Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Brain repair after stroke—a novel neurological model

Abstract

Following stroke, patients are commonly left with debilitating motor and speech impairments. This article reviews the state of the art in neurological repair for stroke and proposes a new model for the future. We suggest that stroke treatment—from the time of the ictus itself to living with the consequences—must be fundamentally neurological, from limiting the extent of injury at the outset, to repairing the consequent damage. Our model links brain and behaviour by targeting brain circuits, and we illustrate the model though action observation treatment, which aims to enhance brain network connectivity. The model is based on the assumptions that the mechanisms of neural repair inherently involve cellular and circuit plasticity, that brain plasticity is a synaptic phenomenon that is largely stimulus-dependent, and that brain repair required both physical and behavioural interventions that are tailored to reorganize specific brain circuits. We review current approaches to brain repair after stroke and present our new model, and discuss the biological foundations, rationales, and data to support our novel approach to upper-extremity and language rehabilitation. We believe that by enhancing plasticity at the level of brain network interactions, this neurological model for brain repair could ultimately lead to a cure for stroke.

Key Points

  • The ultimate goal of stroke treatment—after the initial insult has been appropriately limited in extent and severity—should be to repair the injured brain to effect a cure

  • Current practice focuses on compensation, which is cheaper and quicker than brain repair and remediation, but involves low outcome expectations

  • Rebuilding brain circuits to recover motor functions and speech depends on endogenous biological factors and exogenous input, as brain plasticity is inherently stimulus-dependent

  • Several stroke treatment programmes based on physiological rationales aimed at repairing brain circuits are currently undergoing testing

  • Action observation treatment for hand motor dysfunction is based on macaque research in action understanding, and has shown some preliminary success for treatment of stroke and other neurological injuries

  • Action observation treatment for speech and language dysfunction seems to affect brain plasticity and have some benefit

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible mirror neuron network for syllable observation and imitation.
Figure 2: Visual stimuli for action observation treatment.

Similar content being viewed by others

References

  1. Gosman-Hedstrom, G., Claesson, L. & Blomstrand, C. Consequences of severity at stroke onset for health-related quality of life (HRQL) and informal care: a 1-year follow-up in elderly stroke survivors. Arch. Gerontol. Geriatr. 47, 79–91 (2008).

    PubMed  Google Scholar 

  2. Mayo, N. E., Wood-Dauphinee, S., Cote, R., Durcan, L. & Carlton, J. Activity, participation, and quality of life 6 months poststroke. Arch. Phys. Med. Rehabil. 83, 1035–1042 (2002).

    PubMed  Google Scholar 

  3. Kuoppala, J. & Lamminpaa, A. Rehabilitation and work ability: a systematic literature review. J. Rehabil. Med. 40, 796–804 (2008).

    PubMed  Google Scholar 

  4. Wozniak, M. A. & Kittner, S. J. Return to work after ischemic stroke: a methodological review. Neuroepidemiology 21, 159–166 (2002).

    PubMed  Google Scholar 

  5. Pan, J. H., Song, X. Y., Lee, S. Y. & Kwok, T. Longitudinal analysis of quality of life for stroke survivors using latent curve models. Stroke 39, 2795–2802 (2008).

    PubMed  Google Scholar 

  6. Patel, M. D., McKevitt, C., Lawrence, E., Rudd, A. G. & Wolfe, C. D. Clinical determinants of long-term quality of life after stroke. Age Ageing 36, 316–322 (2007).

    CAS  PubMed  Google Scholar 

  7. Whyte, E. M. & Mulsant, B. H. Post stroke depression: epidemiology, pathophysiology, and biological treatment. Biol. Psychiatry 52, 253–264 (2002).

    PubMed  Google Scholar 

  8. Granger, C. V., Hamilton, B. B. & Sherwin, F. S. Guide for the Use of Uniform Data Set for Medical Rehabilitation (Uniform Data Set for Medical Rehabilitation Project Office, 1986).

    Google Scholar 

  9. Aten, J. L., Caligiuri, M. P. & Holland, A. L. The efficacy of functional communication therapy for chronic aphasic patients. J. Speech Hear. Disord. 47, 93–96 (1982).

    CAS  PubMed  Google Scholar 

  10. Frattali, C. M., Thompson, C. M., Holland, A. L., Wohl, C. B. & Ferketic, M. M. The FACS of life ASHA facs—a functional outcome measure for adults. ASHA 37, 40–46 (1995).

    CAS  PubMed  Google Scholar 

  11. Dodds, T., Martin, D., Stolov, W. & Deyo, R. A validation of the functional independence measurement and its performance among rehabilitation inpatients. Arch. Phys. Med. Rehabil. 74, 531–536 (1993).

    CAS  PubMed  Google Scholar 

  12. Hallett, M. Plasticity of the human motor cortex and recovery from stroke. Brain Res. Brain Res. Rev. 36, 169–174 (2001).

    CAS  PubMed  Google Scholar 

  13. Small, S. L., Hlustik, P., Noll, D. C., Genovese, C. & Solodkin, A. Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain 125, 1544–1557 (2002).

    CAS  PubMed  Google Scholar 

  14. Krakauer, J. W. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr. Opin. Neurol. 19, 84–90 (2006).

    PubMed  Google Scholar 

  15. Johansen-Berg, H., Scholz, J. & Stagg, C. J. Relevance of structural brain connectivity to learning and recovery from stroke. Front. Syst. Neurosci. 4, 146 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Dipietro, L. et al. Learning, not adaptation, characterizes stroke motor recovery: evidence from kinematic changes induced by robot-assisted therapy in trained and untrained task in the same workspace. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 48–57 (2012).

    CAS  PubMed  Google Scholar 

  17. Huseyinsinoglu, B. E., Ozdincler, A. R. & Krespi, Y. Bobath Concept versus constraint-induced movement therapy to improve arm functional recovery in stroke patients: a randomized controlled trial. Clin. Rehabil. 26, 705–715 (2012).

    PubMed  Google Scholar 

  18. Luke, C., Dodd, K. J. & Brock, K. Outcomes of the Bobath concept on upper limb recovery following stroke. Clin. Rehabil. 18, 888–898 (2004).

    PubMed  Google Scholar 

  19. Nakayama, H., Jorgensen, H. S., Raaschou, H. O. & Olsen, T. S. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch. Phys. Med. Rehabil. 75, 394–398 (1994).

    CAS  PubMed  Google Scholar 

  20. Wang, R. Y., Chen, H. I., Chen, C. Y. & Yang, Y. R. Efficacy of Bobath versus orthopaedic approach on impairment and function at different motor recovery stages after stroke: a randomized controlled study. Clin. Rehabil. 19, 155–164 (2005).

    PubMed  Google Scholar 

  21. Gharbawie, O. A. & Whishaw, I. Q. Parallel stages of learning and recovery of skilled reaching after motor cortex stroke: “oppositions” organize normal and compensatory movements. Behav. Brain. Res. 175, 249–262 (2006).

    PubMed  Google Scholar 

  22. Roby-Brami, A. et al. Motor compensation and recovery for reaching in stroke patients. Acta Neurol. Scand. 107, 369–381 (2003).

    CAS  PubMed  Google Scholar 

  23. Subramanian, S. K., Lourenco, C. B., Chilingaryan, G., Sveistrup, H. & Levin, M. F. Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial. Neurorehabil. Neural Repair 27, 13–23 (2013).

    PubMed  Google Scholar 

  24. Wagner, J. M., Dromerick, A. W., Sahrmann, S. A. & Lang, C. E. Upper extremity muscle activation during recovery of reaching in subjects with post-stroke hemiparesis. Clin. Neurophysiol. 118, 164–176 (2007).

    PubMed  Google Scholar 

  25. Thompson, C. K. & Shapiro, L. P. Treating agrammatic aphasia within a linguistic framework: treatment of underlying forms. Aphasiology 19, 1021–1036 (2005).

    PubMed  PubMed Central  Google Scholar 

  26. Levin, M. F., Kleim, J. A. & Wolf, S. L. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil. Neural Repair 23, 313–319 (2009).

    CAS  PubMed  Google Scholar 

  27. Lum, P. S. et al. Gains in upper extremity function after stroke via recovery or compensation: potential differential effects on amount of real-world limb use. Top. Stroke Rehabil. 16, 237–253 (2009).

    PubMed  Google Scholar 

  28. Anderson, E., Anderson, T. P. & Kottke, F. J. Stroke rehabilitation: maintenance of achieved gains. Arch. Phys. Med. Rehabil. 58, 345–352 (1977).

    CAS  PubMed  Google Scholar 

  29. Davidoff, G. N., Keren, O., Ring, H. & Solzi, P. Acute stroke patients: long-term effects of rehabilitation and maintenance of gains. Arch. Phys. Med. Rehabil. 72, 869–873 (1991).

    CAS  PubMed  Google Scholar 

  30. Roth, E. J. & Lovell, L. Community skill performance and its association with the ability to perform everyday tasks by stroke survivors one year following rehabilitation discharge. Top. Stroke Rehabil. 14, 48–56 (2007).

    PubMed  Google Scholar 

  31. Norouzi-Gheidari, N., Archambault, P. S. & Fung, J. Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J. Rehabil. Res. Dev. 49, 479–496 (2012).

    PubMed  Google Scholar 

  32. Aichner, F., Adelwohrer, C. & Haring, H. P. Rehabilitation approaches to stroke. J. Neural Transm. Suppl. 2002, 59–73 (2002).

    Google Scholar 

  33. Floel, A. & Cohen, L. G. Translational studies in neurorehabilitation: from bench to bedside. Cogn. Behav. Neurol. 19, 1–10 (2006).

    PubMed  Google Scholar 

  34. Small, S. L. & Llano, D. A. Biological approaches to aphasia treatment. Curr. Neurol. Neurosci. Rep. 9, 443–450 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liepert, J. et al. Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci. Lett. 250, 5–8 (1998).

    CAS  PubMed  Google Scholar 

  36. Taub, E. et al. A placebo-controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke 37, 1045–1049 (2006).

    PubMed  Google Scholar 

  37. Wolf, S. L. et al. The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy. Stroke 41, 2309–2315 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. Berthier, M. L. et al. Memantine and constraint-induced aphasia therapy in chronic poststroke aphasia. Ann. Neurol. 65, 577–585 (2009).

    CAS  PubMed  Google Scholar 

  39. Pulvermuller, F. et al. Constraint-induced therapy of chronic aphasia after stroke. Stroke 32, 1621–1626 (2001).

    CAS  PubMed  Google Scholar 

  40. Altschuler, E. L. et al. Rehabilitation of hemiparesis after stroke with a mirror. Lancet 353, 2035–2036 (1999).

    CAS  PubMed  Google Scholar 

  41. Michielsen, M. E. et al. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: a phase II randomized controlled trial. Neurorehabil. Neural Repair 25, 223–233 (2011).

    PubMed  Google Scholar 

  42. Wu, C. Y., Huang, P. C., Chen, Y. T., Lin, K. C. & Yang, H. W. Effects of mirror therapy on motor and sensory recovery in chronic stroke: a randomized controlled trial. Arch. Phys. Med. Rehabil. 94, 1023–1030 (2013).

    PubMed  Google Scholar 

  43. Kuhn, T. S. The Structure of Scientific Revolutions (University of Chicago Press, 1962).

    Google Scholar 

  44. Friel, K. M. & Nudo, R. J. Recovery of motor function after focal cortical injury in primates: compensatory movement patterns used during rehabilitative training. Somatosens. Mot. Res. 15, 173–189 (1998).

    CAS  PubMed  Google Scholar 

  45. Hebb, D. O. The Organization of Behavior (Wiley, 1949).

    Google Scholar 

  46. Johansson, B. B. Brain plasticity and stroke rehabilitation. The Willis lecture. Stroke 31, 223–230 (2000).

    CAS  PubMed  Google Scholar 

  47. Hebb, D. O. The effects of early experience on problem solving at maturity. Am. Psychol. 2, 306 (1947).

    Google Scholar 

  48. Bennett, E. L., Diamond, M. C., Krech, D. & Rosenzweig, M. R. Chemical and anatomical plasticity brain. Science 146, 610–619 (1964).

    CAS  PubMed  Google Scholar 

  49. Volkmar, F. R. & Greenough, W. T. Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science 176, 1445–1447 (1972).

    CAS  PubMed  Google Scholar 

  50. Kleim, J. A., Lussnig, E., Schwarz, E. R., Comery, T. A. & Greenough, W. T. Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. J. Neurosci. 16, 4529–4535 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hunt, D. L. & Castillo, P. E. Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr. Opin. Neurobiol. 22, 496–508 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Spitzer, N. C. Activity-dependent neurotransmitter respecification. Nat. Rev. Neurosci. 13, 94–106 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Colon-Ramos, D. A. Synapse formation in developing neural circuits. Curr. Top. Dev. Biol. 87, 53–79 (2009).

    PubMed  PubMed Central  Google Scholar 

  54. Fields, R. D. & Itoh, K. Neural cell adhesion molecules in activity-dependent development and synaptic plasticity. Trends Neurosci. 19, 473–480 (1996).

    CAS  PubMed  Google Scholar 

  55. Johnston, M. V. Plasticity in the developing brain: implications for rehabilitation. Dev. Disabil. Res. Rev. 15, 94–101 (2009).

    PubMed  Google Scholar 

  56. Knafo, S. & Esteban, J. A. Common pathways for growth and for plasticity. Curr. Opin. Neurobiol. 22, 405–411 (2012).

    CAS  PubMed  Google Scholar 

  57. Wieloch, T. & Nikolich, K. Mechanisms of neural plasticity following brain injury. Curr. Opin. Neurobiol. 16, 258–264 (2006).

    CAS  PubMed  Google Scholar 

  58. Small, S. L. in Handbook on Adult Language Disorders: Integrating Cognitive Neuropsychology, Neurology, and Rehabilitation (ed. Hillis, A.) 397–411 (Psychology Press, 2001).

    Google Scholar 

  59. Horng, S. H. & Sur, M. Visual activity and cortical rewiring: activity-dependent plasticity of cortical networks. Prog. Brain Res. 157, 3–11 (2006).

    PubMed  Google Scholar 

  60. McCloskey, M. & Cohen, N. J. in The Psychology of Learning and Motivation (ed. Bower, G.) 109–165 (Academic Press, 1989).

    Google Scholar 

  61. Gernsbacher, M. A. & St John, M. F. in Foreign Language Learning: Psycholinguistic Experiments On Training and Retention (eds Healy, A. F. & Bourne, L. E. Jr) 231–255 (Laurence Erlbaum Associates, 1998).

    Google Scholar 

  62. Sparks, R., Helm, N. & Albert, M. Aphasia rehabilitation sesulting from melodic intonation therapy. Cortex 10, 303–316 (1974).

    CAS  PubMed  Google Scholar 

  63. Albert, M. L., Sparks, R. W. & Helm, N. A. Melodic intonation therapy for aphasia. Arch. Neurol. 29, 130–131 (1973).

    CAS  PubMed  Google Scholar 

  64. [No authors listed]. Assessment: melodic intonation therapy. Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 44, 566–568 (1994).

  65. Belin, P. et al. Recovery from nonfluent aphasia after melodic intonation therapy: a PET study. Neurology 47, 1504–1511 (1996).

    CAS  PubMed  Google Scholar 

  66. Lawrence, D. G. & Kuypers, H. G. The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91, 1–14 (1968).

    CAS  PubMed  Google Scholar 

  67. Lawrence, D. G. & Kuypers, H. G. The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain 91, 15–36 (1968).

    CAS  PubMed  Google Scholar 

  68. Schaechter, J. D. et al. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum. Brain Mapp. 30, 3461–3474 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. Zhu, L. L., Lindenberg, R., Alexander, M. P. & Schlaug, G. Lesion load of the corticospinal tract predicts motor impairment in chronic stroke. Stroke 41, 910–915 (2010).

    PubMed  PubMed Central  Google Scholar 

  70. Lindenberg, R. et al. Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke. Neurology 74, 280–287 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ward, N. S. et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 129, 809–819 (2006).

    PubMed  Google Scholar 

  72. Talelli, P., Greenwood, R. J. & Rothwell, J. C. Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin. Neurophysiol. 117, 1641–1659 (2006).

    CAS  PubMed  Google Scholar 

  73. Dum, R. P. & Strick, P. L. Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J. Neurosci. 25, 1375–1386 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Morecraft, R. J., Louie, J. L., Schroeder, C. M. & Avramov, K. Segregated parallel inputs to the brachial spinal cord from the cingulate motor cortex in the monkey. Neuroreport 8, 3933–3938 (1997).

    CAS  PubMed  Google Scholar 

  75. Rathelot, J. A. & Strick, P. L. Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc. Natl Acad. Sci. USA 106, 918–923 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lemon, R. N. Descending pathways in motor control. Annu. Rev. Neurosci. 31, 195–218 (2008).

    CAS  PubMed  Google Scholar 

  77. Rathelot, J. A. & Strick, P. L. Muscle representation in the macaque motor cortex: an anatomical perspective. Proc. Natl Acad. Sci. USA 103, 8257–8262 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Maier, M. A. et al. Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb. Cortex 12, 281–296 (2002).

    CAS  PubMed  Google Scholar 

  79. Shimazu, H., Maier, M. A., Cerri, G., Kirkwood, P. A. & Lemon, R. N. Macaque ventral premotor cortex exerts powerful facilitation of motor cortex outputs to upper limb motoneurons. J. Neurosci. 24, 1200–1211 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Cerri, G., Shimazu, H., Maier, M. A. & Lemon, R. N. Facilitation from ventral premotor cortex of primary motor cortex outputs to macaque hand muscles. J. Neurophysiol. 90, 832–842 (2003).

    CAS  PubMed  Google Scholar 

  81. Cheney, P. D., Fetz, E. E. & Mewes, K. Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Prog. Brain Res. 87, 213–252 (1991).

    CAS  PubMed  Google Scholar 

  82. Schieber, M. H. & Poliakov, A. V. Partial inactivation of the primary motor cortex hand area: effects on individuated finger movements. J. Neurosci. 18, 9038–9054 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lang, C. E. & Schieber, M. H. Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex or corticospinal tract. J. Neurophysiol. 91, 1722–1733 (2004).

    PubMed  Google Scholar 

  84. Schieber, M. H., Lang, C. E., Reilly, K. T., McNulty, P. & Sirigu, A. Selective activation of human finger muscles after stroke or amputation. Adv. Exp. Med. Biol. 629, 559–575 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. Weiller, C., Chollet, F., Friston, K., Wise, R. J. & Frackowiak, R. S. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann. Neurol. 31, 463–472 (1992).

    CAS  PubMed  Google Scholar 

  86. Cramer, S. C. et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28, 2518–2527 (1997).

    CAS  PubMed  Google Scholar 

  87. Gerloff, C. et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129, 791–808 (2006).

    PubMed  Google Scholar 

  88. van Meer, M. P. et al. Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity. J. Neurosci. 32, 4495–4507 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fridman, E. A. et al. Reorganization of the human ipsilesional premotor cortex after stroke. Brain 127, 747–758 (2004).

    PubMed  Google Scholar 

  90. Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. Action recognition in the premotor cortex. Brain 119, 593–609 (1996).

    PubMed  Google Scholar 

  91. Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain Res. 3, 131–141 (1996).

    CAS  PubMed  Google Scholar 

  92. Jeannerod, M. The representing brain: neural correlates of motor intention and imagery. Behav. Brain Sci. 17, 187–245 (1994).

    Google Scholar 

  93. Umilta, M. A. et al. I know what you are doing. A neurophysiological study. Neuron 31, 155–165 (2001).

    CAS  PubMed  Google Scholar 

  94. Buccino, G. et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur. J. Neurosci. 13, 400–404 (2001).

    CAS  PubMed  Google Scholar 

  95. Buccino, G., Binkofski, F. & Riggio, L. The mirror neuron system and action recognition. Brain Lang. 89, 370–376 (2004).

    PubMed  Google Scholar 

  96. Rizzolatti, G. & Sinigaglia, C. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat. Rev. Neurosci. 11, 264–274 (2010).

    CAS  PubMed  Google Scholar 

  97. Cattaneo, L. & Rizzolatti, G. The mirror neuron system. Arch. Neurol. 66, 557–560 (2009).

    PubMed  Google Scholar 

  98. Fabbri-Destro, M. & Rizzolatti, G. Mirror neurons and mirror systems in monkeys and humans. Physiology (Bethesda) 23, 171–179 (2008).

    Google Scholar 

  99. Buccino, G., Solodkin, A. & Small, S. L. Functions of the mirror neuron system: implications for neurorehabilitation. Cogn. Behav. Neurol. 19, 55–63 (2006).

    PubMed  Google Scholar 

  100. Small, S. L., Buccino, G. & Solodkin, A. The mirror neuron system and treatment of stroke. Dev. Psychobiol. 54, 293–310 (2012).

    PubMed  Google Scholar 

  101. Rizzolatti, G. & Arbib, M. A. Language within our grasp. Trends Neurosci. 21, 188–194 (1998).

    CAS  PubMed  Google Scholar 

  102. Nishitani, N., Schurmann, M., Amunts, K. & Hari, R. Broca's region: from action to language. Physiology (Bethesda) 20, 60–69 (2005).

    Google Scholar 

  103. Decety, J. & Sommerville, J. A. Shared representations between self and other: a social cognitive neuroscience view. Trends Cogn. Sci. 7, 527–533 (2003).

    PubMed  Google Scholar 

  104. Iacoboni, M. et al. Cortical mechanisms of human imitation. Science 286, 2526–2528 (1999).

    CAS  PubMed  Google Scholar 

  105. Koski, L. et al. Modulation of motor and premotor activity during imitation of target-directed actions. Cereb. Cortex 12, 847–855 (2002).

    PubMed  Google Scholar 

  106. Nishitani, N. & Hari, R. Temporal dynamics of cortical representation for action. Proc. Natl Acad. Sci. USA 97, 913–918 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Nelissen, K. et al. Action observation circuits in the macaque monkey cortex. J. Neurosci. 31, 3743–3756 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. MacLeod, A. & Summerfield, Q. Quantifying the contribution of vision to speech perception in noise. Br. J. Audiol. 21, 131–141 (1987).

    CAS  PubMed  Google Scholar 

  109. Ross, L. A., Saint-Amour, D., Leavitt, V. M., Javitt, D. C. & Foxe, J. J. Do you see what I am saying? Exploring visual enhancement of speech comprehension in noisy environments. Cereb. Cortex 17, 1147–1153 (2007).

    PubMed  Google Scholar 

  110. Sumby, W. H. & Pollack, I. Visual contribution of speech intelligibility in noise. J. Acoustic. Soc. Am. 26, 212–215 (1954).

    Google Scholar 

  111. Buccino, G. et al. Neural circuits underlying imitation learning of hand actions: an event-related FMRI study. Neuron 42, 323–334 (2004).

    CAS  PubMed  Google Scholar 

  112. Molnar-Szakacs, I., Iacoboni, M., Koski, L. & Mazziotta, J. C. Functional segregation within pars opercularis of the inferior frontal gyrus: evidence from fMRI studies of imitation and action observation. Cereb. Cortex 15, 986–994 (2005).

    PubMed  Google Scholar 

  113. Tanaka, S. & Inui, T. Cortical involvement for action imitation of hand/arm postures versus finger configurations: an fMRI study. Neuroreport 13, 1599–1602 (2002).

    PubMed  Google Scholar 

  114. Wilson, S. M., Saygin, A. P., Sereno, M. I. & Iacoboni, M. Listening to speech activates motor areas involved in speech production. Nat. Neurosci. 7, 701–702 (2004).

    CAS  PubMed  Google Scholar 

  115. Skipper, J. I., Nusbaum, H. C. & Small, S. L. Listening to talking faces: motor cortical activation during speech perception. Neuroimage 25, 76–89 (2005).

    PubMed  Google Scholar 

  116. Skipper, J. I., van Wassenhove, V., Nusbaum, H. C. & Small, S. L. Hearing lips and seeing voices: how cortical areas supporting speech production mediate audiovisual speech perception. Cereb. Cortex 17, 2387–2399 (2007).

    PubMed  Google Scholar 

  117. Fadiga, L. et al. Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study. Neuropsychologia 37, 147–158 (1999).

    CAS  PubMed  Google Scholar 

  118. D'Ausilio, A., Bufalari, I., Salmas, P. & Fadiga, L. The role of the motor system in discriminating normal and degraded speech sounds. Cortex 48, 882–887 (2011).

    PubMed  Google Scholar 

  119. Rizzolatti, G., Fogassi, L. & Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2, 661–670 (2001).

    CAS  PubMed  Google Scholar 

  120. Gallese, V. The manifold nature of interpersonal relations: the quest for a common mechanism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 517–528 (2003).

    PubMed  PubMed Central  Google Scholar 

  121. Guenther, F. H., Ghosh, S. S. & Tourville, J. A. Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang. 96, 280–301 (2006).

    PubMed  Google Scholar 

  122. Dick, A. S., Solodkin, A. & Small, S. L. Neural development of networks for audiovisual speech comprehension. Brain Lang. 114, 101–114 (2010).

    PubMed  Google Scholar 

  123. Mashal, N., Solodkin, A., Dick, A. S., Chen, E. E. & Small, S. L. A network model of observation and imitation of speech. Front. Psychol. 3, 84 (2012).

    PubMed  PubMed Central  Google Scholar 

  124. Ertelt, D. et al. Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage 36 (Suppl. 2), T164–T173 (2007).

    PubMed  Google Scholar 

  125. Franceschini, M. et al. Clinical relevance of action observation in upper-limb stroke rehabilitation: a possible role in recovery of functional dexterity. A randomized clinical trial. Neurorehabil. Neural Repair 26, 456–462 (2012).

    PubMed  Google Scholar 

  126. Buccino, G. et al. Action observation treatment improves autonomy in daily activities in Parkinson's disease patients: results from a pilot study. Mov. Disord. 26, 1963–1964 (2011).

    PubMed  Google Scholar 

  127. Pelosin, E. et al. Action observation improves freezing of gait in patients with Parkinson's disease. Neurorehabil. Neural Repair 24, 746–752 (2010).

    PubMed  Google Scholar 

  128. Doyon, J. et al. Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav. Brain Res. 199, 61–75 (2009).

    PubMed  Google Scholar 

  129. Obeso, J. A. et al. Functional organization of the basal ganglia: therapeutic implications for Parkinson's disease. Mov. Disord. 23 (Suppl. 3), S548–S559 (2008).

    PubMed  Google Scholar 

  130. Alegre, M. et al. Changes in subthalamic activity during movement observation in Parkinson's disease: is the mirror system mirrored in the basal ganglia? Clin. Neurophysiol. 121, 414–425 (2010).

    CAS  PubMed  Google Scholar 

  131. Buccino, G. et al. Improving upper limb motor functions through action observation treatment: a pilot study in children with cerebral palsy. Dev. Med. Child Neurol. 54, 822–828 (2012).

    PubMed  Google Scholar 

  132. Bellelli, G., Buccino, G., Bernardini, B., Padovani, A. & Trabucchi, M. Action observation treatment improves recovery of postsurgical orthopedic patients: evidence for a top-down effect? Arch. Phys. Med. Rehabil. 91, 1489–1494 (2010).

    PubMed  Google Scholar 

  133. Ward, N. S. et al. The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. Eur. J. Neurosci. 25, 1865–1873 (2007).

    PubMed  PubMed Central  Google Scholar 

  134. Starkey, M. L. et al. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke. Brain 135, 3265–3281 (2012).

    PubMed  Google Scholar 

  135. Stinear, C. M. et al. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130, 170–180 (2007).

    PubMed  Google Scholar 

  136. Weiller, C. Imaging recovery from stroke. Exp. Brain Res. 123, 13–17 (1998).

    CAS  PubMed  Google Scholar 

  137. Frost, S. B., Barbay, S., Friel, K. M., Plautz, E. J. & Nudo, R. J. Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J. Neurophysiol. 89, 3205–3214 (2003).

    CAS  PubMed  Google Scholar 

  138. Kantak, S. S., Stinear, J. W., Buch, E. R. & Cohen, L. G. Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabil. Neural Repair 26, 282–292 (2012).

    PubMed  Google Scholar 

  139. Iacoboni, M. et al. Reafferent copies of imitated actions in the right superior temporal cortex. Proc. Natl Acad. Sci. USA 98, 13995–13999 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Iacoboni, M. in Human Brain Mapping 2003 (eds Paus, T., Bullmore, E. & Cohen, J. D.) (Academic Press, 2003).

    Google Scholar 

  141. Tettamanti, M. et al. Listening to action-related sentences activates fronto-parietal motor circuits. J. Cogn. Neurosci. 17, 273–281 (2005).

    PubMed  Google Scholar 

  142. Bonifazi, S. et al. Action observation as a useful approach for enhancing recovery of verb production: new evidence from aphasia. Eur. J. Phys. Rehabil. Med. 49, 473–481 (2013).

    CAS  PubMed  Google Scholar 

  143. Marangolo, P. et al. Improving language without words: first evidence from aphasia. Neuropsychologia 48, 3824–3833 (2010).

    PubMed  Google Scholar 

  144. Lee, J., Fowler, R., Rodney, D., Cherney, L. & Small, S. L. IMITATE: an intensive computer-based treatment for aphasia based on action observation and imitation. Aphasiology 24, 449–465 (2010).

    PubMed  PubMed Central  Google Scholar 

  145. Small, S. L. A biological basis for aphasia treatment: mirror neurons and observation–execution matching. Poznan Stud. Contemp. Linguist. 45, 313–326 (2009).

    Google Scholar 

  146. Elman, J. L. Learning and development in neural networks: the importance of starting small. Cognition 48, 71–99 (1993).

    CAS  PubMed  Google Scholar 

  147. Duncan, E. S., Schmah, T. & Small, S. L. in 50th Annual Meeting of the Academy of Aphasia (The Academy of Aphasia, 2012).

    Google Scholar 

  148. Sarasso, S. et al. Non-fluent aphasia and neural reorganization after speech therapy: insights from human sleep electrophysiology and functional magnetic resonance imaging. Arch. Ital. Biol. 148, 271–278 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sarasso, S. et al. Plastic changes following imitation-based speech and language therapy for aphasia: a high density (HD) sleep EEG study. Neurorehabil. Neural Repair http://dx.doi.org/10.1177/1545968313498651.

  150. Huber, R., Ghilardi, M. F., Massimini, M. & Tononi, G. Local sleep and learning. Nature 430, 78–81 (2004).

    CAS  PubMed  Google Scholar 

  151. Vyazovskiy, V. V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. & Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci. 11, 200–208 (2008).

    CAS  PubMed  Google Scholar 

  152. Liu, Z. W., Faraguna, U., Cirelli, C., Tononi, G. & Gao, X. B. Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. J. Neurosci. 30, 8671–8675 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Hill, S. & Tononi, G. Modeling sleep and wakefulness in the thalamocortical system. J. Neurophysiol. 93, 1671–1698 (2005).

    PubMed  Google Scholar 

  154. Tononi, G. & Cirelli, C. Sleep function and synaptic homeostasis. Sleep Med. Rev. 10, 49–62 (2006).

    PubMed  Google Scholar 

  155. Meinzer, M. et al. Functional re-recruitment of dysfunctional brain areas predicts language recovery in chronic aphasia. NeuroImage 39, 2038–2046 (2008).

    PubMed  Google Scholar 

  156. Binkofski, F. & Buxbaum, L. J. Two action systems in the human brain. Brain Lang. http://dx.doi.org/10.1016/j.bandl.2012.07.007.

  157. Heiss, W. D. & Thiel, A. A proposed regional hierarchy in recovery of post-stroke aphasia. Brain Lang. 98, 118–123 (2006).

    PubMed  Google Scholar 

  158. Heiss, W. D., Kessler, J., Thiel, A., Ghaemi, M. & Karbe, H. Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann. Neurol. 45, 430–438 (1999).

    CAS  PubMed  Google Scholar 

  159. Saur, D. et al. Early functional magnetic resonance imaging activations predict language outcome after stroke. Brain 133, 1252–1264 (2010).

    PubMed  Google Scholar 

  160. Shelton, F. N. & Reding, M. J. Effect of lesion location on upper limb motor recovery after stroke. Stroke 32, 107–112 (2001).

    CAS  PubMed  Google Scholar 

  161. Raja Beharelle, A. et al. Left hemisphere regions are critical for language in the face of early left focal brain injury. Brain 133, 1707–1716 (2010).

    PubMed  PubMed Central  Google Scholar 

  162. Warren, J. E., Crinion, J. T., Lambon Ralph, M. A. & Wise, R. J. Anterior temporal lobe connectivity correlates with functional outcome after aphasic stroke. Brain 132, 3428–3442 (2009).

    PubMed  PubMed Central  Google Scholar 

  163. Dick, A. S., Raja Beharelle, A., Solodkin, A. & Small, S. L. Interhemispheric functional connectivity following prenatal or perinatal brain injury predicts receptive language outcome. J. Neurosci. 33, 5612–5625 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institute of Deafness and other Communication Disorders (NIDCD) under grants R01-DC003378 and R01-DC007488 (to S. L. Small), and by the National Institute of Neurological Disorders and Stroke under grant R01-NS054942 (to A. Solodkin). Additional support was provided by the James S. McDonnell Foundation under the Brain Network Recovery Group and Virtual Brain Project grants to the Rotman Research Institute. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussion of the content, writing of the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Steven L. Small.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Small, S., Buccino, G. & Solodkin, A. Brain repair after stroke—a novel neurological model. Nat Rev Neurol 9, 698–707 (2013). https://doi.org/10.1038/nrneurol.2013.222

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing