Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modelling strategies for the industrial exploitation of lactic acid bacteria

Key Points

  • Lactic acid bacteria (LAB) have a long tradition of use in the food industry, and the number and diversity of their applications have increased considerably over the years. Industrial applications of LAB can be divided into three types on the basis of their specific optimization criteria: applications involving biomass production (starter cultures, probiotics), those involving bulk chemicals production (lactic acid, polyols) and those producing fine chemicals and functional ingredients (flavour compounds, exopolysaccharides, vitamins).

  • Recent technological advances in the field of functional genomics have moved the focus from more traditional modelling techniques used in biotechnology to global modelling techniques. Genome-scale models and their analysis by constraint-based modelling specifically have attracted a lot of attention.

  • Genome-scale models are a condensed inventory of the metabolic capacity of an organism, in which the metabolic reactions are coupled to the genes and their gene products. As such, these models can be used to integrate high-throughput data sets, such as transcriptomics and metabolomics data.

  • Mapping of the global modelling techniques onto the industrial applications of LAB results in many possibilities for the use of these models in scanning process conditions and exploring the metabolic capabilities. However, it also becomes clear that this is only the first step towards strain improvement: for truly rational metabolic engineering, understanding of the control structure of the network will be essential.

  • A major challenge for future work therefore lies in the incorporation of kinetic and regulatory information into the global metabolic models, so that the control structure can be derived and understood in terms of the interactions between all components in the cell.

Abstract

Lactic acid bacteria (LAB) have a long tradition of use in the food industry, and the number and diversity of their applications has increased considerably over the years. Traditionally, process optimization for these applications involved both strain selection and trial and error. More recently, metabolic engineering has emerged as a discipline that focuses on the rational improvement of industrially useful strains. In the post-genomic era, metabolic engineering increasingly benefits from systems biology, an approach that combines mathematical modelling techniques with functional-genomics data to build models for biological interpretation and — ultimately — prediction. In this review, the industrial applications of LAB are mapped onto available global, genome-scale metabolic modelling techniques to evaluate the extent to which functional genomics and systems biology can live up to their industrial promise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of part of primary metabolism in certain lactic acid bacteria.
Figure 2: The basics of common modelling strategies.
Figure 3: The structure of genome-scale metabolic models.
Figure 4: Inductive and hypothesis-driven science in the post-genomic era.

Similar content being viewed by others

References

  1. Carr, F. J., Chill, D. & Maida, N. The lactic acid bacteria: a literature survey. Crit. Rev. Microbiol. 28, 281–370 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. de Vos, W. M. & Hugenholtz, J. Engineering metabolic highways in lactococci and other lactic acid bacteria. Trends Biotechnol. 22, 72–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Fox, P. F. Cheese/Overview in Encyclopedia of Dairy Science Vol. 1 (eds Roginski, H., Fuquay, J. & Fox, P. F.) 252–261 (Academic Press, London, 2002).

    Chapter  Google Scholar 

  4. Bailey, J. E. Toward a science of metabolic engineering. Science 252, 1668–1675 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Stephanopoulos, G. Metabolic engineering. Curr. Opin. Biotechnol. 5, 196–200 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Kleerebezem, M. & Hugenholtz, J. Metabolic pathway engineering in lactic acid bacteria. Curr. Opin. Biotechnol. 14, 232–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Hugenholtz, J. et al. Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek 82, 217–235 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Hanniffy, S. et al. Potential and opportunities for use of recombinant lactic acid bacteria in human health. Adv. Appl. Microbiol. 56, 1–64 (2004).

    Article  PubMed  Google Scholar 

  9. Fedorak, R. N. & Madsen, K. L. Probiotics and prebiotics in gastrointestinal disorders. Curr. Opin. Gastroenterol. 20, 146–155 (2004).

    Article  PubMed  Google Scholar 

  10. Prasad, J., McJarrow, P. & Gopal, P. Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl. Environ. Microbiol. 69, 917–925 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Corcoran, B. M., Ross, R. P., Fitzgerald, G. F. & Stanton, C. Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J. Appl. Microbiol. 96, 1024–1039 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Kleerebezem, M. et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl Acad. Sci. USA 100, 1990–1995 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Altermann, E. et al. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl Acad. Sci. USA 102, 3906–3912 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siezen, R. J., van Enckevort, F. H., Kleerebezem, M. & Teusink, B. Genome data mining of lactic acid bacteria: the impact of bioinformatics. Curr. Opin. Biotechnol. 15, 105–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Tejayadi, S. & Cheryan, M. Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor. Appl. Microbiol. Biotechnol. 43, 242–248 (1995).

    Article  CAS  Google Scholar 

  16. Kwon, S., Lee, P. C., Lee, E. G., Keun Chang, Y. & Chang, N. Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme Microb. Technol. 26, 209–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Chang, D. E., Jung, H. C., Rhee, J. S. & Pan, J. G. Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Appl. Environ. Microbiol. 65, 1384–1389 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiaodong, W., Xuan, G. & Rakshit, S. K. Direct fermentative production of lactic acid on cassava and other starch substrates. Biotechnol. Lett. 19, 841–843 (1997).

    Article  CAS  Google Scholar 

  19. Liu, C., Liu, Y., Liao, W., Wen, Z. & Chen, S. Simultaneous production of nisin and lactic acid from cheese whey: optimization of fermentation conditions through statistically based experimental designs. Appl. Biochem. Biotechnol. 113–116, 627–638 (2004).

    Article  PubMed  Google Scholar 

  20. Hugenholtz, J. et al. Lactococcus lactis as a cell factory for high-level diacetyl production. Appl. Environ. Microbiol. 66, 4112–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bongers, R. S., Hoefnagel, M. H. & Kleerebezem, M. High-level acetaldehyde production in Lactococcus lactis by metabolic engineering. Appl. Environ. Microbiol. 71, 1109–1113 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hols, P. et al. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nature Biotechnol. 17, 588–592 (1999).

    Article  CAS  Google Scholar 

  23. Grobben, G. J. et al. Spontaneous formation of a mannitol-producing variant of Leuconostoc pseudomesenteroides grown in the presence of fructose. Appl. Environ. Microbiol. 67, 2867–2870 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. von Weymarn, F. N., Kiviharju, K. J., Jaaskelainen, S. T. & Leisola, M. S. Scale-up of a new bacterial mannitol production process. Biotechnol. Prog. 19, 815–821 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Wisselink, H. W., Mars, A. E., van der Meer, P., Eggink, G. & Hugenholtz, J. Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds. Appl. Environ. Microbiol. 70, 4286–4292 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wisselink, H. W. et al. Overproduction of heterologous mannitol 1-phosphatase: a key factor for engineering mannitol production by Lactococcus lactis. Appl. Environ. Microbiol. 71, 1507–1514 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Engels, W. J. M., Van Hijlckama Vlieg, J. E. T. & Smit, G. in Dairy Processing, Improving Quality (ed. Smit, G.) 492–507 (Woodhead Publishing Limited, Cambridge, 2003).

    Book  Google Scholar 

  28. Christensen, J. E., Dudley, E. G., Pederson, J. A. & Steele, J. L. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76, 217–246 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Kleerebezem, M. et al. Exopolysaccharides produced by Lactococcus lactis: from genetic engineering to improved rheological properties? Antonie Van Leeuwenhoek 76, 357–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. De Vuyst, L. & Degeest, B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23, 153–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Boels, I. C., Kleerebezem, M. & de Vos, W. M. Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis. Appl. Environ. Microbiol. 69, 1129–1135 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boels, I. C. et al. Increased exopolysaccharide production in Lactococcus lactis due to increased levels of expression of the NIZO B40 eps gene cluster. Appl. Environ. Microbiol. 69, 5029–5031 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Taranto, M. P., Vera, J. L., Hugenholtz, J., De Valdez, G. F. & Sesma, F. Lactobacillus reuteri CRL1098 produces cobalamin. J. Bacteriol. 185, 5643–5647 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burgess, C., O'Connell-Motherway, M., Sybesma, W., Hugenholtz, J. & van Sinderen, D. Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Appl. Environ. Microbiol. 70, 5769–5777 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sybesma, W. et al. Increased production of folate by metabolic engineering of Lactococcus lactis. Appl. Environ. Microbiol. 69, 3069–3076 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sybesma, W., Burgess, C., Starrenburg, M., van Sinderen, D. & Hugenholtz, J. Multivitamin production in Lactococcus lactis using metabolic engineering. Metab. Eng. 6, 109–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Miyoshi, A. et al. Controlled production of stable heterologous proteins in Lactococcus lactis. Appl. Environ. Microbiol. 68, 3141–3146 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Le Loir, Y. et al. Protein secretion in Lactococcus lactis : an efficient way to increase the overall heterologous protein production. Microb. Cell Fact. 4, 2 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mierau, I., Olieman, K., Mond, J. & Smid, E. J. Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb. Cell Fact. 4, 16 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mierau, I. et al. Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: the case of lysostaphin. Microb. Cell Fact. 4, 15 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Mercenier, A., Muller-Alouf, H. & Grangette, C. Lactic acid bacteria as live vaccines. Curr. Issues Mol. Biol. 2, 17–25 (2000).

    CAS  PubMed  Google Scholar 

  42. Robinson, K., Chamberlain, L. M., Schofield, K. M., Wells, J. M. & Le Page, R. W. Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nature Biotechnol. 15, 653–657 (1997).

    Article  CAS  Google Scholar 

  43. Robinson, K. et al. Mucosal and cellular immune responses elicited by recombinant Lactococcus lactis strains expressing tetanus toxin fragment C. Infect. Immun. 72, 2753–2761 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schweder, T. et al. Role of the general stress response during strong overexpression of a heterologous gene in Escherichia coli. Appl. Microbiol. Biotechnol. 58, 330–337 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Wiechert, W. Modeling and simulation: tools for metabolic engineering. J. Biotechnol. 94, 37–63 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Ideker, T. & Lauffenburger, D. Building with a scaffold: emerging strategies for high- to low-level cellular modeling. Trends Biotechnol. 21, 255–262 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Kell, D. B. Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol. 7, 296–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Price, N. D., Reed, J. L. & Palsson, B. O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Rev. Microbiol. 2, 886–897 (2004). Good overview of the techniques available for exploring genome-scale metabolic models.

    Article  CAS  Google Scholar 

  49. Stephanopoulos, G., Alper, H. & Moxley, J. Exploiting biological complexity for strain improvement through systems biology. Nature Biotechnol. 22, 1261–1267 (2004). Very readable account on the latest developments in systems biology, with overviews of both inductive and deductive analysis.

    Article  CAS  Google Scholar 

  50. Nielsen, J. & Villadsen, J. modeling of microbial kinetics. Chem. Eng. Sci. 47, 4225–4270 (1992).

    Article  CAS  Google Scholar 

  51. Kovarova-Kovar, K. & Egli, T. Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol. Mol. Biol. Rev. 62, 646–666 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Almeida, J. S. Predictive non-linear modeling of complex data by artificial neural networks. Curr. Opin. Biotechnol. 13, 72–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Schugerl, K. Progress in monitoring, modeling and control of bioprocesses during the last 20 years. J. Biotechnol. 85, 149–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. McGovern, A. C. et al. Monitoring of complex industrial bioprocesses for metabolite concentrations using modern spectroscopies and machine learning: application to gibberellic acid production. Biotechnol. Bioeng. 78, 527–538 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. McMeekin, T. A., Olley, J., Ratkowsky, D. A. & Ross, T. Predictive microbiology: towards the interface and beyond. Int. J. Food Microbiol. 73, 395–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Leroy, F., Degeest, B. & De, V. L. A novel area of predictive modelling: describing the functionality of beneficial microorganisms in foods. Int. J. Food Microbiol. 73, 251–259 (2002).

    Article  PubMed  Google Scholar 

  57. Leroy, F. & De Vuyst, L. A combined model to predict the functionality of the bacteriocin-producing Lactobacillus sakei strain CTC 494. Appl. Environ. Microbiol. 69, 1093–1099 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bajpai-Dikshit, J., Suresh, A. K. & Venkatesh, K. V. An optimal model for representing the kinetics of growth and product formation by Lactobacillus rhamnosus on multiple substrates. J. Biosci. Bioeng. 96, 481–486 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Dougherty, D. P., Breidt, F., McFeeters, R. F. & Lubkin, S. R. Energy-based dynamic model for variable temperature batch fermentation by Lactococcus lactis. Appl. Environ. Microbiol. 68, 2468–2478 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Akerberg, C., Hofvendahl, K., Zacchi, G. & Hahn-Hagerdal, B. Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour. Appl. Microbiol. Biotechnol. 49, 682–690 (1998).

    Article  CAS  Google Scholar 

  61. Messens, W., Verluyten, J., Leroy, F. & De Vuyst, L. Modelling growth and bacteriocin production by Lactobacillus curvatus LTH 1174 in response to temperature and pH values used for European sausage fermentation processes. Int. J. Food Microbiol. 81, 41–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Van der Heijden, R. T. J. M., Heijnen, J. J., Hellinga, C., Romein, B. & Luyben, K. C. A. M. Linear constraint relations in biochemical reaction systems: I. classification of the calculability and the balanceability of conversion rates. Biotechnol. Bioeng. 43, 3–10 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Van der Heijden, R. T. J. M., Romein, B., Heijnen, J. J., Hellinga, C. & Luyben, K. C. A. M. Linear constraint relations in biochemical reaction systems: II. diagnosis and estimation of gross errors. Biotechnol. Bioeng. 43, 11–20 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Sauer, U. High-throughput phenomics: experimental methods for mapping fluxomes. Curr. Opin. Biotechnol. 15, 58–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Wiechert, W. 13C metabolic flux analysis. Metab. Eng. 3, 195–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. vanGulik, W. M. & Heijnen, J. J. A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol. Bioeng. 48, 681–698 (1995).

    Article  CAS  Google Scholar 

  67. Vanrolleghem, P. A. & Heijnen, J. J. A structured approach for selection among candidate metabolic network models and estimation of unknown stoichiometric coefficients. Biotechnol. Bioeng. 58, 133–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Stephanopoulos, G., Aristidou, A. A. & Nielsen, J. Metabolic Engineering Principles and Methodologies (Academic Press, London, 1998).

    Google Scholar 

  69. van Gulik, W. M., de Laat, W. T., Vinke, J. L. & Heijnen, J. J. Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol. Bioeng. 68, 602–618 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Shirai, T. et al. Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab. Eng. 7, 59–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Wittmann, C., Kiefer, P. & Zelder, O. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl. Environ. Microbiol. 70, 7277–7287 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bai, D. M., Zhao, X. M., Li, X. G. & Xu, S. M. Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production. Biotechnol. Bioeng. 88, 681–589 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Schilling, C. H., Schuster, S., Palsson, B. O. & Heinrich, R. Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol. Prog. 15, 296–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Schuster, S., Fell, D. A. & Dandekar, T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol. 18, 326–332 (2000).

    Article  CAS  Google Scholar 

  75. Schwender, J., Goffman, F., Ohlrogge, J. B. & Shachar-Hill, Y. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432, 779–782 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Gagneur, J. & Klamt, S. Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioinformatics 5, 175 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Koebmann, B. J., Andersen, H. W., Solem, C. & Jensen, P. R. Experimental determination of control of glycolysis in Lactococcus lactis. Antonie Van Leeuwenhoek 82, 237–248 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Andersen, H. W., Pedersen, M. B., Hammer, K. & Jensen, P. R. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. Eur. J. Biochem. 268, 6379–6389 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Kacser, H. & Burns, J. A. The control of flux. Biochem. Soc. Trans. 23, 341–366 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Fell, D. Understanding the Control of Metabolism, (Portland Press, London, 1997).

    Google Scholar 

  81. Heinrich, R. & Schuster, S. The Regulation of Cellular Systems (Monograph) (Chapman and Hall, New York, 1996).

    Book  Google Scholar 

  82. Teusink, B. et al. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267, 5313–5329 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Bakker, B. M., Michels, P. A., Opperdoes, F. R. & Westerhoff, H. V. Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J. Biol. Chem. 272, 3207–3215 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Hoefnagel, M. H., van der Burgt, A., Martens, D. E., Hugenholtz, J. & Snoep, J. L. Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments. Mol. Biol. Rep 29, 157–161 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Neves, A. R. et al. In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol. Bioeng. 64, 200–212 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Hoefnagel, M. H. et al. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148, 1003–1013 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Kresnowati, M. T., van Winden, W. A. & Heijnen, J. J. Determination of elasticities, concentration and flux control coefficients from transient metabolite data using linlog kinetics. Metab. Eng. 7, 142–153 (2005). One of a series of articles by this group, exploring the concept of simplified kinetics for reverse engineering of kinetic parameters from transient metabolite data. Linlog kinetics are proportional to enzyme concentration and are scale logarithmic with metabolite concentrations, giving them useful mathematical properties within the framework of metabolic control analysis, as illustrated in this paper.

    Article  CAS  PubMed  Google Scholar 

  88. Kell, D. B. & Oliver, S. G. Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays 26, 99–105 (2004).

    Article  PubMed  Google Scholar 

  89. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Raamsdonk, L. M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnol. 19, 45–50 (2001).

    Article  CAS  Google Scholar 

  91. Lavine, B. & Workman, J. J. Jr. Chemometrics. Anal. Chem. 76, 3365–3371 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Albert, S. & Kinley, R. D. Multivariate statistical monitoring of batch processes: an industrial case study of fermentation supervision. Trends Biotechnol. 19, 53–62 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. van der Werf, M. J. Towards replacing closed with open target selection strategies. Trends Biotechnol. 23, 11–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. van der Greef, J., Stroobant, P. & van der Heijden, R. The role of analytical sciences in medical systems biology. Curr. Opin. Chem. Biol. 8, 559–565 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Kell, D. B. Genotype–phenotype mapping: genes as computer programs. Trends Genet. 18, 555–559 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Liao, J. C. et al. Network component analysis: reconstruction of regulatory signals in biological systems. Proc. Natl Acad. Sci. USA 100, 15522–15527 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xia, Y. et al. Analyzing cellular biochemistry in terms of molecular networks. Annu. Rev. Biochem. 73, 1051–1087 (2004).

    Article  PubMed  CAS  Google Scholar 

  98. Papin, J. A., Price, N. D., Wiback, S. J., Fell, D. A. & Palsson, B. O. Metabolic pathways in the post-genome era. Trends Biochem. Sci. 28, 250–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Patil, K. R., Akesson, M. & Nielsen, J. Use of genome-scale microbial models for metabolic engineering. Curr. Opin Biotechnol. 15, 64–69 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Francke, C., Siezen, R. J. & Teusink, B. Reconstructing the metabolic network of a bacterium from its genome. Trends Microbiol. 16 Sep 2005 [epub ahead of print].

  101. Hols, P. et al. New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol. Rev. 29, 435–463 (2005).

    CAS  PubMed  Google Scholar 

  102. Bolotin, A. et al. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nature Biotechnol. 22, 1554–1558 (2004). The genome of S. thermophilus shows a striking example of regressive evolution: 10% of the genes are degenerated (that is, pseudogenes). Many of the genes affected are involved in carbon catabolism, reflecting the limited number of carbon sources in milk.

    Article  CAS  Google Scholar 

  103. Teusink, B. et al. In silico reconstruction of the metabolic pathways of Lactobacillus plantarum: comparing predictions of nutrient requirements with growth experiments. Appl. Environ. Microbiol. (in the press). Extensive account on the metabolic reconstruction of L. plantarum WCFS1, on the basis of genome information and physiological experiments. The resulting metabolic database is freely available at http://www.lacplantcyc.nl .

  104. Osterman, A. & Overbeek, R. Missing genes in metabolic pathways: a comparative genomics approach. Curr. Opin. Chem. Biol. 7, 238–251 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Ibarra, R. U., Edwards, J. S. & Palsson, B. O. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Reed, J. L. & Palsson, B. O. Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res. 14, 1797–1805 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mahadevan, R. & Schilling, C. H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276 (2003). An important paper stressing the fact that FBA solutions have unique optimal values for the objective function, but no unique flux distribution. Mahadevan and Schilling introduce the idea of the range of flux values that each reaction can attain at the optimal objective value, to get insight in the number of alternative solutions. See also reference 108 for an alternative approach.

    Article  CAS  PubMed  Google Scholar 

  108. Phalakornkule, C. et al. A MILP-based flux alternative generation and NMR experimental design strategy for metabolic engineering. Metab. Eng. 3, 124–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. & Gilles, E. D. Metabolic network structure determines key aspects of functionality and regulation. Nature 420, 190–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Burgard, A. P., Nikolaev, E. V., Schilling, C. H. & Maranas, C. D. Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res. 14, 301–312 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pharkya, P., Burgard, A. P. & Maranas, C. D. Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol. Bioeng. 84, 887–899 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Burgard, A. P., Pharkya, P. & Maranas, C. D. OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Reed, J. L., Vo, T. D., Schilling, C. H. & Palsson, B. O. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4, R54 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Forster, J., Famili, I., Fu, P., Palsson, B. O. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Oliveira, A. P., Nielsen, J. & Forster, J. Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol. 5, 39 (2005). This paper describes a genome-scale metabolic model of L. lactis IL1403. The reconstruction process itself is only briefly described, but offers an excellent account on the biomass equation needed for constraint-based modelling.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Patil, K. R. & Nielsen, J. Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Natl Acad. Sci. USA 102, 2685–2689 (2005). This work uses information from a genome-scale model to analyse patterns of gene expression centred around what the authors call 'reporter metabolites', or sub-network structures. It is a good illustration of the use of a global metabolic model in data analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Smit, B. A. et al. Identification, cloning, and characterization of a Lactococcus lactis branched-chain α-keto acid decarboxylase involved in flavor formation. Appl. Environ. Microbiol. 71, 303–311 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brown, C. J., Todd, K. M. & Rosenzweig, R. F. Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Mol. Biol. Evol. 15, 931–942 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Even, S., Lindley, N. D. & Cocaign-Bousquet, M. Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures. Microbiology 149, 1935–1944 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Neves, A. R. et al. Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance. Appl. Environ. Microbiol. 68, 6332–6342 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cocaign-Bousquet, M., Even, S., Lindley, N. D. & Loubiere, P. Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux. Appl. Microbiol. Biotechnol. 60, 24–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Rossell, S., van der Weijden, C. C., Kruckeberg, A. L., Bakker, B. M. & Westerhoff, H. V. Hierarchical and metabolic regulation of glucose influx in starved Saccharomyces cerevisiae. FEMS Yeast Res. 5, 611–619 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. de la Fuente, A., Snoep, J. L., Westerhoff, H. V. & Mendes, P. Metabolic control in integrated biochemical systems. Eur. J. Biochem. 269, 4399–4408. (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Bongers, R. S. et al. IS981-mediated adaptive evolution recovers lactate production by ldhB transcription activation in a lactate dehydrogenase-deficient strain of Lactococcus lactis. J. Bacteriol. 185, 4499–4507 (2003). Striking example of the effect of selective pressure on metabolic adaptation and strain instability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Buis, J. M. & Broderick, J. B. Pyruvate formate-lyase activating enzyme: elucidation of a novel mechanism for glycyl radical formation. Arch. Biochem. Biophys. 433, 288–296 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Verhagen, D. Molenaar, J. Hugenholtz and many other colleagues at NIZO food research BV and the Wageningen Centre for Food Sciences for fruitful discussions, and W. de Vos for critically reading the manuscript. This work took place at the Kluyver Centre for Genomics of Industrial Fermentations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bas Teusink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Escherichia coli

Lactobacillus rhamnosus

Lactococcus lactis

Leuconostoc mesenteroides

Lactobacillus plantarum

Saccharomyces cerevisiae

Streptococcus thermophilus

FURTHER INFORMATION

NIZO Food Research

Radboud University Nijmegen

Wageningen Centre for Food Sciences

Glossary

Starter culture

A culture containing yeast or bacteria that is used to start the process of fermentation or souring in making fermented food products.

Probiotics

Living microorganisms that, when ingested by humans or animals, can beneficially influence health by changing the intestinal flora.

Cell factory

A microbial cell culture that is used specifically for the production of food ingredients, pharmaceutical ingredients and specialty chemicals.

Polymer

A generic term used to describe a substantially long molecule that consists of structural units and repeating units strung together through chemical bonds. The process of converting these units to a polymer is called polymerization. These units consist of monomers, which are typically small molecules of low molecular weight.

Heterofermentative

Microorganisms that convert glucose to a mixture of lactic acid, acetic acid, formic acid, ethanol and CO2.

Polyol

A hydrogenated form of carbohydrate, of which the carbonyl group (aldehyde or ketone, reducing sugar) has been reduced to a primary or secondary hydroxyl group. They are commonly used as replacement of sucrose. Some common polyols (also called sugar alcohols) are mannitol, sorbitol, xylitol, maltitol and lactitol.

Homofermentative

Microorganisms that convert glucose almost quantitatively to lactic acid.

Exopolysaccharide

High-molecular-weight polymer that is composed of sugar residues and is secreted by a microorganism into the surrounding environment. The structures of the different exopolysaccharides produced by LAB are quite diverse and, even within one species, different strains can produce polysaccharides with different repeating units.

Black box model

A model of which the inputs, outputs and functional performance are known, but the internal implementation is unknown or irrelevant

Artificial neural network

Computational model that involves a network of relatively simple processing elements, in which the global behaviour is determined by the connections between the processing elements and element parameters.

White box model

A model in which all necessary mechanistic information is implemented to compute functional performance on the basis of system parameters that represent properties of real objects or processes.

Metabolic flux analysis

A technique that estimates flux distributions through a metabolic network on the basis of the network structure and measured fluxes or flux ratios.

Stoichiometric model

A model that can be summarized in a stoichiometry matrix that represents the participation of the metabolites in each reaction. Metabolites are represented as rows and reactions as columns, with the stoichiometry coefficients as entries.

Elementary flux mode

An elementary flux mode is defined as a minimal set of enzymes that could operate at steady state. It can be seen as a mathematical definition of metabolic pathway. Any steady-state flux distribution can be expressed as a non-negative linear combination of elementary flux modes.

Energy coefficients

Parameters capturing the cell's energy needs for growth and maintenance that are not explicitly accounted for in the model reactions. When oxidative phosphorylation is also modelled, the unknown stoichiometric relationship between oxygen consumption and ATP production (the P/O ratio) is an additional parameter. In general, these parameters have a large impact on model predictions, in particular on biomass yields.

Metabolic control analysis

Mathematical framework, closely related to sensitivity analysis in engineering, in which the sensitivity of systemic behaviour, such as the steady-state flux or metabolite level, to changes in the system's parameters is analysed. These parameter sensitivities, better known as control coefficients, can be understood from the structure of the system (the network stoichiometry) and the interactions between the components of the system (the enzyme kinetics).

Multivariate analysis

A branch of statistics concerned with the analysis of multiple measurements, made on one or several samples of individuals. In functional genomics, typically many hundreds to thousands of variables are measured of a single sample.

Machine learning

The study of computer algorithms that improve automatically through experience. In the context of this review, data-mining programs that discover general rules in large data sets are most widely used. Artificial neural network modelling is an example of a machine-learning technique.

Reversibility of reactions

Depending on the equilibrium constant of a reaction, it can be claimed that a reaction is reversible or can only proceed in one direction. Although in principle any reaction should be reversible, there are physiological boundaries on metabolite concentrations that effectively allow some reactions only to proceed into one direction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teusink, B., Smid, E. Modelling strategies for the industrial exploitation of lactic acid bacteria. Nat Rev Microbiol 4, 46–56 (2006). https://doi.org/10.1038/nrmicro1319

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1319

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing