Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Nucleoid occlusion and bacterial cell division

Abstract

The bacterial cell cycle requires the tight regulation and precise coordination of several sophisticated cellular processes. Prominent among them is the formation of the dividing wall or septum, which has to take place at the right time and place to ensure equality of the progeny and integrity of the genome. Nucleoid occlusion is a defence mechanism that prevents the chromosome from being bisected and broken by the division septum. It does so by preventing Z ring formation near the nucleoid, which also helps to determine the location of septation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temporal and spatial regulation of cell division by nucleoid occlusion and the Min system in rod-shaped bacteria.
Figure 2: Models for the action of SlmA.
Figure 3: Binding sites of nucleoid occlusion factors.

Similar content being viewed by others

References

  1. Toro, E. & Shapiro, L. Bacterial chromosome organization and segregation. Cold Spring Harb. Perspect. Biol. 2, a000349 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adams, D. W. & Errington, J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nature Rev. Microbiol. 7, 642–653 (2009).

    Article  CAS  Google Scholar 

  3. Mukherjee, A. & Lutkenhaus, J. Guanine nucleotide-dependent assembly of FtsZ into filaments. J. Bacteriol. 176, 2754–2758 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Erickson, H. P. FtsZ, a prokaryotic homolog of tubulin? Cell 80, 367–370 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Errington, J., Daniel, R. A. & Scheffers, D. J. Cytokinesis in bacteria. Microbiol. Mol. Biol. Rev. 67, 52–65 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gamba, P., Veening, J. W., Saunders, N. J., Hamoen, L. W. & Daniel, R. A. Two-step assembly dynamics of the Bacillus subtilis divisome. J. Bacteriol. 191, 4186–4194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harry, E., Monahan, L. & Thompson, L. Bacterial cell division: the mechanism and its precison. Int. Rev. Cytol. 253, 27–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Barak, I. & Wilkinson, A. J. Division site recognition in Escherichia coli and Bacillus subtilis. FEMS Microbiol. Rev. 31, 311–326 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Lutkenhaus, J. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 76, 539–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Bramkamp, M. & van Baarle, S. Division site selection in rod-shaped bacteria. Curr. Opin. Microbiol. 12, 683–688 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Mulder, E. & Woldringh, C. L. Actively replicating nucleoids influence positioning of division sites in Escherichia coli filaments forming cells lacking DNA. J. Bacteriol. 171, 4303–4314 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woldringh, C. L., Mulder, E., Huls, P. G. & Vischer, N. Toporegulation of bacterial division according to the nucleoid occlusion model. Res. Microbiol. 142, 309–320 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Cook, W. R., de Boer, P. A. & Rothfield, L. I. Differentiation of the bacterial cell division site. Int. Rev. Cytol. 118, 1–31 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, L. J. & Errington, J. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117, 915–925 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Bernhardt, T. G. & de Boer, P. A. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 18, 555–564 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cho, H., McManus, H. R., Dove, S. L. & Bernhardt, T. G. Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist. Proc. Natl Acad. Sci. USA 108, 3773–3778 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tonthat, N. K. et al. Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check. EMBO J. 30, 154–164 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, L. J. et al. Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. EMBO J. 28, 1940–1952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Veiga, H., Jorge, A. M. & Pinho, M. G. Absence of nucleoid occlusion effector Noc impairs formation of orthogonal FtsZ rings during Staphylococcus aureus cell division. Mol. Microbiol. 8, 1365–2958 (2011).

    Google Scholar 

  20. Bernard, R., Marquis, K. A. & Rudner, D. Z. Nucleoid occlusion prevents cell division during replication fork arrest in Bacillus subtilis. Mol. Microbiol. 78, 866–882 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moriya, S., Rashid, R. A., Rodrigues, C. D. & Harry, E. J. Influence of the nucleoid and the early stages of DNA replication on positioning the division site in Bacillus subtilis. Mol. Microbiol. 76, 634–647 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Flardh, K. & Buttner, M. J. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nature Rev. Microbiol. 7, 36–49 (2009).

    Article  Google Scholar 

  23. Willemse, J., Borst, J. W., de Waal, E., Bisseling, T. & van Wezel, G. P. Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev. 25, 89–99 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sievers, J., Raether, B., Perego, M. & Errington, J. Characterization of the parB-like yyaA gene of Bacillus subtilis. J. Bacteriol. 184, 1102–1111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Woldringh, C. L. The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol. Microbiol. 45, 17–29 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratory is funded by the UK Biotechnology and Biological Sciences Research Council and the European Research Council. The authors thank D. Adams for comments on the manuscript and S.Ishikawa for assisting with the preparation of the S. aureus NBS distribution map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Errington.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Jeff Errington's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Errington, J. Nucleoid occlusion and bacterial cell division. Nat Rev Microbiol 10, 8–12 (2012). https://doi.org/10.1038/nrmicro2671

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2671

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology