Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

Combining Laue diffraction and molecular dynamics to study enzyme intermediates

Abstract

Two separate techniques, Laue diffraction and computational molecular dynamics (MD) simulations, have been independently developed to allow the visualization and assessment of transient structural states. Recent studies on isocitrate dehydrogenase show that computational MD simulations of an enzymatic Michaelis complex are consistent with difference Fourier electron density maps of the same structure from a Laue experiment. The use of independent MD studies during crystallographic refinement has allowed us to assign with confidence a number of additional contacts and features important for hydride transfer. We find that unrestrained independent MD simulations provides a very useful method of cross-validation for highly mobile atoms in regions of experimental density that are poorly defined. Likewise, information from Laue difference maps provides information about substrate conformation and interactions that greatly facilitate MD simulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Christianson, D.W., Lipscomb, W.N. X-ray crystallographic investigation of substrate binding to carboxypeptidase A at subzero temperature. Proc. Natl. Acad. Sci.USA 83, 7568–7572 (1986).

    Article  CAS  Google Scholar 

  2. Watt, W., Tulinsky, A., Swenson, R.P., Watenpaugh, K.D. Comparison of the crystal structures of a flavodoxin in its three oxidation states at cryogenic temperatures. J. Mol. Biol. 218, 195–208 (1991).

    Article  CAS  Google Scholar 

  3. Chen, C.C.H., Herzberg, O. Inhibition of β-lactamase by clavulanate: trapped intermediates in cryocrystallographic studies. J. Mol. Biol. 224, 1103–1113 (1992).

    Article  CAS  Google Scholar 

  4. Bartunik, H.D., Bartunik, L.J., Viemann, H. Time-resolved x-ray diffraction studies of enzymes under cryoconditions. Phil Trans R. Soc Lond [A] 340, 209–220 (1992).

    Article  CAS  Google Scholar 

  5. Ding, X., Rasmussen, B.F., Petsko, G.A. & Ringe, D. Direct structural observation of an acyl-enzyme intermediate in the hydrolysis of an ester substrate by elastase. Biochemistry 33, 9285–9293 (1994).

    Article  CAS  Google Scholar 

  6. Teng, T.-Y., Srajer, V., Moffat, K. Photolysis-induced structural changes in single crystals of carbonmonoxymyoglobin at 40K. Nature Struct. Biol. 1 (10) 701–705 (1994).

    Article  CAS  Google Scholar 

  7. Schlichting, I., Berendzin, J., Phillips, G.N. Jr., & Sweet, R.M. Crystal structure of photolyzed carbonmonoxymyoblobin. Nature 371 808–812 (1994).

    Article  CAS  Google Scholar 

  8. Yennawar, N.H., Yennawar, H.P. & Farber, G.K. X-ray crystal structure of γ-chymotrypsin in hexane. Biochemistry 33, 7326–7336 (1994).

    Article  CAS  Google Scholar 

  9. Verschueren, K.H., Seljee, F., Rozeboom, H.J., Kalk, K.H. & Dijkstra, B.W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 363, 693–698 (1993).

    Article  CAS  Google Scholar 

  10. Moffat, K., Szebenyi, D. & Bilderback, D. X-ray laue diffraction from protein crystals. Science 223, 1423–1425 (1984).

    Article  CAS  Google Scholar 

  11. Helliwell, J.R. Synchrotron x-radiation protein crystallography-instrumentation, methods, and applications. Rep. Prog. Phys. 47, 1403–1497 (1984).

    Article  CAS  Google Scholar 

  12. Hajdu, J., Acharya, K.R., Stuart, D.I., McLaughlin, P.J., Barford, D., Klein, H. & Johnson, L.N. Time-resolved structural studies on catalysis in the crystal with glycogen phosphorylase. Biochem. Soc. Trans. 14, 538–541 (1986).

    Article  CAS  Google Scholar 

  13. Schlichting, I. et al. Time-resolved x-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 345, 309 (1990).

    Article  CAS  Google Scholar 

  14. Stoddard, B.L. et al. Observation of the light-triggered binding of pyrone to chymotrypsin by Laue x-ray crystallography. Proc. Natl. Acad. Sci. 88, 5503–5507 (1991).

    Article  CAS  Google Scholar 

  15. Singer, P.A., Smalas, R.P., Carty, W.F., Mangel, W.F. & Sweet, R.M. The hydrolytic water molecule in trypsin, revealed by time-resolved Laue crystallography. Science 259, 669–673 (1993).

    Article  CAS  Google Scholar 

  16. Fulop, V. et al. Laue diffraction study on the structure of cytochrome c peroxidase compound I. Structure 2, 201–208 (1994).

    Article  CAS  Google Scholar 

  17. Bolduc, J.M. et al. Mutagenesis and laue structures of enzyme intermediates: isocitrate dehydrogenase. Science 268, 1312–1318 (1995).

    Article  CAS  Google Scholar 

  18. Moffat, K. Time-resolved macromolecular crystallography. Annu Rev. Biophys. Biophys. Chem. 18, 309–332 (1989).

    Article  CAS  Google Scholar 

  19. Hajdu, J. et al. On the limitations of the Laue method when applied to crystals of macromolecules. in Crystallographic Computing 5 (eds D. Moras, A.D. Podjarny & J.C. Thierry, Oxford University Press, New York 29–49, 1991).

    Google Scholar 

  20. Brooks, C.L., III, Karplus, M., Pettitt, B.M. Proteins: a theoretical perspective of dynamics, structure, and thermodynamics (Adv. Chem. Phys. LXXI; John Wiley & Sons, 1988).

    Book  Google Scholar 

  21. Venable, R.M., Zhang, Y., Hardy, B.J., Pastor, R. Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science 262, 223–226 (1993).

    Article  CAS  Google Scholar 

  22. Becker, O.M., Karplus, M. Temperature echoes in molecular-dynamics simulations of proteins. Physical Review Letters 70, 3514–3517 (1993).

    Article  CAS  Google Scholar 

  23. Weerasinghe, S., Smith, P.E., Mohan, V., Cheng, Y.-K. & Pettitt, B.M. Nanosecond dynamics and structure of a model DNA triple-helix in saltwater solution. J. Am. Chem. Soc. 117, 2147–2158 (1995).

    Article  CAS  Google Scholar 

  24. Eriksson, M.A.L., Hard, T. & Nilsson, L. in NATO ASI Series (G. Wipff, ed.; 1993).

    Google Scholar 

  25. Woolf, T.B., Roux, B. Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc. Natl. Acad. Sci. USA 91, 11631–11635 (1994).

    Article  CAS  Google Scholar 

  26. Hurley, J.H., Dean, A.M., Koshland, D.E., Jr. & Stroud, R.M. Catalytic mechanism of NADP-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP complexes. Biochemistry 30, 8671 (1991).

    Article  CAS  Google Scholar 

  27. Stoddard, B.L. & Koshland, D.E. Jr. The Structure of Isocitrate Dehydrogenase complexed to α-ketoglutarate: A transient conformational change during catalysis. Biochemistry 32, 9317–9322 (1993).

    Article  CAS  Google Scholar 

  28. Brooks, B. et al. CHARMM - A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4, 187 (1983).

    Article  CAS  Google Scholar 

  29. MacKerell, J.A.D., Wiorkiewicz-Kuczera, J., Karplus, M. An all-atom empirical energy function for the simulation of nucleic-acids. J. Am. Chem. Soc. 210, 68–72 (1995).

    Google Scholar 

  30. Brunger, A., Brooks, C.L. & Karplus, M. Active site dynamics of ribonuclease. Proc. Natl. Acad. Sci. 82, 8458 (1985).

    Article  CAS  Google Scholar 

  31. Brooks, C.L. III, Brünger, A. & Karplus, M. Active site dynamics in protein molecules: a stochastic boundary molecular-dynamics approach. Biopolymers 24, 843 (1985).

    Article  CAS  Google Scholar 

  32. Jorgensen, W.L., Chandrasekhar, J., Madura, J., Impey, R.W. & Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983).

    Article  CAS  Google Scholar 

  33. Ramaswamy, S., Eklund, H. & Plapp, B.V. Structures of horse liver alcohol-dehydrogenase complexed with NAD(+) and substituted benzyl alcohols. Biochemistry 33, 5230 (1994).

    Article  CAS  Google Scholar 

  34. Brünger, A., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458 (1987).

    Article  Google Scholar 

  35. Hurley, J.H., Dean, A.M., Sohl, J.L., Koshland, D.E. Jr. & Stroud, R.M. Regulation of an enzyme by phosphorylation at the active site. Science 249, 1012 (1990).

    Article  CAS  Google Scholar 

  36. Stoddard, B.L., Dean, A.M. & Koshland, D.E. Jr. The 2.5 Å structure of isocitrate dehydrogenase with isocitrate, NADP, and calcium: A pseudo-Michaelis Ternary complex. Biochemistry 32, 9310–9316 (1993).

    Article  CAS  Google Scholar 

  37. Hurley, J.H., Dean, A.M., Thorsness, P., Koshland, D.E. Jr. & Stroud, R.M. Regulation of isocitrate dehydrogenase by phosphorylation involves no long-range conformational change inthe free enzyme. J. Biol. Chem. 265, 3599–3602 (1990).

    CAS  PubMed  Google Scholar 

  38. Dean, A.M. & Koshland, D.E. Jr. Electrostatic and steric contributions to regulation at the active site of isocitrate dehydrogenase. Science 249, 1044–1046 (1990).

    Article  CAS  Google Scholar 

  39. Thorsness, P.E. & Koshland, D.E. Jr. The inactivation of isocitrate dehydrogenase by phosphorylation is mediated by the negative charge of the phosphate. J. Biol. Chem. 262, 10422–10425 (1987).

    CAS  PubMed  Google Scholar 

  40. Chen, R., Grobler, J.A., Hurley, J.H. & Dean, A.M. Second-site suppression of regulatory phosphorylation in Escherichi coli isocitrate dehydrogenase. Protein Science 5, 341–347 (1996).

    Google Scholar 

  41. Dean, A.M., Shiau, A.K. & Koshland, D.E. Jr. Determinants of performance in isocitrate dehydrogenase. Protein Science 5, 287–295 (1996).

    PubMed  PubMed Central  Google Scholar 

  42. Brünger, A.T. A unified approach to crystallographic refinement and molecular replacement. in Crystallographic Computing 5 (eds D. Moras, A.D. Podjarny & J.C. Thierry) 382–391 (Oxford University Press, New York; 1991).

    Google Scholar 

  43. Gros, P. Time-averaged crystallographically restrained molecular dynamics, in Crystallographic Computing 5 (D. Moras, A. D. Podjarny and J. C. Thierry, eds) 2949 (Oxford University Press, New York; 1991).

    Google Scholar 

  44. Hehre, W.J., Radom, L., Scheyer, P., Pople, J.A. Ab initio molecular orbital theory. (John Wiley and Sons, New York, NY, 1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoddard, B., Dean, A. & Bash, P. Combining Laue diffraction and molecular dynamics to study enzyme intermediates. Nat Struct Mol Biol 3, 590–595 (1996). https://doi.org/10.1038/nsb0796-590

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0796-590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing