Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurobiology of injury to the developing brain

Abstract

Owing to improved survival rates of premature newborns, the number of very low birth weight infants is rising. Preterm infants display a greater propensity for brain injury caused by hypoxic or ischemic events, infection and/or inflammation that results in prominent white matter injury (WMI) than infants carried to full term. The intrinsic vulnerability of developing oligodendroglia to excitotoxic, oxidative and inflammatory forms of injury is a major factor in the pathogenesis of this condition. Furthermore, activated microglia and astrogliosis are critically involved in triggering WMI. Currently, no specific treatment is available for this kind of injury. Injury to the premature brain can substantially influence brain development and lead to disability. Impairment of the main motor pathways, such as the corticospinal tract, in the perinatal period contributes substantially to clinical outcome. Advanced neuroimaging techniques have led to greater understanding of the nature of both white and gray matter injury in preterm infants. Further research is warranted to examine the translational potential of preclinical therapeutic strategies for controlling such injury and preserving the integrity of motor pathways in preterm infants.

Key Points

  • Premature birth remains a substantial economic and public health burden

  • Periventricular leukomalacia is the predominant form of white matter injury (WMI) and the leading cause of cerebral palsy in premature infants

  • Maturation-dependent vulnerability of developing oligodendroglia to excitotoxicity and oxidative and inflammatory forms of injury is an important factor in the pathogenesis of WMI

  • Activated microglia and astrogliosis are critically involved in triggering WMI

  • Impairment of corticospinal tract development and function in the perinatal period contributes extensively to abnormalities of motor system function

  • Advanced neuroimaging techniques have led to greater understanding of the nature of white and gray matter injury in preterm infants

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oligodendrocyte development.
Figure 2: Pathogenesis of cerebral white matter injury in the premature infant.

Similar content being viewed by others

References

  1. Volpe, J. J. (Ed.) Neurology of the Newborn (Saunders, Philadelphia, 2001).

    Google Scholar 

  2. Volpe, J. J. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 8, 110–124 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pleasure, D., Soulika, A., Singh, S. K., Gallo, V. & Bannerman, P. Inflammation in white matter: clinical and pathophysiological aspects. Ment. Retard. Dev. Disabil. Res. Rev. 12, 141–146 (2006).

    Article  PubMed  Google Scholar 

  4. Deng, W., Pleasure, J. & Pleasure, D. Progress in periventricular leukomalacia. Arch. Neurol. 65, 1291–1295 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Inder, T. E. et al. Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann. Neurol. 46, 755–760 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Inder, T. E., Wells, S. J., Mogridge, N. B., Spencer, C. & Volpe, J. J. Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J. Pediatr. 143, 171–179 (2003).

    Article  PubMed  Google Scholar 

  7. Sizonenko, S. V. et al. Selective cortical alteration after hypoxic-ischemic injury in the very immature rat brain. Pediatr. Res. 54, 263–269 (2003).

    Article  PubMed  Google Scholar 

  8. Nagae, L. M. et al. Diffusion tensor imaging in children with periventricular leukomalacia: variability of injuries to white matter tracts. AJNR Am. J. Neuroradiol. 28, 1213–1222 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neil, J., Miller, J., Mukherjee, P. & Huppi, P. S. Diffusion tensor imaging of normal and injured developing human brain—a technical review. NMR Biomed. 15, 543–552 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Larroque, B. et al. Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): a longitudinal cohort study. Lancet 371, 813–820 (2008).

    Article  PubMed  Google Scholar 

  11. Banker, B. Q. & Larroche, J. C. Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch. Neurol. 7, 386–410 (1962).

    Article  CAS  PubMed  Google Scholar 

  12. Leviton, A. & Gilles, F. H. Acquired perinatal leukoencephalopathy. Ann. Neurol. 16, 1–8 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Follett, P. L. et al. Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J. Neurosci. 24, 4412–4420 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Follett, P. L., Rosenberg, P. A., Volpe, J. J. & Jensen, F. E. NBQX attenuates excitotoxic injury in developing white matter. J. Neurosci. 20, 9235–9241 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jensen, F. E. Developmental factors regulating susceptibility to perinatal brain injury and seizures. Curr. Opin. Pediatr. 18, 628–633 (2006).

    Article  PubMed  Google Scholar 

  16. Sizonenko, S. V., Kiss, J. Z., Inder, T., Gluckman, P. D. & Williams, C. E. Distinctive neuropathologic alterations in the deep layers of the parietal cortex after moderate ischemic-hypoxic injury in the P3 immature rat brain. Pediatr. Res. 57, 865–872 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Bemelmans, A. P. et al. Lentiviral-mediated gene transfer of brain-derived neurotrophic factor is neuroprotective in a mouse model of neonatal excitotoxic challenge. J. Neurosci. Res. 83, 50–60 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Carpentier, P. A., Duncan, D. S. & Miller, S. D. Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav. Immun. 22, 140–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Coban, C. et al. Pathological role of Toll-like receptor signaling in cerebral malaria. Int. Immunol. 19, 67–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Jung, D. Y. et al. TLR4, but not TLR2, signals autoregulatory apoptosis of cultured microglia: a critical role of IFN-β as a decision maker. J. Immunol. 174, 6467–6476 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Lee, S. J. & Lee, S. Toll-like receptors and inflammation in the CNS. Curr. Drug Targets Inflamm. Allergy 1, 181–191 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Jack, C. S. et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol. 175, 4320–4330 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Esen, N. & Kielian, T. Central role for MyD88 in the responses of microglia to pathogen-associated molecular patterns. J. Immunol. 176, 6802–6811 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Griffiths, M., Neal, J. W. & Gasque, P. Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins. Int. Rev. Neurobiol. 82, 29–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Nakanishi, K., Yoshimoto, T., Tsutsui, H. & Okamura, H. Interleukin-18 regulates both Th1 and Th2 responses. Annu. Rev. Immunol. 19, 423–474 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Lehnardt, S. et al. The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J. Neurosci. 22, 2478–2486 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Coumans, A. B. et al. Intracisternal application of endotoxin enhances the susceptibility to subsequent hypoxic-ischemic brain damage in neonatal rats. Pediatr. Res. 53, 770–775 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Volpe, J. J. Cerebral white matter injury of the premature infant—more common than you think. Pediatrics 112, 176–180 (2003).

    Article  PubMed  Google Scholar 

  29. Vollmer, B. et al. Predictors of long-term outcome in very preterm infants: gestational age versus neonatal cranial ultrasound. Pediatrics 112, 1108–1114 (2003).

    Article  PubMed  Google Scholar 

  30. Raff, M. C., Miller, R. H. & Noble, M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303, 390–396 (1983).

    Article  CAS  PubMed  Google Scholar 

  31. Pfeiffer, S. E., Warrington, A. E. & Bansal, R. The oligodendrocyte and its many cellular processes. Trends Cell Biol. 3, 191–197 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Levine, J. M., Reynolds, R. & Fawcett, J. W. The oligodendrocyte precursor cell in health and disease. Trends Neurosci. 24, 39–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Deng, W. & Poretz, R. D. Oligodendroglia in developmental neurotoxicity. Neurotoxicology 24, 161–178 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Back, S. A. et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J. Neurosci. 21, 1302–1312 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kinney, H. C. & Back, S. A. Human oligodendroglial development: relationship to periventricular leukomalacia. Semin. Pediatr. Neurol. 5, 180–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Sizonenko, S. V., Camm, E. J., Dayer, A. & Kiss, J. Z. Glial responses to neonatal hypoxic-ischemic injury in the rat cerebral cortex. Int. J. Dev. Neurosci. 26, 37–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Juurlink, B. H. Response of glial cells to ischemia: roles of reactive oxygen species and glutathione. Neurosci. Biobehav. Rev. 21, 151–166 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Folkerth, R. D. et al. Developmental lag in superoxide dismutases relative to other antioxidant enzymes in premyelinated human telencephalic white matter. J. Neuropathol. Exp. Neurol. 63, 990–999 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Li, J. et al. Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present. J. Neurosci. 28, 5321–5330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oka, A., Belliveau, M. J., Rosenberg, P. A. & Volpe, J. J. Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J. Neurosci. 13, 1441–1453 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. DeSilva, T. M., Kabakov, A. Y., Goldhoff, P. E., Volpe, J. J. & Rosenberg, P. A. Regulation of glutamate transport in developing rat oligodendrocytes. J. Neurosci. 29, 7898–7908 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Back, S. A. et al. Hypoxia-ischemia preferentially triggers glutamate depletion from oligodendroglia and axons in perinatal cerebral white matter. J. Cereb. Blood Flow Metab. 27, 334–347 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Desilva, T. M. et al. The glutamate transporter EAAT2 is transiently expressed in developing human cerebral white matter. J. Comp. Neurol. 501, 879–890 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deng, W., Rosenberg, P. A., Volpe, J. J. & Jensen, F. E. Calcium-permeable AMPA/kainate receptors mediate toxicity and preconditioning by oxygen-glucose deprivation in oligodendrocyte precursors. Proc. Natl Acad. Sci. USA 100, 6801–6806 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patneau, D. K., Wright, P. W., Winters, C., Mayer, M. L. & Gallo, V. Glial cells of the oligodendrocyte lineage express both kainate- and AMPA-preferring subtypes of glutamate receptor. Neuron 12, 357–371 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Gallo, V. & Ghiani, C. A. Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol. Sci. 21, 252–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Alberdi, E., Sanchez-Gomez, M. V., Marino, A. & Matute, C. Ca2+ influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. Neurobiol. Dis. 9, 234–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Sánchez-Gómez, M. V. & Matute, C. AMPA and kainate receptors each mediate excitotoxicity in oligodendroglial cultures. Neurobiol. Dis. 6, 475–485 (1999).

    Article  PubMed  CAS  Google Scholar 

  49. Karadottir, R., Cavelier, P., Bergersen, L. H. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Salter, M. G. & Fern, R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438, 1167–1171 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Micu, I. et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439, 988–992 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Ge, W. P. et al. Long-term potentiation of neuron–glia synapses mediated by Ca2+-permeable AMPA receptors. Science 312, 1533–1537 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Pende, M. et al. Neurotransmitter- and growth factor-induced cAMP response element binding protein phosphorylation in glial cell progenitors: role of calcium ions, protein kinase C, and mitogen-activated protein kinase/ribosomal S6 kinase pathway. J. Neurosci. 17, 1291–1301 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yuan, X., Eisen, A. M., McBain, C. J. & Gallo, V. A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development 125, 2901–2914 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Kukley, M., Capetillo-Zarate, E. & Dietrich, D. Vesicular glutamate release from axons in white matter. Nat. Neurosci. 10, 311–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Ziskin, J. L., Nishiyama, A., Rubio, M., Fukaya, M. & Bergles, D. E. Vesicular release of glutamate from unmyelinated axons in white matter. Nat. Neurosci. 10, 321–330 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lehnardt, S. et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc. Natl Acad. Sci. USA 100, 8514–8519 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kauppinen, T. M. & Swanson, R. A. The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience 145, 1267–1272 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Butovsky, O. et al. Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J. Clin. Invest. 116, 905–915 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, S. S. et al. Inhibitory action of minocycline on lipopolysaccharide-induced release of nitric oxide and prostaglandin E2 in BV2 microglial cells. Arch. Pharm. Res. 27, 314–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Pitt, D., Nagelmeier, I. E., Wilson, H. C. & Raine, C. S. Glutamate uptake by oligodendrocytes: implications for excitotoxicity in multiple sclerosis. Neurology 61, 1113–1120 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Billiards, S. S. et al. Development of microglia in the cerebral white matter of the human fetus and infant. J. Comp. Neurol. 497, 199–208 (2006).

    Article  PubMed  Google Scholar 

  64. Takahashi, J. L., Giuliani, F., Power, C., Imai, Y. & Yong, V. W. Interleukin-1beta promotes oligodendrocyte death through glutamate excitotoxicity. Ann. Neurol. 53, 588–595 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Wender, R. et al. Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J. Neurosci. 20, 6804–6810 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McQuillen, P. S. & Ferriero, D. M. Perinatal subplate neuron injury: implications for cortical development and plasticity. Brain Pathol. 15, 250–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Gressens, P. Mechanisms and disturbances of neuronal migration. Pediatr. Res. 48, 725–730 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Kostovic, I. & Rakic, P. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J. Comp. Neurol. 297, 441–470 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. McQuillen, P. S., Sheldon, R. A., Shatz, C. J. & Ferriero, D. M. Selective vulnerability of subplate neurons after early neonatal hypoxia-ischemia. J. Neurosci. 23, 3308–3315 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hanganu, I. L., Kilb, W. & Luhmann, H. J. Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J. Neurosci. 22, 7165–7176 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nguyen, V. & McQuillen, P. S. AMPA and metabotropic excitoxicity explain subplate neuron vulnerability. Neurobiol. Dis. 37, 195–207 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Weiss, J. et al. Neonatal hypoxia suppresses oligodendrocyte Nogo-A and increases axonal sprouting in a rodent model for human prematurity. Exp. Neurol. 189, 141–149 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Ligam, P. et al. Thalamic damage in periventricular leukomalacia: novel pathologic observations relevant to cognitive deficits in survivors of prematurity. Pediatr. Res. 65, 524–529 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pendlebury, S. T., Blamire, A. M., Lee, M. A., Styles, P. & Matthews, P. M. Axonal injury in the internal capsule correlates with motor impairment after stroke. Stroke 30, 956–962 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Manning, S. M. et al. NMDA receptor blockade with memantine attenuates white matter injury in a rat model of periventricular leukomalacia. J. Neurosci. 28, 6670–6678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Deng, W., Wang, H., Rosenberg, P. A., Volpe, J. J. & Jensen, F. E. Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress. Proc. Natl Acad. Sci. USA 101, 7751–7756 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Keller, M. et al. Erythropoietin is neuroprotective against NMDA-receptor-mediated excitotoxic brain injury in newborn mice. Neurobiol. Dis. 24, 357–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Sakanaka, M. et al. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc. Natl Acad. Sci. USA 95, 4635–4640 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kumral, A. et al. Neuroprotective effect of erythropoietin on hypoxic-ischemic brain injury in neonatal rats. Biol. Neonate 83, 224–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Sola, A., Rogido, M., Lee, B. H., Genetta, T. & Wen, T. C. Erythropoietin after focal cerebral ischemia activates the Janus kinase-signal transducer and activator of transcription signaling pathway and improves brain injury in postnatal day 7 rats. Pediatr. Res. 57, 481–487 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Chang, Y. S. et al. Erythropoietin improves functional and histological outcome in neonatal stroke. Pediatr. Res. 58, 106–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Yatsiv, I. et al. Erythropoietin is neuroprotective, improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury. FASEB J. 19, 1701–1703 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Arvin, K. L. et al. Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann. Neurol. 52, 54–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Amin, A. R. et al. A novel mechanism of action of tetracyclines: effects on nitric oxide synthases. Proc. Natl Acad. Sci. USA 93, 14014–14019 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brundula, V., Rewcastle, N. B., Metz, L. M., Bernard, C. C. & Yong, V. W. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 125, 1297–1308 (2002).

    Article  PubMed  Google Scholar 

  86. Chen, M. et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. 6, 797–801 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Diguet, E. et al. Neuroprotective agents for clinical trials in Parkinson's disease: a systematic assessment. Neurology 62, 158 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Du, Y. et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc. Natl Acad. Sci. USA 98, 14669–14674 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kriz, J., Nguyen, M. D. & Julien, J. P. Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 10, 268–278 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, S. M. et al. Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J. Neurotrauma 20, 1017–1027 (2003).

    Article  PubMed  Google Scholar 

  91. Tikka, T. M. et al. Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease. Brain 125, 722–731 (2002).

    Article  PubMed  Google Scholar 

  92. Teng, Y. D. et al. Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc. Natl Acad. Sci. USA 101, 3071–3076 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fan, L. W. et al. Minocycline reduces lipopolysaccharide-induced neurological dysfunction and brain injury in the neonatal rat. J. Neurosci. Res. 82, 71–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Cai, Z., Lin, S., Fan, L. W., Pang, Y. & Rhodes, P. G. Minocycline alleviates hypoxic-ischemic injury to developing oligodendrocytes in the neonatal rat brain. Neuroscience 137, 425–435 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, K. & Sejnowski, T. J. A universal scaling law between gray matter and white matter of cerebral cortex. Proc. Natl Acad. Sci. USA 97, 5621–5626 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Olney, J. W., Ikonomidou, C., Mosinger, J. L. & Frierdich, G. MK-801 prevents hypobaric-ischemic neuronal degeneration in infant rat brain. J. Neurosci. 9, 1701–1704 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rothman, S. M. & Olney, J. W. Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Ann. Neurol. 19, 105–111 (1986).

    Article  CAS  PubMed  Google Scholar 

  98. Lipton, S. A. & Rosenberg, P. A. Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330, 613–622 (1994).

    Article  CAS  PubMed  Google Scholar 

  99. Choi, D. W. & Rothman, S. M. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13, 171–182 (1990).

    Article  CAS  PubMed  Google Scholar 

  100. Choi, D. W. Excitotoxic cell death. J. Neurobiol. 23, 1261–1276 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Yoshioka, A., Bacskai, B. & Pleasure, D. Pathophysiology of oligodendroglial excitotoxicity. J. Neurosci. Res. 46, 427–437 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Yoshioka, A. et al. Non-N-methyl-D-aspartate glutamate receptors mediate oxygen–glucose deprivation-induced oligodendroglial injury. Brain Res. 854, 207–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Itoh, T. et al. AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes. J. Neurochem. 81, 390–402 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Itoh, T. et al. Diminished calcium homeostasis and increased susceptibility to excitotoxicity of JS 3/16 progenitor cells after differentiation to oligodendroglia. Glia 31, 165–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Matute, C., Sanchéz-Goméz, M. V., Martinez-Millán, L. & Miledi, R. Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc. Natl Acad. Sci. USA 94, 8830–8835 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McDonald, J. W., Althomsons, S. P., Hyrc, K. L., Choi, D. W. & Goldberg, M. P. Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat. Med. 4, 291–297 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Fern, R. & Moller, T. Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J. Neurosci. 20, 34–42 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Baumann, N. & Pham-Dinh, D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol. Rev. 81, 871–927 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Haynes, R. L. et al. Oxidative and nitrative injury in periventricular leukomalacia: a review. Brain Pathol. 15, 225–233 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Haynes, R. L. et al. Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J. Neuropathol. Exp. Neurol. 62, 441–450 (2003).

    Article  PubMed  Google Scholar 

  111. Dommergues, M. A., Plaisant, F., Verney, C. & Gressens, P. Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection. Neuroscience 121, 619–628 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Noda, M., Nakanishi, H., Nabekura, J. & Akaike, N. AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J. Neurosci. 20, 251–258 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ivacko, J. A., Sun, R. & Silverstein, F. S. Hypoxic-ischemic brain injury induces an acute microglial reaction in perinatal rats. Pediatr. Res. 39, 39–47 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Silverstein, F. S. et al. Cytokines and perinatal brain injury. Neurochem. Int. 30, 375–383 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Debillon, T. et al. Patterns of cerebral inflammatory response in a rabbit model of intrauterine infection-mediated brain lesion. Brain Res. Dev. Brain Res. 145, 39–48 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Debillon, T. et al. Effect of maternal antibiotic treatment on fetal periventricular white matter cell death in a rabbit intrauterine infection model. Acta Paediatr. 92, 81–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Saliba, E. & Henrot, A. Inflammatory mediators and neonatal brain damage. Biol. Neonate 79, 224–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Park, S. Y., Billiar, T. R. & Seol, D. W. Hypoxia inhibition of apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Biochem. Biophys. Res. Commun. 291, 150–153 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Pang, Y., Cai, Z. & Rhodes, P. G. Disturbance of oligodendrocyte development, hypomyelination and white matter injury in the neonatal rat brain after intracerebral injection of lipopolysaccharide. Brain Res. Dev. Brain Res. 140, 205–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Hermann, G. E., Rogers, R. C., Bresnahan, J. C. & Beattie, M. S. Tumor necrosis factor-alpha induces cFOS and strongly potentiates glutamate-mediated cell death in the rat spinal cord. Neurobiol. Dis. 8, 590–599 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Barger, S. W. & Basile, A. S. Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function. J. Neurochem. 76, 846–854 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Golde, S., Chandran, S., Brown, G. C. & Compston, A. Different pathways for iNOS-mediated toxicity in vitro dependent on neuronal maturation and NMDA receptor expression. J. Neurochem. 82, 269–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Murphy, S. Production of nitric oxide by glial cells: regulation and potential roles in the CNS. Glia 29, 1–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Bernardo, A., Greco, A., Levi, G. & Minghetti, L. Differential lipid peroxidation, Mn superoxide, and bcl-2 expression contribute to the maturation-dependent vulnerability of oligodendrocytes to oxidative stress. J. Neuropathol. Exp. Neurol. 62, 509–519 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Tikka, T., Fiebich, B. L., Goldsteins, G., Keinanen, R. & Koistinaho, J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J. Neurosci. 21, 2580–2588 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lechpammer, M. et al. Minocycline treatment following hypoxic/ischaemic injury attenuates white matter injury in a rodent model of periventricular leucomalacia. Neuropathol. Appl. Neurobiol. 34, 379–393 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. V. Selvaraj for his critical reading of this manuscript. This work was in part supported by grants from the NIH (RO1 NS059043 and RO1 ES015988), the National Multiple Sclerosis Society, the Roche Foundation for Anemia Research, the Feldstein Medical Foundation, and Shriners Hospitals for Children.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, W. Neurobiology of injury to the developing brain. Nat Rev Neurol 6, 328–336 (2010). https://doi.org/10.1038/nrneurol.2010.53

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.53

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing