Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Complete change of the protein folding transition state upon circular permutation

Abstract

Reversing the loop lengths of the small protein S6 by circular permutation has a dramatic effect on the transition state structure: it changes from globally diffuse to locally condensed. The phenomenon arises from a biased dispersion of the contact energies. Stability data derived from point mutations throughout the S6 structure show that interactions between residues that are far apart in sequence are stronger than those that are close. This entropy compensation drives all parts of the protein to fold simultaneously and produces the diffuse transition-state structure typical for two-state proteins. In the circular permutant, where strong contacts and short sequence separations are engineered to concur, the transition state becomes atypically condensed and polarized. Taken together with earlier findings that S6 may also fold by a 'collapsed' trajectory with an intermediate, the results suggest that this protein may fold by a multiplicity of mechanisms. The observations indicate that the diffuse transition state of S6 is not required for folding but could be an evolutionary development to optimize cooperativity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The diffuse versus polarized distribution of φ-values in the transition state of S6wt (PDB entry 1RIS) and the circular permutant P13–14.
Figure 2: The distribution of strong side chain interactions in the S6 structure.
Figure 3: Plots of ΔΔGD-N, T ΔSFlory, d and Lmean for other two-state proteins.
Figure 4: Schematic illustration of the folding free-energy profiles for a globally diffuse nucleus and a locally condensed nucleus.

Similar content being viewed by others

References

  1. Jackson, S.E. Folding Des. 3, R81–91 (1998).

    Article  CAS  Google Scholar 

  2. Fersht, A.R. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (W.H. Freeman, New York; 1999).

    Google Scholar 

  3. Itzhaki, L.S., Otzen, D.E. & Fersht, A.R. J. Mol. Biol. 254, 260–288 (1995).

    Article  CAS  Google Scholar 

  4. Ternstrom, T., Mayor, U., Akke, M. & Oliveberg, M. Proc. Natl. Acad. Sci. USA 96, 14854–14859 (1999).

    Article  CAS  Google Scholar 

  5. Fersht, A.R. Proc. Natl. Acad. Sci. USA 92, 10869–10873 (1995).

    Article  CAS  Google Scholar 

  6. Grantcharova, V.P., Riddle, D.S., Santiago, J.V. & Baker, D. Nature Struct. Biol. 5, 714–720 (1998).

    Article  CAS  Google Scholar 

  7. McCallister, E.L., Alm, E. & Baker, D. Nature Struct. Biol. 7, 669–673 (2000).

    Article  CAS  Google Scholar 

  8. Martinez, J.C., Pisabarro, M.T. & Serrano, L. Nature Struct. Biol. 5, 721–729 (1998).

    Article  CAS  Google Scholar 

  9. Plaxco, K.W., Simons, K.T. & Baker, D. J. Mol. Biol. 277, 985–994 (1998).

    Article  CAS  Google Scholar 

  10. Lindberg, M.O. et al. J. Mol. Biol. 314, 891–900 (2001).

    Article  CAS  Google Scholar 

  11. Lindahl, M. et al. EMBO J. 13, 1249–1254 (1994).

    Article  CAS  Google Scholar 

  12. Otzen, D.E. & Oliveberg, M. J. Mol. Biol. 317, 613–627 (2002).

    Article  CAS  Google Scholar 

  13. Flory, P.J. J. Am. Chem. Soc. 78, 5222–5235 (1956).

    Article  CAS  Google Scholar 

  14. Villegas, V., Martinez, J.C., Aviles, F.X. & Serrano, L. J. Mol. Biol. 283, 1027–1036 (1998).

    Article  CAS  Google Scholar 

  15. Kragelund, B.B. et al. Nature Struct. Biol. 6, 594–601 (1999).

    Article  CAS  Google Scholar 

  16. Choe, S.E., Li, L., Matsudaira, P.T., Wagner, G. & Shakhnovich, E.I. J. Mol. Biol. 304, 99–115 (2000).

    Article  CAS  Google Scholar 

  17. Chakravarty, S. & Varadarajan, R. Structure Fold. Des. 7, 723–732 (1999).

    Article  CAS  Google Scholar 

  18. Doyle, R., Simons, K., Qian, H. & Baker, D. Proteins 29, 282–291 (1997).

    Article  CAS  Google Scholar 

  19. Otzen, D.E. & Fersht, A.R. Biochemistry 37, 8139–8146 (1998).

    Article  CAS  Google Scholar 

  20. Viguera, A.R., Serrano, L. & Wilmanns, M. Nature Struct. Biol. 3, 874–880 (1996).

    Article  CAS  Google Scholar 

  21. Li, L. & Shakhnovich, E.I. J. Mol. Biol. 306, 121–132 (2001).

    Article  CAS  Google Scholar 

  22. Wolynes, P.G. Proc. Natl. Acad. Sci. USA 93, 14249–14255 (1996).

    Article  CAS  Google Scholar 

  23. Thirumalai, D. & Klimov, D.K. Folding Des. 3, R112–118 (1998).

    Article  CAS  Google Scholar 

  24. Nauli, S., Kuhlman, B. & Baker, D. Nature Struct. Biol. 8, 602–605 (2001).

    Article  CAS  Google Scholar 

  25. Plotkin, S.S. & Onuchic, J.N. Proc. Natl. Acad. Sci. USA 97, 6509–6514 (2000).

    Article  CAS  Google Scholar 

  26. Shea, J.E., Onuchic, J.N. & Brooks, C.L. III J. Chem. Phys. 113, 7663–7671 (2000).

    Article  CAS  Google Scholar 

  27. Otzen, D.E. & Oliveberg, M. Proc. Natl. Acad. Sci. USA 96, 11746–11751 (1999).

    Article  CAS  Google Scholar 

  28. Canet, D. et al. Nature Struct. Biol. 9, 308–315 (2002).

    Article  CAS  Google Scholar 

  29. McParland, V.J., Kalverda, A.P., Homans, S.W. & Radford, S.E. Nature Struct. Biol. 9, 326–331 (2002).

    Article  CAS  Google Scholar 

  30. Agalarov, S.C., Sridhar Prasad, G., Funke, P.M., Stout, C.D. & Williamson, J.R. Science 288, 107–113 (2000).

    Article  CAS  Google Scholar 

  31. Abkevich, V.I., Gutin, A.M. & Shakhnovich, E.I. J. Mol. Biol. 252, 460–471 (1995).

    Article  CAS  Google Scholar 

  32. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Plotkin, P. Wolynes and D. Thirumalai for stimulating discussions and Katarina Wallgren for technical assistance. The work was supported by the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Oliveberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindberg, M., Tångrot, J. & Oliveberg, M. Complete change of the protein folding transition state upon circular permutation. Nat Struct Mol Biol 9, 818–822 (2002). https://doi.org/10.1038/nsb847

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb847

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing