Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Telomere structure and function in trypanosomes: a proposal

Abstract

Telomeres are specialized DNA–protein complexes that stabilize chromosome ends, protecting them from nucleolytic degradation and illegitimate recombination. Telomeres form a heterochromatic structure that can suppress the transcription of adjacent genes. These structures might have additional roles in Trypanosoma brucei, as the major surface antigens of this parasite are expressed during its infectious stages from subtelomeric loci. We propose that the telomere protein complexes of trypanosomes and vertebrates are conserved and offer the hypothesis that growth and breakage of telomeric repeats has an important role in regulating parasite antigenic variation in trypanosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Life-cycle stages and the surface coat of Trypanosoma brucei.
Figure 2: Evolution of telomere sequences.
Figure 3: Telomere protein complexes.
Figure 4: Telomere proteins of Trypanosoma brucei.
Figure 5: Telomere length, breakage and the frequency of antigenic variation: a model.

Similar content being viewed by others

References

  1. Barry, J. D. & McCulloch, R. Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv. Parasitol. 49, 1–70 (2001).

    Article  CAS  Google Scholar 

  2. Navarro, M. & Gull, K. A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei. Nature 414, 759–763 (2001).

    Article  CAS  Google Scholar 

  3. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  Google Scholar 

  4. Smogorzewska, A. & de Lange, T. Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem. 73, 177–208 (2004).

    Article  CAS  Google Scholar 

  5. Tham, W. H. & Zakian, V. A. Transcriptional silencing at Saccharomyces telomeres: implications for other organisms. Oncogene 21, 512–521 (2002).

    Article  CAS  Google Scholar 

  6. Chakhparonian, M. & Wellinger, R. J. Telomere maintenance and DNA replication: how closely are these two connected? Trends Genet. 19, 439–446 (2003).

    Article  CAS  Google Scholar 

  7. Forstemann, K., Hoss, M. & Lingner, J. Telomerase-dependent repeat divergence at the 3′ends of yeast telomeres. Nucleic Acids Res. 28, 2690–2694 (2000).

    Article  CAS  Google Scholar 

  8. Borst, P. & van Leeuwen, F. β-D-glucosyl-hydroxymethyluracil, a novel base in African trypanosomes and other Kinetoplastida. Mol. Biochem. Parasitol. 90, 1–8 (1997).

    Article  CAS  Google Scholar 

  9. DiPaolo, C., Kieft, R., Cross, M. & Sabatini, R. Regulation of trypanosome DNA glycosylation by a SWI2/SNF2-like protein. Mol. Cell 17, 441–451 (2005).

    Article  CAS  Google Scholar 

  10. van Leeuwen, F. et al. β-D-glucosyl-hydroxymethyluracil is a conserved DNA modification in kinetoplastid protozoans and is abundant in their telomeres. Proc. Natl Acad. Sci. USA 95, 2366–2371 (1998).

    Article  CAS  Google Scholar 

  11. Horn, D. & Barry, J. D. The central roles of telomeres and subtelomeres in antigenic variation in African trypanosomes. Chromosome Res. 13, 525–533 (2005).

    Article  CAS  Google Scholar 

  12. Horn, D., Spence, C. & Ingram, A. K. Telomere maintenance and length regulation in Trypanosoma brucei. EMBO J. 19, 2332–2339 (2000).

    Article  CAS  Google Scholar 

  13. Glover, L. & Horn, D. Repression of polymerase I-mediated gene expression at Trypanosoma brucei telomeres. EMBO Rep. 7, 93–99 (2006).

    Article  CAS  Google Scholar 

  14. Janzen, C. J., Lander, F., Dreesen, O. & Cross, G. A. M. Telomere length regulation and transcriptional silencing in KU80-deficient Trypanosoma brucei. Nucleic Acids Res. 32, 6575–6584 (2004).

    Article  CAS  Google Scholar 

  15. Dreesen, O., Li, B. & Cross, G. A. M. Telomere structure and shortening in telomerase-deficient Trypanosoma brucei. Nucleic Acids Res. 33, 4536–4543 (2005).

    Article  CAS  Google Scholar 

  16. Li, B., Espinal, A. & Cross, G. A. Trypanosome telomeres are protected by a homologue of mammalian TRF2. Mol. Cell. Biol. 25, 5011–5021 (2005).

    Article  CAS  Google Scholar 

  17. Sfeir, A. J., Chai, W., Shay, J. W. & Wright, W. E. Telomere-end processing the terminal nucleotides of human chromosomes. Mol. Cell 18, 131–138 (2005).

    Article  CAS  Google Scholar 

  18. Hockemeyer, D., Sfeir, A. J., Shay, J. W., Wright, W. E. & de Lange, T. POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO J. 24, 2667–2678 (2005).

    Article  CAS  Google Scholar 

  19. Chiurillo, M. A. & Ramirez, J. L. Characterization of Leishmania major Friedlin telomeric terminus. Mem. Inst. Oswaldo Cruz, 97, 343–346 (2002).

    Article  CAS  Google Scholar 

  20. de Lange, T. T-loops and the origin of telomeres. Nature Rev. Mol. Cell. Biol. 5, 323–329 (2004).

    Article  CAS  Google Scholar 

  21. Munoz-Jordan, J. L., Cross, G. A. M., de Lange, T. & Griffith, J. D. t-Loops at trypanosome telomeres. EMBO J. 20, 579–588 (2001).

    Article  CAS  Google Scholar 

  22. Nikitina, T. & Woodcock, C. L. Closed chromatin loops at the ends of chromosomes. J. Cell Biol. 166, 161–165 (2004).

    Article  CAS  Google Scholar 

  23. Tomaska, L., Willcox, S., Slezakova, J., Nosek, J. & Griffith, J. D. Taz1 binding to a fission yeast model telomere: formation of telomeric loops and higher order structures. J. Biol. Chem., 279, 50764–50772 (2004).

    Article  CAS  Google Scholar 

  24. Bernards, A., Michels, P. A., Lincke, C. R. & Borst, P. Growth of chromosome ends in multiplying trypanosomes. Nature 303, 592–597 (1983).

    Article  CAS  Google Scholar 

  25. Pays, E., Laurent, M., Delinte, K., Van Meirvenne, N. & Steinert, M. Differential size variations between transcriptionally active and inactive telomeres of Trypanosoma brucei. Nucleic Acids Res. 11, 8137–8147 (1983).

    Article  CAS  Google Scholar 

  26. Dreesen, O. & Cross, G. A. M. Telomerase-independent stabilization of short telomeres in Trypanosoma brucei. Mol. Cell. Biol. 26, 4911–4919 (2006).

    Article  CAS  Google Scholar 

  27. Kelleher, C., Teixeira, M. T., Forstemann, K. & Lingner, J. Telomerase: biochemical considerations for enzyme and substrate. Trends Biochem. Sci. 27, 572–579 (2002).

    Article  CAS  Google Scholar 

  28. Huffman, K. E., Levene, S. D., Tesmer, V. M., Shay, J. W. & Wright, W. E. Telomere shortening is proportional to the size of the G-rich telomeric 3′-overhang. J. Biol. Chem. 275, 19719–19722 (2000).

    Article  CAS  Google Scholar 

  29. Wright, W. E. & Shay, J. W. Historical claims and current interpretations of replicative aging. Nature Biotechnol. 20, 682–688 (2002).

    Article  CAS  Google Scholar 

  30. Munoz, D. P. & Collins, K. Biochemical properties of Trypanosoma cruzi telomerase. Nucleic Acids Res. 32, 5214–5222 (2004).

    Article  CAS  Google Scholar 

  31. Cano, M. I., Dungan, J. M., Agabian, N. & Blackburn, E. H. Telomerase in kinetoplastid parasitic protozoa. Proc. Natl Acad. Sci. USA 96, 3616–3621 (1999).

    Article  CAS  Google Scholar 

  32. d'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  CAS  Google Scholar 

  33. Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    Article  CAS  Google Scholar 

  34. Reddel, R. R. Alternative lengthening of telomeres, telomerase, and cancer. Cancer Lett. 194, 155–162 (2003).

    Article  CAS  Google Scholar 

  35. McEachern, M. J. & Haber, J. E. Break-induced replication and recombinational telomere elongation in yeast. Annu. Rev. Biochem. 75, 111–135 (2006).

    Article  CAS  Google Scholar 

  36. Kyrion, G., Liu, K., Liu, C. & Lustig, A. J. RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae. Genes Dev. 7, 1146–1159 (1993).

    Article  CAS  Google Scholar 

  37. Halme, A., Bumgarner, S., Styles, C. & Fink, G. R. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116, 405–415 (2004).

    Article  CAS  Google Scholar 

  38. Horn, D. & Cross, G. A. M. A developmentally regulated position effect at a telomeric locus in Trypanosoma brucei. Cell 83, 555–561 (1995).

    Article  CAS  Google Scholar 

  39. Castano, I. et al. Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol. Microbiol. 55, 1246–1258 (2005).

    Article  CAS  Google Scholar 

  40. Duraisingh, M. T. et al. Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum. Cell 121, 13–24 (2005).

    Article  CAS  Google Scholar 

  41. Lowell, J. E. & Cross, G. A. M. A variant histone H3 is enriched at telomeres in Trypanosoma brucei. J. Cell Sci. 117, 5937–5947 (2004).

    Article  CAS  Google Scholar 

  42. Harper, L., Golubovskaya, I. & Cande, W. Z. A bouquet of chromosomes. J. Cell. Sci. 117, 4025–4032 (2004).

    Article  CAS  Google Scholar 

  43. Dynek, J. N. & Smith, S. Resolution of sister telomere association is required for progression through mitosis. Science 304, 97–100 (2004).

    Article  CAS  Google Scholar 

  44. de Lange, T. in Telomeres 2nd ed. (eds de Lange, T., Lundblad, V. and Blackburn, E. H.) 387–431 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2006).

    Google Scholar 

  45. Maser, R. S. & DePinho, R. A. Telomeres and the DNA damage response: why the fox is guarding the henhouse. DNA Repair (Amst) 3, 979–988 (2004).

    Article  CAS  Google Scholar 

  46. Fisher, T. S. & Zakian, V. A. Ku: a multifunctional protein involved in telomere maintenance. DNA Repair (Amst) 4, 1215–1226 (2005).

    Article  CAS  Google Scholar 

  47. Stellwagen, A. E., Haimberger, Z. W., Veatch, J. R. & Gottschling, D. E. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev. 17, 2384–2395 (2003).

    Article  CAS  Google Scholar 

  48. Peterson, S. E. et al. The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nature Genet. 27, 64–67 (2001).

    Article  CAS  Google Scholar 

  49. Robinson, N. P., McCulloch, R., Conway, C., Browitt, A. & Barry, J. D. Inactivation of Mre11 does not affect VSG gene duplication mediated by homologous recombination in Trypanosoma brucei. J. Biol. Chem. 277, 26185–26193 (2002).

    Article  CAS  Google Scholar 

  50. Tan, K. S., Leal, S. T. & Cross, G. A. M. Trypanosoma brucei MRE11 is non-essential but influences growth, homologous recombination and DNA double-strand break repair. Mol. Biochem. Parasitol. 125, 11–21 (2002).

    Article  CAS  Google Scholar 

  51. Li, B., Oestreich, S. & de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell 101, 471–483 (2000).

    Article  CAS  Google Scholar 

  52. Henderson, E. in Telomeres 1st Edn (eds Blackburn, E. H. and Greider, C.) 11–34 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1995).

    Google Scholar 

  53. Kanoh, J. & Ishikawa, F. Composition and conservation of the telomeric complex. Cell. Mol. Life Sci. 60, 2295–2302 (2003).

    Article  CAS  Google Scholar 

  54. Vanhamme, L. et al. Differential RNA elongation controls the variant surface glycoprotein gene expression sites of Trypanosoma brucei. Mol. Microbiol. 36, 328–340 (2000).

    Article  CAS  Google Scholar 

  55. Wickstead, B., Ersfeld, K. & Gull, K. The small chromosomes of Trypanosoma brucei involved in antigenic variation are constructed around repetitive palindromes. Genome Res. 14, 1014–1024 (2004).

    Article  CAS  Google Scholar 

  56. Borst, P. & Ulbert, S. Control of VSG gene expression sites. Mol. Biochem. Parasitol. 114, 17–27 (2001).

    Article  CAS  Google Scholar 

  57. Morrison, L. J., Majiwa, P., Read, A. F. & Barry, J. D. Probabilistic order in antigenic variation of Trypanosoma brucei. Int. J. Parasitol. 35, 961–972 (2005).

    Article  CAS  Google Scholar 

  58. Rudenko, G., McCulloch, R., Dirks-Mulder, A. & Borst, P. Telomere exchange can be an important mechanism of variant surface glycoprotein gene switching in Trypanosoma brucei. Mol. Biochem. Parasitol. 80, 65–75 (1996).

    Article  CAS  Google Scholar 

  59. Myler, P. J., Allison, J., Agabian, N. & Stuart, K. Antigenic variation in African trypanosomes by gene replacement or activation of alternate telomeres. Cell, 39, 203–211 (1984).

    Article  CAS  Google Scholar 

  60. Horn, D. & Cross, G. A. M. Analysis of Trypanosoma brucei VSG expression site switching in vitro. Mol. Biochem. Parasitol. 84, 189–201 (1997).

    Article  CAS  Google Scholar 

  61. Conway, C. et al. Ku is important for telomere maintenance, but not for differential expression of telomeric VSG genes, in African trypanosomes. J. Biol. Chem. 277, 21269–21277 (2002).

    Article  CAS  Google Scholar 

  62. McCulloch, R. & Barry, J. D. A role for RAD51 and homologous recombination in Trypanosoma brucei antigenic variation. Genes Dev. 13, 2875–2888 (1999).

    Article  CAS  Google Scholar 

  63. Barry, J. D. The relative significance of mechanisms of antigenic variation in African trypanosomes. Parasitol. Today 13, 212–218 (1997).

    Article  CAS  Google Scholar 

  64. Robinson, N. P., Burman, N., Melville, S. E. & Barry, J. D. Predominance of duplicative VSG gene conversion in antigenic variation in African trypanosomes. Mol. Cell. Biol. 19, 5839–5846 (1999).

    Article  CAS  Google Scholar 

  65. Turner, C. M. & Barry, J. D. High frequency of antigenic variation in Trypanosoma brucei rhodesiense infections. Parasitology 99, 67–75 (1989).

    Article  Google Scholar 

  66. Barry, J. D., Ginger, M. L., Burton, P. & McCulloch, R. Why are parasite contingency genes often associated with telomeres? Int. J. Parasitol. 33, 29–45 (2003).

    Article  CAS  Google Scholar 

  67. Freitas-Junior, L. H. et al. Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature 407, 1018–1022 (2000).

    Article  CAS  Google Scholar 

  68. Pays, E. et al. The trypanolytic factor of human serum. Nature Reviews Microbiol. 4, 477–486 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Titia de Lange, Joachim Lingner, Ed Louis and the members of the Cross laboratory for excellent advice and discussions. Our work on telomeres was supported by the National Institutes of Health. We apologize to authors whose original work could not always be cited due to length restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. M. Cross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Candida albicans

Candida glabrata

Kluyveromyces lactis

Plasmodium falciparum

Saccharomyces cerevisiae

Schizosaccharomyces pombe

Trypanosoma brucei

Trypanosoma cruzi

FURTHER INFORMATION

George A. M. Cross' homepage

Tree of life web site

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreesen, O., Li, B. & Cross, G. Telomere structure and function in trypanosomes: a proposal. Nat Rev Microbiol 5, 70–75 (2007). https://doi.org/10.1038/nrmicro1577

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1577

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing