Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment of hereditary optic neuropathies

Abstract

The hereditary optic neuropathies are inherited disorders in which optic nerve dysfunction is a prominent feature in the phenotypic expression of disease. Optic neuropathy may be primarily an isolated finding, such as in Leber hereditary optic neuropathy and dominant optic atrophy, or part of a multisystem disorder. The pathophysiological mechanisms underlying the hereditary optic neuropathies involve mitochondrial dysfunction owing to mutations in mitochondrial or nuclear DNA that encodes proteins essential to mitochondrial function. Effective treatments are limited, and current management includes therapies directed at enhancing mitochondrial function and preventing oxidative damage, as well as genetic counselling, and supportive and symptomatic measures. New therapies, including gene therapy, are emerging via animal models and human clinical trials. Leber hereditary optic neuropathy, in particular, provides a unique model for testing promising treatments owing to its characteristic sequential bilateral involvement and the accessibility of target tissue within the eye. Lessons learned from treatment of the hereditary optic neuropathies may have therapeutic implications for other disorders of presumed mitochondrial dysfunction. In this Review, the natural history of the common inherited optic neuropathies, the presumed pathogenesis of several of these disorders, and the literature to date regarding potential therapies are summarized.

Key Points

  • Hereditary optic neuropathies include those disorders in which optic nerve dysfunction is typically isolated and those in which optic neuropathy features prominently within a multisystem neurological or systemic disorder

  • The two most common hereditary optic neuropathies are Leber hereditary optic neuropathy (caused by point mutations in mitochondrial DNA) and dominant optic atrophy (caused by nuclear DNA abnormalities)

  • Mitochondrial dysfunction has a central role in the pathogenesis of most, if not all, of the inherited optic neuropathies

  • Current treatments for hereditary optic neuropathies are limited, but include therapies that purportedly enhance mitochondrial function and prevent oxidative damage, such as idebenone

  • Gene therapy seems promising, and may be particularly suited for patients with Leber hereditary optic neuropathy who exhibit a 'window of opportunity' for directed ocular treatment before second eye involvement

  • Supportive, preventive and symptomatic measures, combined with informed genetic counselling, remain of paramount importance in the management of patients with hereditary optic neuropathies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical investigation in a patient with dominant optic atrophy.
Figure 2: Nuclear and mitochondrial DNA influences on mitochondrial function.

Similar content being viewed by others

References

  1. Carelli, V., Ross-Cisneros, F. N. & Sadun, A. A. Mitochondrial dysfunction as a cause of optic neuropathies. Prog. Retin. Eye Res. 23, 53–89 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Newman, N. J. in Walsh & Hoyt's Clinical Neuro-Ophthalmology 6th edn (eds Miller, N. R. et al.) 465–501 (Williams & Willkins, Baltimore, 2005).

    Google Scholar 

  3. Yu-Wai-Man, P., Griffiths, P. G., Hudson, G. & Chinnery, P. F. Inherited optic neuropathies. J. Med. Genet. 46, 145–158 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Fraser, J. A., Newman, N. J. & Biousse, V. The neuro-ophthalmology of mitochondrial disease. Surv. Ophthalmol. 55, 299–334 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yu-Wai-Man, P., Griffiths, P. G. & Chinnery, P. F. Mitochondrial optic neuropathies—disease mechanisms and therapeutic strategies. Prog. Retin. Eye Res. 30, 81–114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sitarz, K. S., Chinnery, P. F. & Yu-Wai-Man, P. Disorders of the optic nerve in mitochondrial cytopathies: new ideas on pathogenesis and therapeutic targets. Curr. Neurol. Neurosci. Rep. 12, 308–317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Biousse, V. B. & Newman, N. J. in Pediatric Ophthalmology 4th edn (eds Taylor, D. & Hoyt, C. S.) Elsevier Saunders, London [in press].

  8. Newman, N. J., Lott, M. T. & Wallace, D. C. The clinical characteristics of pedigrees of Leber's hereditary optic neuropathy with the 11778 mutation. Am. J. Ophthalmol. 111, 750–762 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Riordan-Eva, P. et al. The clinical features of Leber's hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation. Brain 118, 319–337 (1995).

    Article  PubMed  Google Scholar 

  10. Newman, N. J. et al. Prophylaxis for second eye involvement in Leber hereditary optic neuropathy: an open-labeled, nonrandomized multicenter trial of topical brimonidine purite. Am. J. Ophthalmol. 140, 407–415 (2005).

    CAS  PubMed  Google Scholar 

  11. Nikoskelainen, E. K. et al. Ophthalmoscopic findings in Leber hereditary optic neuropathy, with special reference to mtDNA mutations. Ophthalmology 103, 504–514 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Mackey, D. & Howell, N. A variant of Leber's hereditary optic neuropathy characterized by recovery of vision and by an unusual mitochondrial genetic etiology. Am. J. Hum. Genet. 51, 1218–1228 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stone, E. M. et al. Visual recovery in patients with Leber's hereditary optic neuropathy and the 11778 mutation. J. Clin. Neuroophthalmol. 12, 10–14 (1992).

    CAS  PubMed  Google Scholar 

  14. Oostra, R. J. et al. Leber's hereditary optic neuropathy: correlations between mitochondrial genotype and visual outcome. J. Med. Genet. 31, 280–286 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spruijt, L. et al. Influence of mutation type on clinical expression of Leber hereditary optic neuropathy. Am. J. Ophthalmol. 141, 676–682 (2006).

    Article  PubMed  Google Scholar 

  16. Carelli, V. et al. Idebenone treatment in Leber's hereditary optic neuropathy. Brain 134, e188 (2011).

    Article  PubMed  Google Scholar 

  17. Johns, D. R., Smith, K. H. & Miller, N. R. Leber's hereditary optic neuropathy: clinical manifestations of the 3460 mutation. Arch. Ophthalmol. 110, 1577–1581 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Obermaier-Kusser, B. et al. Features of mtDNA mutation patterns in European pedigrees and sporadic cases with Leber hereditary optic neuropathy. Am. J. Hum. Genet. 55, 1063–1066 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Barboni, P. et al. Retinal nerve fiber layer evaluation by optical coherence tomography in Leber's hereditary optic neuropathy. Ophthalmology 112, 120–126 (2005).

    Article  PubMed  Google Scholar 

  20. Barboni, P. et al. Leber's hereditary optic neuropathy with childhood onset. Invest. Ophthalmol. Vis. Sci. 47, 5303–5309 (2006).

    Article  PubMed  Google Scholar 

  21. Ramos Cdo, V. et al. Association of optic disc size with development and prognosis of Leber's hereditary optic neuropathy. Invest. Ophthalmol. Vis. Sci. 50, 1666–1674 (2009).

    Article  PubMed  Google Scholar 

  22. Hoyt, C. S. Autosomal dominant optic atrophy—a spectrum of disability. Ophthalmology 87, 245–251 (1980).

    Article  CAS  PubMed  Google Scholar 

  23. Cohn, A. C. et al. The natural history of OPA1-related autosomal dominant optic atrophy. Br. J. Ophthalmol. 92, 1333–1336 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Johnson, R. L. et al. Dominant optic atrophy. Refining the clinical diagnostic criteria in light of genetic linkage studies. Ophthalmology 106, 123–128 (1999).

    Article  Google Scholar 

  25. Cohn, A. C. et al. Autosomal dominant optic atrophy: penetrance and expressivity in patients with OPA1 mutations. Am. J. Ophthalmol. 143, 656–662 (2007).

    Article  PubMed  Google Scholar 

  26. Kjer, B. et al. Dominant optic atrophy mapped to chromosome 3q region. II. Clinical and epidemiological aspects. Acta Ophthalmol. Scand. 74, 3–7 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Votruba, M. et al. Clinical features in affected individuals from 21 pedigrees with dominant optic atrophy. Arch. Ophthalmol. 116, 351–358 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Kjer, P. Infantile optic atrophy with dominant mode of inheritance. A clinical and genetic study of 19 Danish families. Acta Ophthalmol. 164 (Suppl. 54), 1–147 (1959).

    CAS  Google Scholar 

  29. Eliott, D., Traboulsi, E. I. & Maumenee, I. H. Visual prognosis in autosomal dominant optic atrophy (Kjer type). Am. J. Ophthalmol. 115, 360–367 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Puomila, A. et al. Dominant optic atrophy: correlation between clinical and molecular genetic studies. Acta Ophthalmol. Scand. 83, 337–346 (2005).

    Article  PubMed  Google Scholar 

  31. Yu-Wai-Man, P. et al. The prevalence and natural history of dominant optic atrophy due to OPA1 mutations. Ophthalmology 117, 1538–1546 (2010).

    Article  PubMed  Google Scholar 

  32. Cornille, K. et al. Reversible optic neuropathy with OPA1 exon 5b mutation. Ann. Neurol. 63, 667–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Yu-Wai-Man, P. et al. Multi-system neurological disease is common in patients with OPA1 mutations. Brain 133, 771–786 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu-Wai-Man, P. et al. Pattern of retinal ganglion cell loss in dominant optic atrophy due to OPA1 mutations. Eye 25, 596–602, (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang, S. et al. Heterozygous mutation of Opa1 in Drosophila shortens lifespan mediated through increased reactive oxygen species production. PLoS ONE 4, e4492 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Costeff, H. et al. A familial syndrome of infantile optic atrophy, movement disorder, and spastic paraplegia. Neurology 39, 595–597 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Ryu, S. W. et al. Optic atrophy 3 as a protein of the mitochondrial outer membrane induces mitochondrial fragmentation. Cell. Mol. Life Sci. 67, 2839–2850 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Hanein, S. et al. TMEM126A, encoding a mitochondrial protein, is mutated in autosomal-recessive nonsyndromic optic atrophy. Am. J. Hum. Genet. 84, 493–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, H. C. et al. Mitochondrial fusion is required for mtDNA stability in skeletqal muscle and tolerance of mtDNA mutations. Cell 141, 280–289 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Elachouri, G. et al. OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res. 21, 12–20 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dayanithi, G. et al. Characterization of Ca2+ signaling in postnatal mouse retinal ganglioin cells: involvement of OPA1 in Ca2+ clearance. Ophthalmic Genet. 31, 53–65 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. de Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Trevelyan, A. J. et al. Mitochondrial DNA mutations affect calcium handling in differentiated neurons. Brain 133, 787–796 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Casari, G. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93, 973–983 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Fortuna, F. et al., Visual system involvement in patients with Friedreichs ataxia. Brain 132, 116–123 (2009).

    Article  PubMed  Google Scholar 

  46. Stemmler, T. L. et al. Frataxin and mitochondrial FeS cluster biogenesis. J. Biol. Chem. 285, 26737–26743 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pfeffer, G., Majaama, K., Turnbull, D. M., Thorburn, D. & Chinnery, P. F. Treatment for mitochondrial disorders. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD004426. http://dx.doi.org/10.1002/14651858.CD004426.pub3.

  48. DiMauro, S. & Mancuso, M. Mitochondrial diseases: therapeutic approaches. Biosci. Rep. 27, 125–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Bresolin, N. et al. Clinical and biochemical correlations in mitochondrial myopathies treated with coenzyme Q10 . Neurology 38, 392–399 (1988).

    Article  Google Scholar 

  50. Bresolin, N. et al. Ubidecarenone in the treatment of mitochondrial myopathies: a multi-center double-blind trial. J. Neurol. Sci. 100, 70–78 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Geromel, V. et al. Coenzyme Q10 and idebenone in the therapy of respiratory chain diseases: rationale and comparative benefits. Mol. Genet. Metab. 77, 21–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Di Giovanni, S. et al. Coenzyme Q10 reverses pathological phenotype and reduces apoptosis in familial CoQ10 deficiency. Neurology 57, 515–518 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Huang, C. C., Kuo, H. C., Chu, C. C. & Kao, L. Y. Rapid visual recovery after coenzyme Q10 treatment of Leber hereditary optic neuropathy. J. Neuroophthalmol. 22, 66 (2002).

    Article  PubMed  Google Scholar 

  54. Olsen, R. K. et al. ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain 130, 2045–2054 (2007).

    Article  PubMed  Google Scholar 

  55. Tein, I. et al. Impaired skin fibroblast carnitine uptake in primary systemic carnitine deficiency manifested by childhood carnitine-responsive cardiomyopathy. Pediatr. Res. 28, 247–255 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Rodriguez, M. C. et al. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve 35, 235–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Tarnopolsky, M. A. The mitochondrial cocktail: rationale for combined nutraceutical therapy in mitochondrial cytopathies. Adv. Drug Deliv. Rev. 60, 1561–1567 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Giorgio, V. et al. The effects of idebenone on mitochondrial bioenergetics. Biochim. Biophys. Acta 1817, 363–369 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Angebault, C. et al. Idebenone increases mitochondrial complex I activity in fibroblasts from LHON patients while producing contradictory effects on respiration. BMC Res. Notes 4, 557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Haefeli, R. H. et al. NQO1-dependent redox cycling of idebenone: effects on cellular redox potential and energy levels. PLoS ONE 6, e17963 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mariotti, C. et al. Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 60, 1676–1679 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Di Prospero, N. A., Baker, A., Jeffries, N. & Fishbeck, K. H. Neurological effects of high-dose idebenone in patients with Friedreich's ataxia: a randomized, placebo-controlled trial. Lancet Neurol. 6, 878–886 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Lynch, D. R., Perlman, S. L. & Meier, T. A phase 3, double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. Arch. Neurol. 67, 941–947 (2010).

    Article  PubMed  Google Scholar 

  64. Lagedrost, S. J. et al. Idebenone in Friedreich ataxia cardiomyopathy—results from a 6-month phase III study (IONIA). Am. Heart J. 161, 639–645 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Imachi, J. & Nishizaki, K. The patients of Leber's optic atrophy should be treated neuro-surgically [Japanese]. Nihon Ganka Kiyo 21, 209–217 (1970).

    CAS  PubMed  Google Scholar 

  66. Haroon, M. F. et al. Minocycline, a possible neuroprotective agent in Leber's hereditary optic neuropathy (LHON): studies of cybrid cells bearing 11778 mutation. Neurobiol. Dis. 28, 237–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Wong, A. & Cortopassi, G. mtDNA mutations confer cellular sensitivity to oxidant stress that is partially rescued by calcium depletion and cyclosporine A. Biochem. Biophys. Res. Commun. 239, 139–145 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Seaton, T. A., Cooper, J. M. & Schapira, A. H. Cyclosporin inhibition of apoptosis by mitochondrial complex I toxins. Brain Res. 809, 12–17 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Porcelli, A. M. et al. Respiratory complex I dysfunction due to mitochondrial DNA mutations shifts the voltage threshold for opening of the permeability transition pore toward resting levels. J. Biol. Chem. 284, 2045–2052 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Ghelli, A. et al. Protection against oxidant-induced apoptosis by exogenous glutathione in Leber hereditary optic neuropathy cybrids. Invest. Ophthalmol. Vis. Sci. 49, 671–676 (2008).

    Article  PubMed  Google Scholar 

  71. Hudson, G. et al. Identification of an X-chromosome locus and haplotype modulating the phenotype of a mitochondrial DNA disorder. Am. J. Hum. Genet. 77, 1086–1091 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shankar, S. P. et al. Evidence for a novel X-linked modifier locus for Leber hereditary optic neuropathy. Ophthalmic Genet. 29, 17–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Ji, Y. L. et al. Evaluation of the X-linked modifier loci for Leber hereditary optic neuropathy with the G11778A mutation in Chinese. Mol. Vis. 16, 416–424 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Giordano, C. et al. Oestrogens ameliorate mitochondrial dysfunction in Leber's hereditary optic neuropathy. Brain 134, 220–234 (2011).

    Article  PubMed  Google Scholar 

  75. Mashima, Y., Hiida, Y. & Oguchi, Y. Remission of Leber's hereditary optic neuropathy with idebenone. Lancet 340, 368–369 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Cortelli, P. et al. Clinical and brain bioenergetics improvement with idebenone in a patient with Leber hereditary optic neuropathy: a clinical and P-MRS study. J. Neurol. Sci. 148, 25–31 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Carelli, V. et al. Leber's hereditary optic neuroapathy (LHON) with 14484/ND6 mutation in a North African patient. J. Neurol. Sci. 160, 183–188 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Mashima, Y., Kigasawa, K., Wakakura, M. & Oguchi, Y. Do idebenone and vitamin therapy shorten the time to achieve visual recovery in Leber hereditary optic neuropathy? J. Neuroophthalmol. 20, 166–170 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Barnils, N., Mesa, E., Munoz, S., Ferrer-Artola, A. & Arruga, J. Response to idebenone and multivitamin therapy in Leber's hereditary optic neuropathy [Spanish]. Arch. Soc. Esp. Oftalmol. 82, 377–380 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Klopstock, K. et al. A randomized placebo-controlled trial of idebenone in Leber's hereditary optic neuropathy. Brain 134, 2677–2686 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Newman, N. J. Treatment of Leber hereditary optic neuropathy. Brain 134, 2447–2450 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sadun, A. A. et al. Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy. Arch. Neurol. 69, 331–338 (2012).

    Article  PubMed  Google Scholar 

  83. DiMauro, S. & Mancuso, M. Mitochondrial diseases: therapeutic approaches. Biosci. Rep. 27, 125–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Koilkonda, R. D. & Guy, J. Leber's hereditary optic neuropathy-gene therapy: from benchtop to bedside. J. Ophthalmol. 2011, 179412 (2011).

    Article  PubMed  CAS  Google Scholar 

  85. Bouaita, A. et al. Downregulation of apoptosis-inducing factor in Harlequin mice induces progressive and severe optic atrophy which is durably prevented by AAV2–AIF1 gene therapy. Brain 135, 35–52 (2012).

    Article  PubMed  Google Scholar 

  86. Flierl, A. et al. Targeted delivery of DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. Mol. Ther. 7, 550–557 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Guy, J. et al. Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy. Ann. Neurol. 52, 534–4270 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Manfredi, G. et al. Rescue of an ATP synthesis deficiency in mtDNA-mutant human cells by transfer of MTATP6, a mtDNA-encoded gene, to the nucleus. Nat. Genet. 30, 394–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Bonnet, C. et al. Allotopic mRNA localization to the mitochondrial surface rescues respiratory chain defects in fibroblasts harboring mitochondrial DNA mutations affecting complex I or V subunits. Rejuvenation Res. 10, 127–144 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Marella, M., Seo, B. B., Thomas, B. B., Matsuno-Yagi, A. & Yagi, T. Successful amelioration of mitochondrial optic neuropathy using the yeast NDI1 gene in a rat animal model. PLoS ONE 5, e11472 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Guy, J. et al. Efficiency and safety of AAV mediated gene delivery of the human ND4 complex I subunit in the mouse visual system. Invest. Ophthalmol. Vis. Sci. 50, 4205–4214 (2009).

    Article  PubMed  Google Scholar 

  92. Qi, X., Sun, L., Lewin, A. S., Hauswirth, W. W. & Guy, J. The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse. Invest. Ophthalmol. Vis. Sci. 48, 1–10 (2007).

    Article  PubMed  Google Scholar 

  93. Ellouze, S. et al. Optimized allotropic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. Am. J. Hum. Genet. 83, 373–387 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Floreani, M. et al. Antioxidant defences in cybrids harboring mtDNA mutations associated with Leber's hereditary optic neuropathy. FEBS J. 272, 1124–1135 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Qi, X. et al. Use of mitochondrial antioxidant defenses for rescue of cells with a Leber hereditary optic neuropathy-causing mutation. Arch. Ophthalmol. 125, 268–272 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Qi, X. et al. SOD2 gene transfer protects against optic neuropathy induced by deficiency of complex I. Ann. Neurol. 56, 182–191 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Yu, H. et al. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber's hereditary optic neuropathy in a mouse model. Proc. Natl Acad. Sci. USA 109, E1238–E1247 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tanaka, M. et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J. Biomed. Sci. 9, 534–541 (2002).

    CAS  PubMed  Google Scholar 

  99. Bacman, S. R. et al. Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a 'differential multiple cleavage-site' model. Gene Ther. 14, 1309–1318 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chinnery, P. F., Andrews, R. M., Turnbull, D. M. & Howell, N. N. Leber hereditary optic neuropathy: does heteroplasmy influence the inheritance and expression of the G11778A mitochondrial DNA mutation? Am. J. Med. Genet. 98, 235–243 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Tachibana, M. et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461, 367–372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Craven, L. et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465, 82–85 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lam, B. J. et al. Leber hereditary optic neuropathy gene therapy clinical trial recruitment: year 1. Arch. Ophthalmol. 128, 1129–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Perales-Clemente, E. et al. Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task? Nucleic Acids Res. 39, 225–234 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Figueroa-Martinez, F. et al. What limits the allotropic expression of nucleus-encoded mitochondrial genes? The case of the chimeric Cox3 and Atp6 genes. Mitochondrion 11, 147–154 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Kyriakouli, D. S. et al. Progress and prospects: gene therapy for mitochondrial DNA disease. Gene Ther. 15, 1017–1023 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Stelmack, J. A. et al. Outcomes of the Veterans Affairs Low Vision Intervention Trial (LOVIT). Arch. Ophthalmol. 126, 608–617 (2008).

    Article  PubMed  Google Scholar 

  108. Kirkman, M. A. et al. Quality of life in patients with Leber hereditary optic neuropathy. Invest. Ophthalmol. Vis. Sci. 50, 3112–3115 (2009).

    Article  PubMed  Google Scholar 

  109. Kirkman, M. et al. Gene-environment interactions in Leber hereditary optic neuropathy. Brain 132, 2317–2326 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Newman, N. J. Leber hereditary optic neuropathy: bad habits, bad vision? Brain 132, 2306–2308 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Toomes, C. et al. Spectrum, frequency, and penetrance of OPA1 mutations in dominant optic atrophy. Hum. Mol. Genet. 10, 1369–1378 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Brown, D. T. et al. Transmission of mitochondrial DNA disorders: possibilities for the future. Lancet 368, 87–89 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Huoponen, K. et al. Genetic counseling in Leber hereditary optic neuropathy (LHON). Acta Ophthalmol. Scand. 80, 38–43 (2002).

    Article  PubMed  Google Scholar 

  114. Harding, A. E., Sweeney, M. G., Govan, G. G. & Riordan-Eva, P. Pedigree analysis in Leber hereditary optic neuropathy families with a pathogenic mtDNA mutation. Am. J. Hum. Genet. 57, 77–86 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Macmillan, C. et al. Pedigree analysis of French Canadian families with T14484C Leber's hereditary optic neuropathy. Neurology 50, 417–422 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Man, P. Y. et al. The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am. J. Hum. Genet. 72, 339–339 (2003).

    Article  Google Scholar 

  117. Nikoskelainen, E. K. Clinical picture of LHON. Clin. Neurosci. 2, 115–120 (1994).

    Google Scholar 

  118. Mackey, D. A. & Buttery, R. G. Leber hereditary optic neuropathy in Australia. Aust. N. Z. J. Ophthalmol. 20, 177–184 (1992).

    Article  CAS  PubMed  Google Scholar 

  119. Sadun, A. A. et al. Extensive investigation of a large Brazilian pedigree of 11778/haplogroup J Leber hereditary optic neuropathy. Am. J. Ophthalmol. 136, 231–238 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by an unrestricted departmental grant (Department of Ophthalmology, Emory University, Atlanta, GA, USA) from Research to Prevent Blindness Inc., New York. N. Newman is a recipient of the Research to Prevent Blindness Lew R. Wasserman Merit Award.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

N. J. Newman has acted as a consultant for Santhera Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, N. Treatment of hereditary optic neuropathies. Nat Rev Neurol 8, 545–556 (2012). https://doi.org/10.1038/nrneurol.2012.167

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing