMS “Code génétique: mieux connaître ses déviations pour comprendre son évolution.”

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giegé, R. Toward a more complete view of tRNA biology. Nat Struct Mol Biol 15, 1007–1014 (2008). https://doi.org/10.1038/nsmb.1498

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1498

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing