Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lysosomal storage diseases—the horizon expands

Abstract

Since the discovery of the lysosome in 1955, advances have been made in understanding the key roles and functions of this organelle. The concept of lysosomal storage diseases (LSDs)—disorders characterized by aberrant, excessive storage of cellular material in lysosomes—developed following the discovery of α-glucosidase deficiency as the cause of Pompe disease in 1963. Great strides have since been made in understanding the pathobiology of LSDs and the neuronal ceroid lipofuscinoses (NCLs). The NCLs are neurodegenerative disorders that display symptoms of cognitive and motor decline, seizures, blindness, early death, and accumulation of lipofuscin in various cell types, and also show some similarities to 'classic' LSDs. Defective lysosomal storage can occur in many cell types, but the CNS and PNS are particularly vulnerable to LSDs and NCLs, being affected in two-thirds of these disorders. Most LSDs are inherited in an autosomal recessive manner, with the exception of X-linked Hunter disease, Fabry disease and Danon disease, and a variant type of adult NCL (Kuf disease). This Review provides a summary of known LSDs, and the pathways affected in these disorders. Existing therapies and barriers to development of novel and improved treatments for LSDs and NCLs are also discussed.

Key Points

  • The spectrum of lysosomal storage disease (LSD) includes defects in degradative and synthetic enzymes, lysosomal membrane defects, the neuronal ceroid lipofuscinoses (NCLs) and disorders of lysosome biogenesis and endosome–lysosome traffic

  • LSDs result in excess cellular storage and cell death in the CNS, PNS, lungs, liver, bone, skeletal and cardiac muscle and the reticuloendothelial system; symptomatology includes neurocognitive decline, seizures, blindness and hepatosplenomegaly

  • NCLs are typified by abnormal inclusions in brain, eye, liver, skin and the reticuloendothelial system, with clinical manifestations such as neurocognitive decline, blindness, seizures and early death

  • Therapies involving enzyme replacement, substrate reduction and chaperone-mediated delivery, as well as haematopoetic and other stem-cell therapies, have had modest successes in the treatment of patients with LSDs

  • LSDs and NCLs share pathological features: abnormal lipid trafficking, dysregulation of apoptosis and autophagy, prolonged inflammation, disturbed endoplasmic reticulum–cytosol calcium balance, cellular stress, and the unfolded protein response

  • The biological underpinnings of LSDs and NCLs partly explain the limited success of 'direct' therapies for these disorders, but also provide novel targets for therapeutic approaches

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lysosomal storage and secondary mechanisms leading to cell death in neurons.

Similar content being viewed by others

References

  1. de Duve, C. The lysosome turns fifty. Nat. Cell Biol. 7, 847–849 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Hers, H. G. Inborn lysosomal diseases. Gastroenterology 48, 625–633 (1965).

    Article  CAS  PubMed  Google Scholar 

  3. Sachs, B. A family form of idiocy, generally fatal and associated with early blindness (amaurotic family idiocy). N. Y. Med. J. 63, 697–703 (1896).

    Google Scholar 

  4. Boustany, R. M. & Mousallem, T. in Emery and Rimoin's Principles and Practice of Medical Genetics (eds Rimoin, D. et al.) 2449–2485 (Elsevier, 2007).

    Google Scholar 

  5. Ciechanover, A. Intracellular protein degradation: from a vague idea, through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Biochim. Biophys. Acta 1824, 3–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Platt, F. M. & Lachmann, R. H. Treating lysosomal storage disorders: current practice and future prospects. Biochim. Biophys. Acta 1793, 737–745 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Ballabio, A. & Gieselmann, V. Lysosomal disorders: from storage to cellular damage. Biochim. Biophys. Acta 1793, 684–696 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Deduve, C. From cytases to lysosomes. Fed. Proc. 23, 1045–1049 (1964).

    CAS  PubMed  Google Scholar 

  9. Desnick, R. J. & Schuchman, E. H. Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu. Rev. Genomics Hum. Genet. 13, 307–335 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Huizing, M., Helip-Wooley, A., Westbroek, W., Gunay-Aygun, M. & Gahl, W. A. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu. Rev. Genomics Hum. Genet. 9, 359–386 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berkovic, S. F. et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am. J. Hum. Genet. 82, 673–684 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vogt, H. Uber familiare amaurotische idiotie und verwandte krankheitsbilder [German]. Monatsschr. Psychiatr. Neurol. 19, 161–171 (1905).

    Google Scholar 

  13. Vitner, E. B., Platt, F. M. & Futerman, A. H. Common and uncommon pathogenic cascades in lysosomal storage diseases. J. Biol. Chem. 285, 20423–20427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aula, P. et al. 'Salla disease': a new lysosomal storage disorder. Arch. Neurol. 36, 88–94 (1979).

    Article  CAS  PubMed  Google Scholar 

  15. Arvio, M., Autio, S. & Louhiala, P. Early clinical symptoms and incidence of aspartylglucosaminuria in Finland. Acta Paediatr. 82, 587–589 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Frustaci, A. et al. Improvement in cardiac function in the cardiac variant of Fabry's disease with galactose-infusion therapy. N. Engl. J. Med. 345, 25–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Kumperscak, H. G., Paschke, E., Gradisnik, P., Vidmar, J. & Bradac, S. U. Adult metachromatic leukodystrophy: disorganized schizophrenia-like symptoms and postpartum depression in 2 sisters. J. Psychiatry Neurosci. 30, 33–36 (2005).

    PubMed  PubMed Central  Google Scholar 

  18. Arsov, T. et al. Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in CLN6. Am. J. Hum. Genet. 88, 566–573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stengel, O. C. Beretning om et mærkeligt Sygdomstilfaelde hos fire Sødskende I Nærheden af Röraas [Norwegian]. Eyr. Med. Tidskr. 1, 347–352 (1826).

    Google Scholar 

  20. Boustany, R. M., Alroy, J. & Kolodny, E. H. Clinical classification of neuronal ceroid-lipofuscinosis subtypes. Am. J. Med. Genet. Suppl. 5, 47–58 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Goebel, H. H., Gerhard, L., Kominami, E. & Haltia, M. Neuronal ceroid-lipofuscinosis—late-infantile or Jansky-Bielschowsky type—revisited. Brain Pathol. 6, 225–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Batten, F. E. Cerebral degeneration with symmetrical changes in the maculae in two members of family. Trans. Ophthalmol. Soc. UK 23, 386–390 (1903).

    Google Scholar 

  23. Vogt, H. Familiare amaurotische idiotie. Histologische and histopathologische studien [German]. Arch. Kinderheilk. 51, 1–35 (1909).

    Google Scholar 

  24. Jansky, J. Sur un cas jusqu'a présente non décrit de l'idiotie amaurotique familiale compliquée par une hypolasie du cervelet [French]. Sborn. Lek. 13, 165–196 (1908).

    Google Scholar 

  25. Bielschowsky, M. Uber spatinfantile amaurotische Idiotie mit Kleinhirnsymptomen [German]. Dtsch. Z. Nervenheilk. 50, 7–29 (1913).

    Google Scholar 

  26. Jardim, L. B., Villanueva, M. M., de Souza, C. F. & Netto, C. B. Clinical aspects of neuropathic lysosomal storage disorders. J. Inherit. Metab. Dis. 33, 315–329 (2010).

    Article  PubMed  Google Scholar 

  27. Klenk, E. Beitrage zur Chemie der Lipidosen, Niemann-Picksche und amaurotische Idiotie, Hoppe-Seyler [German]. Z. Physiol. Chem. 262, 128–143 (1939).

    Article  CAS  Google Scholar 

  28. Svennerholm, L. The chemical structure of normal human brain and Tay-Sachs gangliosides. Biochem. Biophys. Res. Commun. 9, 436–441 (1962).

    Article  CAS  PubMed  Google Scholar 

  29. [No authors listed] Isolation of a novel gene underlying Batten disease, CLN3. The International Batten Disease Consortium. Cell 82, 949–957 (1995).

    Article  Google Scholar 

  30. Lane, S. C., Jolly, R. D., Schmechel, D. E., Alroy, J. & Boustany, R. M. Apoptosis as the mechanism of neurodegeneration in Batten's disease. J. Neurochem. 67, 677–683 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Haltia, M. & Goebel, H. H. The neuronal ceroid-lipofuscinoses: a historical introduction. Biochim. Biophys. Acta http://dx.doi.org/10.1016/j.bbadis.2012.08.012.

  32. Haddad, S. E. et al. CLN5 and CLN8 protein association with ceramide synthase: biochemical and proteomic approaches. Electrophoresis 33, 3798–3809 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Mole, S., Williams, R. & Goebel, H. (Eds) The Neuronal Ceroid Lipofuscinoses, Batten Disease (Oxford University Press, 2012).

    Book  Google Scholar 

  34. Saftig, P., Beertsen, W. & Eskelinen, E. L. LAMP-2: a control step for phagosome and autophagosome maturation. Autophagy 4, 510–512 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Weaver, T. E., Na, C. L. & Stahlman, M. Biogenesis of lamellar bodies, lysosome-related organelles involved in storage and secretion of pulmonary surfactant. Semin. Cell Dev. Biol. 13, 263–270 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10, 623–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Schultz, M. L., Tecedor, L., Chang, M. & Davidson, B. L. Clarifying lysosomal storage diseases. Trends Neurosci. 34, 401–410 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Braunlin, E. A. et al. Cardiac disease in patients with mucopolysaccharidosis: presentation, diagnosis and management. J. Inherit. Metab. Dis. 34, 1183–1197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kwon, J. Y. et al. High prevalence of carpal tunnel syndrome in children with mucopolysaccharidosis type II (Hunter syndrome). Am. J. Med. Genet. A 155A, 1329–1335 (2011).

    Article  PubMed  Google Scholar 

  40. Jurecka, A., Opoka-Winiarska, V., Jurkiewicz, E., Marucha, J. & Tylki-Szyman´ska, A. Spinal cord compression in Maroteaux-Lamy syndrome: case report and review of the literature with effects of enzyme replacement therapy. Pediatr. Neurosurg. 48, 191–198 (2012).

    Article  PubMed  Google Scholar 

  41. Pastores, G. M. et al. The MPS I registry: design, methodology, and early findings of a global disease registry for monitoring patients with mucopolysaccharidosis type I. Mol. Genet. Metab. 91, 37–47 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Guillemot, N., Troadec, C., de Villemeur, T. B., Clément, A. & Fauroux, B. Lung disease in Niemann-Pick disease. Pediatr. Pulmonol. 42, 1207–1214 (2007).

    Article  PubMed  Google Scholar 

  43. Muhlebach, M. S., Wooten, W. & Muenzer, J. Respiratory manifestations in mucopolysaccharidoses. Paediatr. Respir. Rev. 12, 133–138 (2011).

    Article  PubMed  Google Scholar 

  44. Muenzer, J. Overview of the mucopolysaccharidoses. Rheumatology (Oxford) 50 (Suppl. 5), v4–v12 (2011).

    Article  CAS  Google Scholar 

  45. Brama, I., Gay, I., Feinmesser, R. & Springer, C. Upper airway obstruction in Hunter syndrome. Int. J. Pediatr. Otorhinolaryngol. 11, 229–235 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. Shih, S. L., Lee, Y. J., Lin, S. P., Sheu, C. Y. & Blickman, J. G. Airway changes in children with mucopolysaccharidoses. Acta Radiol. 43, 40–43 (2002).

    Article  PubMed  Google Scholar 

  47. Shapiro, J., Strome, M. & Crocker, A. C. Airway obstruction and sleep apnea in Hurler and Hunter syndromes. Ann. Otol. Rhinol. Laryngol. 94, 458–461 (1985).

    Article  CAS  PubMed  Google Scholar 

  48. Morehead, J. M. & Parsons, D. S. Tracheobronchomalacia in Hunter's syndrome. Int. J. Pediatr. Otorhinolaryngol. 26, 255–261 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Bonten, E. J. et al. Targeting macrophages with baculovirus-produced lysosomal enzymes: implications for enzyme replacement therapy of the glycoprotein storage disorder galactosialidosis. FASEB J. 18, 971–973 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Thappa, D. M., Singh, A., Jaisankar, T. J., Rao, R. & Ratnakar, C. Pebbling of the skin: a marker of Hunter's syndrome. Pediatr. Dermatol. 15, 370–373 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Möhrenschlager, M., Lauenstein, M., Ring, J. & Steiner, C. Synophrys. Eur. J. Med. Genet. 53, 225–226 (2010).

    Article  PubMed  Google Scholar 

  52. Spranger, J. in Emery and Rimoin's Principles and Practice of Medical Genetics (eds Rimion, D. L. et al.) 2403–2412 (Elsevier, 2007).

    Google Scholar 

  53. Eng, C. M. et al. Fabry disease: baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry. J. Inherit. Metab. Dis. 30, 184–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Collins, R. C., Dobkin, B. H. & Choi, D. W. Selective vulnerability of the brain: new insights into the pathophysiology of stroke. Ann. Intern. Med. 110, 992–1000 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. Huebner, E. A. & Strittmatter, S. M. Axon regeneration in the peripheral and central nervous systems. Results Probl. Cell Differ. 48, 339–351 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hoffmann, B. & Mayatepek, E. Neurological manifestations in lysosomal storage disorders—from pathology to first therapeutic possibilities. Neuropediatrics 36, 285–289 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Walkley, S. U. Pathogenic cascades in lysosomal disease—why so complex? J. Inherit. Metab. Dis. 32, 181–189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Suvarna, J. C. & Hajela, S. A. Cherry-red spot. J. Postgrad. Med. 54, 54–57 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Birch, D. G. Retinal degeneration in retinitis pigmentosa and neuronal ceroid lipofuscinosis: an overview. Mol. Genet. Metab. 66, 356–366 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Lang, G. E. & Maumenee, I. H. in Retinal Dystrophies and Degenerations (ed. Newsome, D. A.) 319–340 (Raven Press, 1988).

    Google Scholar 

  61. Debs, R. et al. Krabbe disease in adults: phenotypic and genotypic update from a series of 11 cases and a review. J. Inherit. Metab. Dis. http://dx.doi.org/10.1007/s10545-012-9560-4.

  62. Siddiqi, Z. A., Sanders, D. B. & Massey, J. M. Peripheral neuropathy in Krabbe disease: effect of hematopoietic stem cell transplantation. Neurology 67, 268–272 (2006).

    Article  PubMed  Google Scholar 

  63. Escolar, M. L. et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe's disease. N. Engl. J. Med. 352, 2069–2081 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Kolodny, E. & Moser, H. W. in The Metabolic Basis of Inherited Disease (eds Stanbury, J. B. et al.) 881–905 (Mc-Graw-Hill, 1983).

    Google Scholar 

  65. Biegstraaten, M. et al. Small fiber neuropathy in Fabry disease. Mol. Genet. Metab. 106, 135–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Hannun, Y. A. & Bell, R. M. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243, 500–507 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Al Sawaf, S., Mayatepek, E. & Hoffmann, B. Neurological findings in Hunter disease: pathology and possible therapeutic effects reviewed. J. Inherit. Metab. Dis. 31, 473–480 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Tuttolomondo, A. et al. Neurological complications of Anderson-Fabry disease. Curr. Pharm. Des. [Epub ahead of print].

  69. Neto, Â. R., Holanda, G. B., Farias, M. C., Santos da Costa, G. & Pereira, H. S. Hydrocephalus in mucopolysaccharidosis type VI successfully treated with endoscopic third ventriculostomy. J. Neurosurg. Pediatr. 11, 327–330 (2013).

    Article  PubMed  Google Scholar 

  70. Gupta, N., Rath, G. P., Bala, R., Reddy, B. K. & Chaturvedi, A. Anesthetic management in children with Hurler's syndrome undergoing emergency ventriculoperitoneal shunt surgery. Saudi J. Anaesth. 6, 178–180 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Manara, R. et al. Brain and spine MRI features of Hunter disease: frequency, natural evolution and response to therapy. J. Inherit. Metab. Dis. 34, 763–780 (2011).

    Article  PubMed  Google Scholar 

  72. Aliabadi, H. et al. Clinical outcome of cerebrospinal fluid shunting for communicating hydrocephalus in mucopolysaccharidoses I, II, and III: a retrospective analysis of 13 patients. Neurosurgery 67, 1476–1481 (2010).

    Article  PubMed  Google Scholar 

  73. Palmucci, S. et al. Imaging findings of mucopolysaccharidoses: a pictorial review. Insights Imaging http://dx.doi.org/10.1007/s13244-013-0246-8.

  74. Jeyakumar, M., Dwek, R. A., Butters, T. D. & Platt, F. M. Storage solutions: treating lysosomal disorders of the brain. Nat. Rev. Neurosci. 6, 713–725 (2005).

    Article  PubMed  Google Scholar 

  75. Garbutt, S. & Harris, C. M. Abnormal vertical optokinetic nystagmus in infants and children. Br. J. Ophthalmol. 84, 451–455 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sunwoo, M. K., Kim, S. M., Lee, S. & Lee, P. H. Parkinsonism associated with glucocerebrosidase mutation. J. Clin. Neurol. 7, 99–101 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sarpong, A. et al. Protracted course of juvenile ceroid lipofuscinosis associated with a novel CLN3 mutation (p.Y199X). Clin. Genet. 76, 38–45 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Lloyd-Evans, E. et al. Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms. J. Biol. Chem. 278, 23594–23599 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Tokushige, S. et al. Isolated pyramidal tract impairment in the central nervous system of adult-onset Krabbe disease with novel mutations in the GALC gene. Brain Dev. 35, 579–581 (2013).

    Article  PubMed  Google Scholar 

  80. Sehgal, R., Sharma, S., Sankhyan, N., Kumar, A. & Gulati, S. Selective corticospinal tract involvement in late-onset Krabbe disease. Neurology 77, e20 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Kamate, M. & Hattiholi, V. Predominant corticospinal tract involvement in early-onset Krabbe disease. Pediatr. Neurol. 44, 155–156 (2011).

    Article  PubMed  Google Scholar 

  82. Simonaro, C. M. et al. Involvement of the Toll-like receptor 4 pathway and use of TNF-alpha antagonists for treatment of the mucopolysaccharidoses. Proc. Natl Acad. Sci. USA 107, 222–227 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Suzuki, M. et al. Endosomal accumulation of Toll-like receptor 4 causes constitutive secretion of cytokines and activation of signal transducers and activators of transcription in Niemann–Pick disease type C (NPC) fibroblasts: a potential basis for glial cell activation in the NPC brain. J. Neurosci. 27, 1879–1891 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Husebye, H. et al. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J. 25, 683–692 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Johnson, G. B., Brunn, G. J., Kodaira, Y. & Platt, J. L. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J. Immunol. 168, 5233–5239 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Pan, C. et al. Functional abnormalities of heparan sulfate in mucopolysaccharidosis-I are associated with defective biologic activity of FGF-2 on human multipotent progenitor cells. Blood 106, 1956–1964 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Puranam, K. L., Guo, W. X., Qian, W. H., Nikbakht, K. & Boustany, R. M. CLN3 defines a novel antiapoptotic pathway operative in neurodegeneration and mediated by ceramide. Mol. Genet. Metab. 66, 294–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Persaud-Sawin, D. A., VanDongen, A. & Boustany, R. M. Motifs within the CLN3 protein: modulation of cell growth rates and apoptosis. Hum. Mol. Genet. 11, 2129–2142 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Persaud-Sawin, D. A. et al. Neuronal ceroid lipofuscinosis: a common pathway? Pediatr. Res. 61, 146–152 (2007).

    Article  PubMed  Google Scholar 

  90. Futerman, A. H. & van Meer, G. The cell biology of lysosomal storage disorders. Nat. Rev. Mol. Cell Biol. 5, 554–565 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Domon, M. M., Besson, F., Bandorowicz-Pikula, J. & Pikula, S. Annexin A6 is recruited into lipid rafts of Niemann–Pick type C disease fibroblasts in a Ca2+-dependent manner. Biochem. Biophys. Res. Commun. 405, 192–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Vainio, S. et al. Defective insulin receptor activation and altered lipid rafts in Niemann–Pick type C disease hepatocytes. Biochem. J. 391, 465–472 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. te Vruchte, D. et al. Accumulation of glycosphingolipids in Niemann–Pick C disease disrupts endosomal transport. J. Biol. Chem. 279, 26167–26175 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Chen, C. S., Patterson, M. C., Wheatley, C. L., O'Brien, J. F. & Pagano, R. E. Broad screening test for sphingolipid-storage diseases. Lancet 354, 901–905 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Rusyn, E., Mousallem, T., Persaud-Sawin, D. A., Miller, S. & Boustany, R. M. CLN3p impacts galactosylceramide transport, raft morphology, and lipid content. Pediatr. Res. 63, 625–631 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Persaud-Sawin, D. A. & Boustany, R. M. Cell death pathways in juvenile Batten disease. Apoptosis 10, 973–985 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Harati, H., Haliw, L., Cotman, S. & Boustany, R. M. Galactosylceramide (GalCer) as a potential treatment for juvenile neuronal ceroid lipofuscinosis (JNCL) in 13th International Conference on Neuronal Ceroid Lipofuscinosis (Batten Disease) & Patient Organisation Meeting. 54 (London, 2012).

    Google Scholar 

  98. Kobayashi, T., Shinoda, H., Goto, I., Yamanaka, T. & Suzuki, Y. Globoid cell leukodystrophy is a generalized galactosylsphingosine (psychosine) storage disease. Biochem. Biophys. Res. Commun. 144, 41–46 (1987).

    Article  CAS  PubMed  Google Scholar 

  99. Kanazawa, T. et al. Inhibition of cytokinesis by a lipid metabolite, psychosine. J. Cell Biol. 149, 943–950 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Giri, S., Khan, M., Rattan, R., Singh, I. & Singh, A. K. Krabbe disease: psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death. J. Lipid Res. 47, 1478–1492 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Zaka, M. & Wenger, D. A. Psychosine-induced apoptosis in a mouse oligodendrocyte progenitor cell line is mediated by caspase activation. Neurosci. Lett. 358, 205–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Nilsson, O., Månsson, J. E., Håkansson, G. & Svennerholm, L. The occurrence of psychosine and other glycolipids in spleen and liver from the three major types of Gaucher's disease. Biochim. Biophys. Acta 712, 453–463 (1982).

    Article  CAS  PubMed  Google Scholar 

  103. Kobayashi, T. et al. Accumulation of lysosphingolipids in tissues from patients with GM1 and GM2 gangliosidoses. J. Neurochem. 59, 1452–1458 (1992).

    Article  CAS  PubMed  Google Scholar 

  104. Aerts, J. M. et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc. Natl Acad. Sci. USA 105, 2812–2817 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kolodny, E. H. & Boustany, R. M. in Hematology of Infancy and Childhood (ed. Nathan, D. O.) 1212–1247 (W. B. Saunders, 1987).

    Google Scholar 

  106. d'Azzo, A., Kolodny, E., Bonten, E. & Annunziata, I. in Nathan and Oski's Hematology of Infancy and Childhood (eds Orkin, S. et al.) 1301–1422 (W. B. Saunders, Philadelphia, 2009).

    Google Scholar 

  107. Czeh, M., Gressens, P. & Kaindl, A. M. The yin and yang of microglia. Dev. Neurosci. 33, 199–209 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. DiRosario, J. et al. Innate and adaptive immune activation in the brain of MPS IIIB mouse model. J. Neurosci. Res. 87, 978–990 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Seehafer, S. S. et al. Immunosuppression alters disease severity in juvenile Batten disease mice. J. Neuroimmunol. 230, 169–172 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pelled, D. et al. Enhanced calcium release in the acute neuronopathic form of Gaucher disease. Neurobiol. Dis. 18, 83–88 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Korkotian, E. et al. Elevation of intracellular glucosylceramide levels results in an increase in endoplasmic reticulum density and in functional calcium stores in cultured neurons. J. Biol. Chem. 274, 21673–21678 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Ginzburg, L., Li, S. C., Li, Y. T. & Futerman, A. H. An exposed carboxyl group on sialic acid is essential for gangliosides to inhibit calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase: relevance to gangliosidoses. J. Neurochem. 104, 140–146 (2008).

    CAS  PubMed  Google Scholar 

  113. Pelled, D. et al. Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with N-butyldeoxynojirimycin. J. Biol. Chem. 278, 29496–29501 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Ginzburg, L. & Futerman, A. H. Defective calcium homeostasis in the cerebellum in a mouse model of Niemann–Pick A disease. J. Neurochem. 95, 1619–1628 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Tessitore, A. et al. GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol. Cell 15, 753–766 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Kim, S. J., Zhang, Z., Hitomi, E., Lee, Y. C. & Mukherjee, A. B. Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. Hum. Mol. Genet. 15, 1826–1834 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Puranam, K. et al. Upregulation of Bcl-2 and elevation of ceramide in Batten disease. Neuropediatrics 28, 37–41 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Kim, S. J., Zhang, Z., Lee, Y. C. & Mukherjee, A. B. Palmitoyl-protein thioesterase-1 deficiency leads to the activation of caspase-9 and contributes to rapid neurodegeneration in INCL. Hum. Mol. Genet. 15, 1580–1586 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Dhar, S. et al. Flupirtine blocks apoptosis in batten patient lymphoblasts and in human postmitotic CLN3- and CLN2-deficient neurons. Ann. Neurol. 51, 448–466 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Zheng, Z. et al. Downregulated adaptor protein p66Shc mitigates autophagy process by low nutrient and enhances apoptotic resistance in human lung adenocarcinoma A549 cells. FEBS J. http://dx.doi.org/10.1111/febs.12416.

  121. B'chir, W. et al. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. http://dx.doi.org/10.1093/nar/gkt563.

  122. Su, M., Mei, Y. & Sinha, S. Role of the crosstalk between autophagy and apoptosis in cancer. J. Oncol. 2013, 102735 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Müller, S., Dennemärker, J. & Reinheckel, T. Specific functions of lysosomal proteases in endocytic and autophagic pathways. Biochim. Biophys. Acta 1824, 34–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8, 741–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Raben, N., Roberts, A. & Plotz, P. H. Role of autophagy in the pathogenesis of Pompe disease. Acta Myol. 26, 45–48 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Alvarez, V. E., Niemirowicz, G. T. & Cazzulo, J. J. The peptidases of Trypanosoma cruzi: digestive enzymes, virulence factors, and mediators of autophagy and programmed cell death. Biochim. Biophys. Acta 1824, 195–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Pacheco, C. D. & Lieberman, A. P. Lipid trafficking defects increase Beclin-1 and activate autophagy in Niemann–Pick type C disease. Autophagy 3, 487–489 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Chang, J. W., Choi, H., Cotman, S. L. & Jung, Y. K. Lithium rescues the impaired autophagy process in CbCln3Δex7/8/Δex7/8 cerebellar cells and reduces neuronal vulnerability to cell death via IMPase inhibition. J. Neurochem. 116, 659–668 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Settembre, C., Fraldi, A., Rubinsztein, D. C. & Ballabio, A. Lysosomal storage diseases as disorders of autophagy. Autophagy 4, 113–114 (2008).

    Article  PubMed  Google Scholar 

  130. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  131. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  132. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  133. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  134. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  135. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  136. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  137. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  138. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  139. Hirabayashi, Y., Merrill, A. H. Jr & Shayman, J. A. in Sphingolipid Biology (eds Hirabayashi, Y. et al.) 83–94 (Springer, 2006).

    Book  Google Scholar 

  140. Valayannopoulos, V. & Wijburg, F. A. Therapy for the mucopolysaccharidoses. Rheumatology (Oxford) 50 (Suppl. 5), v49–v59 (2011).

    Article  CAS  Google Scholar 

  141. Urbanelli, L. et al. Therapeutic approaches for lysosomal storage diseases: a patent update. Recent Pat. CNS Drug Discov. 8, 91–109 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Platt, F. M. & Jeyakumar, M. Substrate reduction therapy. Acta Paediatr. Suppl. 97, 88–93 (2008).

    Article  Google Scholar 

  143. Maegawa, G. H. et al. Substrate reduction therapy in juvenile GM2 gangliosidosis. Mol. Genet. Metab. 98, 215–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Shapiro, B. E., Pastores, G. M., Gianutsos, J., Luzy, C. & Kolodny, E. H. Miglustat in late-onset Tay-Sachs disease: a 12-month, randomized, controlled clinical study with 24 months of extended treatment. Genet. Med. 11, 425–433 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Young-Gqamana, B. et al. Migalastat HCl reduces globotriaosylsphingosine (lyso-Gb3) in Fabry transgenic mice and in the plasma of Fabry patients. PLoS ONE 8, e57631 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  147. Lukina, E. et al. Improvement in hematological, visceral, and skeletal manifestations of Gaucher disease type 1 with oral eliglustat tartrate (Genz-112638) treatment: 2-year results of a phase 2 study. Blood 116, 4095–4098 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rountree, J. S. et al. Design, synthesis, and biological evaluation of enantiomeric β-N-acetylhexosaminidase inhibitors LABNAc and DABNAc as potential agents against Tay-Sachs and Sandhoff disease. ChemMedChem 4, 378–392 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Tropak, M. B. et al. A sensitive fluorescence-based assay for monitoring GM2 ganglioside hydrolysis in live patient cells and their lysates. Glycobiology 20, 356–365 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Escolar, M. L., Poe, M. D., Martin, H. R. & Kurtzberg, J. A staging system for infantile Krabbe disease to predict outcome after unrelated umbilical cord blood transplantation. Pediatrics 118, e879–e889 (2006).

    Article  PubMed  Google Scholar 

  151. de Ru, M. H. et al. Enzyme replacement therapy and/or hematopoietic stem cell transplantation at diagnosis in patients with mucopolysaccharidosis type I: results of a European consensus procedure. Orphanet J. Rare Dis. 6, 55 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kohan, R. et al. Therapeutic approaches to the challenge of neuronal ceroid lipofuscinoses. Curr. Pharm. Biotechnol. 12, 867–883 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Worgall, S. et al. Neurological deterioration in late infantile neuronal ceroid lipofuscinosis. Neurology 69, 521–535 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Crystal, R. G. et al. Clinical protocol. Administration of a replication-deficient adeno-associated virus gene transfer vector expressing the human CLN2 cDNA to the brain of children with late infantile neuronal ceroid lipofuscinosis. Hum. Gene Ther. 15, 1131–1154 (2004).

    Article  PubMed  Google Scholar 

  155. Sands, M. S. & Davidson, B. L. Gene therapy for lysosomal storage diseases. Mol. Ther. 13, 839–849 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  157. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  158. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  159. Brooks, D. A., Muller, V. J. & Hopwood, J. J. Stop-codon read-through for patients affected by a lysosomal storage disorder. Trends Mol. Med. 12, 367–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Zhang, Z. et al. Lysosomal ceroid depletion by drugs: therapeutic implications for a hereditary neurodegenerative disease of childhood. Nat. Med. 7, 478–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Ma, X. et al. Improvements in mucopolysaccharidosis I mice after adult retroviral vector-mediated gene therapy with immunomodulation. Mol. Ther. 15, 889–902 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Jakóbkiewicz-Banecka, J., Piotrowska, E., Narajczyk, M., Baran´ska, S. & Wegrzyn, G. Genistein-mediated inhibition of glycosaminoglycan synthesis, which corrects storage in cells of patients suffering from mucopolysaccharidoses, acts by influencing an epidermal growth factor-dependent pathway. J. Biomed. Sci. 16, 26 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Xu, M. et al. δ-Tocopherol reduces lipid accumulation in Niemann–Pick type C1 and Wolman cholesterol storage disorders. J. Biol. Chem. 287, 39349–39360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Choudhury, A. et al. Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann–Pick C cells. J. Clin. Invest. 109, 1541–1550 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Davidson, C. D. et al. Chronic cyclodextrin treatment of murine Niemann–Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS ONE 4, e6951 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Kirkegaard, T. et al. Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology. Nature 463, 549–553 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Zhou, Q. H., Boado, R. J., Lu, J. Z., Hui, E. K. & Pardridge, W. M. Brain-penetrating IgG-iduronate 2-sulfatase fusion protein for the mouse. Drug Metab. Dispos. 40, 329–335 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Maga, J. A. et al. Glycosylation-independent lysosomal targeting of acid alpha-glucosidase enhances muscle glycogen clearance in pompe mice. J. Biol. Chem. 288, 1428–1438 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Montano, A. M. et al. Acidic amino acid tag enhances response to enzyme replacement in mucopolysaccharidosis type VII mice. Mol. Genet. Metab. 94, 178–189 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Koike, M. et al. Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am. J. Pathol. 167, 1713–1728 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Repnik, U., Stoka, V., Turk, V. & Turk, B. Lysosomes and lysosomal cathepsins in cell death. Biochim. Biophys. Acta 1824, 22–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Staretz-Chacham, O., Lang, T. C., LaMarca, M. E., Krasnewich, D. & Sidransky, E. Lysosomal storage disorders in the newborn. Pediatrics 123, 1191–1207 (2009).

    Article  PubMed  Google Scholar 

  173. Smith, K. R. et al. Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum. Mol. Genet. 22, 1417–1423 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  175. Ghosh, A., Corbett, G. T., Gonzalez, F. J. & Pahan, K. Gemfibrozil and fenofibrate, Food and Drug Administration-approved lipid-lowering drugs, up-regulate tripeptidyl-peptidase 1 in brain cells via peroxisome proliferator-activated receptor α: implications for late infantile Batten disease therapy. J. Biol. Chem. 287, 38922–38935 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Miller, J. N., Chan, C. H. & Pearce, D. A. The role of nonsense-mediated decay in neuronal ceroid lipofuscinosis. Hum. Mol. Genet. 22, 2723–2734 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Eliyahu, E. et al. Anti-TNF-alpha therapy enhances the effects of enzyme replacement therapy in rats with mucopolysaccharidosis type VI. PLoS ONE 6, e22447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Coutinho, M. F., Prata, M. J. & Alves, S. Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. Mol. Genet. Metab. 105, 542–550 (2012).

    Article  CAS  PubMed  Google Scholar 

  179. Koeberl, D. D. et al. Enhanced efficacy of enzyme replacement therapy in Pompe disease through mannose-6-phosphate receptor expression in skeletal muscle. Mol. Genet. Metab. 103, 107–112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Li, S. et al. Adjunctive β2-agonists reverse neuromuscular involvement in murine Pompe disease. FASEB J. 27, 34–44 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Messinger, Y. H. et al. Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease. Genet. Med. 14, 135–142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Abbott, M. A. et al. Atypical immunologic response in a patient with CRIM-negative Pompe disease. Mol. Genet. Metab. 104, 583–586 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jmoudiak, M. & Futerman, A. H. Gaucher disease: pathological mechanisms and modern management. Br. J. Haematol. 129, 178–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Lake, B. D., Young, E. P. & Winchester, B. G. Prenatal diagnosis of lysosomal storage diseases. Brain Pathol. 8, 133–149 (1998).

    Article  CAS  PubMed  Google Scholar 

  185. Summary of Gaucher Disease Patient Prioritization For Treatment Recommendations From The Meeting Of Gaucher Treatment Experts, September 9th, 2009, Chicago, IL, USA. Gaucher Disease Organization [online] (2009).

  186. Brady, R. O. Enzyme replacement for lysosomal diseases. Annu. Rev. Med. 57, 283–296 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Bailey, L. An overview of enzyme replacement therapy for lysosomal storage diseases. Online J. Issues Nurs. 13, manuscript 3 (2008).

    Article  Google Scholar 

  188. Guo, W. X., Mao, C., Obeid, L. M. & Boustany, R. M. A disrupted homologue of the human CLN3 or juvenile neuronal ceroid lipofuscinosis gene in Saccharomyces cerevisiae: a model to study Batten disease. Cell. Mol. Neurobiol. 19, 671–680 (1999).

    Article  CAS  PubMed  Google Scholar 

  189. Chattopadhyay, S., Muzaffar, N. E., Sherman, F. & Pearce, D. A. The yeast model for batten disease: mutations in btn1, btn2, and hsp30 alter pH homeostasis. J. Bacteriol. 182, 6418–6423 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Boustany, R. M., Shareef, I. & El-Haddad, S. in Emery and Rimoin's Principles and Practice of Medical Genetics Ch. 109 (Elsevier, 2013).

    Google Scholar 

  191. Auffray, C. et al. Genome Medicine: past, present and future. Genome Med. 3, 6 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Khoury, M. J. Public health genomics: 15 years on. Centers for Disease Control and Prevention [online], (2013).

    Google Scholar 

  193. Benitez, B. A. et al. Exome-sequencing confirms DNAJC5 mutations as cause of adult neuronal ceroid-lipofuscinosis. PLoS ONE 6, e26741 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Smith, K. R. et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage Am. J. Hum. Genet. 90, 1102–1107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Staropoli, J. F. et al. A homozygous mutation in KCTD7 links neuronal ceroid lipofuscinosis to the ubiquitin-proteasome system. Am. J. Hum. Genet. 91, 202–208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author is grateful to H. Maacaron for her valuable assistance with the referencing of this manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

R. N. Boustany is an inventor on the following US patent applications: 8,003,327 (methods of screening for risk of proliferative disease and methods for the treatment of proliferative disease); 6,821,995 (a method of treating Batten disease); and 8,242,086 (methods and compositions for treating disorders caused by deficiency in a gene product of a CLN gene).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boustany, RM. Lysosomal storage diseases—the horizon expands. Nat Rev Neurol 9, 583–598 (2013). https://doi.org/10.1038/nrneurol.2013.163

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing