Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural features of the ε subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy

Abstract

The tertiary fold of the ε subunit of the Escherichia coli F1F0 ATPsynthase (ECF1F0) has been determined by two- and three-dimensional heteronuclear (13C, 15N) NMR spectroscopy. The ε subunit exhibits a distinct two domain structure, with the N-terminal 84 residues of the protein forming a 10-stranded β-structure, and with the C-terminal 48 amino acids arranged as two α-helices running antiparallel to one another (two helix hairpin). The β-domain folds as a β-sandwich with a hydrophobic interior between the two layers of the sandwich. The C-terminal two-helix hairpin folds back to the N-terminal domain and interacts with one side of the β-domain. The arrangement of the ε subunit in the intact F1F0 ATP synthase involves interaction of the two helix hairpin with the F1 part, and binding of the open side of the β-sandwich to the c subunits of the membrane-embedded F0 part.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Senior, A. ATP synthesis by oxidative phosphorylation. Physiological Reviews 68, 177–231 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Futai, M., Noumi, T. & Maeda, M. ATP synthase (H+-ATPase): Results by combined biochemical and molecular biological approaches. A. Rev. Biochem. 58, 111–136 (1989).

    Article  CAS  Google Scholar 

  3. Penefsky, H. & Cross, R.L. Structure and mechanism of F1F0 ATP synthases and ATPases. Adv. Enzymol. 64, 173–214 (1991).

    CAS  PubMed  Google Scholar 

  4. Gogol, E.P., Lücken, U. & Capaldi, R.A. The stalk connecting the F1, and F0 domains of ATP synthase visualized by electron microscopy of unstained specimens. FEBS Lett. 219, 274–278 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Lücken, U., Gogol, E.P. & Capaldi, R.A. Structure of the ATP synthase complex (ECF1F0) of Escherichia colifrom cryoelectron microscopy. Biochemistry 29, 5339–5343 (1990).

    Article  PubMed  Google Scholar 

  6. Abrahams, J.P., Leslie, A.G.W., Lutter, R. & Walker, J.E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Sternweis, P.C. & Smith, J.B. Characterization of the purified membrane attachment β-subunit of the proton translocating ATPase from Escherichia coli. Biochemistry 16, 4020–4025 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Sternweis, P.C. & Smith, J.B. Characterisation of the inhibitory ε subunit of the proton-translocating ATPase from Escherichia coli. Biochemistry 19, 526–531 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Mendel-Hartvig, J. & Capaldi, R.A. Catalytic site nucleotide and inorganic phosphate dependence of the conFormation of the ε subunit in Escherichia coli adenosinetriphosphatase. Biochemistry 30, 1278–1284 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Mendel-Hartvig, J. & Capaldi, R.A. Nucleotide-dependant and dicyclohexylcarbodimide-sensitive conFormational changes in the ε subunit of Escherichia coliATP synthase. Biochemistry 30, 10987–10991 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Turina, P. & Capaldi, R.A. ATP hydrolysis-driven structural changes in the γ-subunit of Escherichia coli ATPase monitored by fluorescence from probes bound at introduced cysteine residues. J. Biol. Chem. 269, 13465–13471 (1994).

    CAS  PubMed  Google Scholar 

  12. Aggeler, R., Chicas-Cruz, K., Cai, S.-X., Keana, J.F.W. & Capaldi, R.A. Introduction of reactive cysteine residues in the ε subunit of Escherichia coli F1 ATPase, modification of these sites with tetrafluorophenyl azide-maleimides and examination of changes in the binding of the ε subunit when different nucleotides are in catalytic sites. Biochemistry 31, 2956–2961 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Gogol, E.P., Johnston, E., Aggeler, R. & Capaldi, R.A. Ligand-dependant structural variations in Escherichia coli F1-ATPase revealed by cryoelectron microscopy. Proc. natn. Acad. Sci. U.S.A. 87, 9585–9589 (1990).

    Article  CAS  Google Scholar 

  14. Wilkens, S. & Capaldi, R.A. Asymmetry and structural changes in ECF1 examined by cryoelectronmicroscopy. Biol. Chemistry Hoppe-Seyler 375, 43–51 (1994).

    Article  CAS  Google Scholar 

  15. Capaldi, R.A., Aggeler, R., Turina, P. & Wilkens, S. Coupling between the catalytic sites and the proton channel in F1F0-type ATPases. TIBS 219, 284–289 (1994).

    Google Scholar 

  16. Bianchet, M., Ysern, X., Hullihen, J., Pedersen, P.L. & Amzel, L.M. Mitochondrial ATP synthase: Quaternary structure of the F1 moiety at 3.6 Å determined by x-ray diffraction analysis. J. biol. Chem. 266, 21197–21201 (1991).

    CAS  PubMed  Google Scholar 

  17. Chou, P.Y. & Fasman, G.D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. Relat. Areas molec. Biol. 47, 45–148 (1978).

    CAS  Google Scholar 

  18. Campbell, I.D., Dobson, C.M., Williams, R.J.P. & Xavier, A.V. Resolution enhancement of protein PMR spectra using the difference between a broadened and a normal spectrum. J. magn. Reson. 11, 172–181 (1973).

    CAS  Google Scholar 

  19. Kosen, P.A. Spin labeling of proteins. Meths Enzymol. 177, 86–121 (1989).

    Article  CAS  Google Scholar 

  20. Girvin, M.E. & Fillingame, R.H. Determination of local protein structure by spin label difference 2D NMR: The region neighboring Asp61 of subunit c of the F1F0 ATP synthase. Biochemistry 34, 1635–1645 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Kuki, M., Noumi, T., Maeda, M., Amemura, A. & Futai, M. Functional domains of ε subunit of Escherichia coli H+-ATPase (F1F0). J. biol Chem. 263, 17437–17442 (1988).

    CAS  PubMed  Google Scholar 

  22. Jounouchi, M., Takeyama, M., Noumi, T., Moriyama, Y., Maeda, M. & Futai, M. Role of the amino terminal region of the ε subunit of Escherichia coli H+-ATPase (F0F1). Arch. Biochem. Biophys. 292, 87–94 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Lötscher, H.-R., deJong, C. & Capaldi, R.A. Inhibition of the ATPase activity of Escherichia coli F1 by the water-soluble carbodiimidei-ethyl-3-[3(dimethylamino)propyl]carbodiimide is due to modification of several carboxyls in the β subunit. Biochemistry 23, 4134–4140 (1984).

    Article  PubMed  Google Scholar 

  24. Dallmann, H.G., Flynn, T.G. & Dunn, S.D. Determination of the 1-ethyl-3-[3(dimethylamino)propyl] carbodiimide induced cross-link between the β & ε subunits of Escherichia coli F1-ATPase. J. biol. Chem. 267, 18953–18960 (1992).

    CAS  PubMed  Google Scholar 

  25. Aggeler, R., Haughton, M.A. & Capaldi, R.A. Disulfide bond Formation between the COOH-terminal domain of the β subunits and the γ and ε subunits of the Escherichia coli F1-ATPase. J. biol. Chem. 270, 9185–9191 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y., Oldenburg, M. & Fillingame, R. Suppressor mutations in F1 subunit ε recouple ATP-driven H+ translocation in uncoupled Q42E subunit c mutant of Escherichia coli F1F0 ATP synthase. J. biol. Chem. 269, 10221–10224 (1994).

    CAS  PubMed  Google Scholar 

  27. Skakoon, E.N. & Dunn, S.D. Location of conserved residue histidine-38 of the ε subunit of Escherichia coli ATP synthase. Arch. Biochem. Biophys. 302, 272–278 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Aggeler, R., Weinreich, F. & Capaldi, R.A. Arrangement of the ε subunit in the Escherichia coli ATP synthase from the reactivity of cysteine residues introduced at different positions in this subunit. Biochem. Biophys. Ada. 1230, 62–68 (1995).

    Google Scholar 

  29. LaLonde, J.M., Bernlohr, D.A. & Banaszak, L.J. The up-and-down β-barrel proteins. FASEB J. 8, 1240–1247 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Patel, H.-G., Dallmann, H.G., Skakoon, E.N., Kapala, T.D. & Dunn, S.D., The Escherichia coli unc transcription terminator enhances expression of uncc, encoding the ε subunit of F1-ATPase, from plasmids by stabilizing the transcript. Molec. Microbiol. 4, 1941–1946 (1990).

    Article  CAS  Google Scholar 

  31. Muchmore, D.C., Mclntosh, L.P., Russel, C.B., Anderson, E.D. & Dahlquist, F.W. Expression and 15N-labeling of proteins For proton and 15N NMR. Meths Enzymol. 177, 44–73 (1989).

    Article  CAS  Google Scholar 

  32. Gill, S.C. & von Hippel, P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Ozinskas, A.J. & Bobst, A.M. Formation of NV-hydroxy-amines of spin labeled nucleosides For 1H-NMR analysis. Helv. Chim. Acta 63, 1407–1411 (1980).

    Article  CAS  Google Scholar 

  34. Zuiderweg, E.R.P. A proton-detected heteronuclear chemical-shift correlation experiment with improved resolution and sensitivity. J. Magn. Reson. 86, 346–357 (1990).

    CAS  Google Scholar 

  35. Zuiderweg, E.R.P. & Fesik, S.W. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry 28, 2387–2391 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A. & Bax, A. Three-dimensional heteronuclear NMR of 15N-labeled proteins. J. Am. Chem. Soc. 111, 1515–1517 (1989).

    Article  CAS  Google Scholar 

  37. Grzesiek, S., Anglister, J. & Bax, A. Correlation of backbone amide and aliphatic side-chain resonances in 13C15N-enriched proteins by isotropic mixing of 13C magnetization. J. Magn. Reson. Series B 101, 114–119 (1993).

    Article  CAS  Google Scholar 

  38. Pascal, S.M., Muhandiram, D.R., Yamazaki, T., Forman-Kay, J.D. & Kay, L.E. Simultanous acquisition of 15N/13C-edited NOE spectra of proteins dissolved in H2O. J. magn. Reson. Series B 103 197–201 (1994).

    Article  CAS  Google Scholar 

  39. Yamazaki, T., FOrman-Kay, J.D. & Kay, L.E. Two-dimensional NMR experiments For collecting 13Cβ & 1Hδ/ε chemical shifts of aromatic residues in 13C-labelled proteins via selective couplings. J. Am. Chem. Soc. 115, 11054–11055 (1994).

    Article  Google Scholar 

  40. Billeter, M., Neri, W.D., Otting, G., Qian, Y.Q. & Wüterich, K. Precise vicinal coupling constants 3NHN-α in proteins from nonlinear fits of N-modulated 15N,1H)-COSY experiments. J. biomolec. NMR 2, 257–274 (1992).

    Article  CAS  Google Scholar 

  41. Brünger, A. X-PLOR, version 3.1: A system For X-ray crystallography and NMR. Yale University Press, New Haven, CT. (1992).

    Google Scholar 

  42. Wishart, D.S. & Sykes, B.D. Chemical shifts as a tool For structure determination. Meths Enzymol. 239, 363–392 (1994).

    Article  CAS  Google Scholar 

  43. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkens, S., Dahlquist, F., McIntosh, L. et al. Structural features of the ε subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy. Nat Struct Mol Biol 2, 961–967 (1995). https://doi.org/10.1038/nsb1195-961

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1195-961

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing