Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Xenotransplantation and other means of organ replacement

Abstract

Exciting new technologies, such as cellular transplantation, organogenesis and xenotransplantation, are thought to be promising approaches for the treatment of human disease. The feasibility of applying these technologies, however, might be limited by biological and immunological hurdles. Here, we consider whether, and how, xenotransplantation and various other technologies might be applied in future efforts to replace or supplement the function of human organs and tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biological responses to xenotransplantation.
Figure 2: The pathogenesis of acute vascular rejection.

Similar content being viewed by others

References

  1. SoRelle, R. Totally contained AbioCor artificial heart implanted. Circulation 104, E9005–E9006 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Murry, C. E., Wiseman, R. W., Schwartz, S. M. & Hauschka, S. D. Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Invest. 98, 2512–2523 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Taylor, D. A. et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nature Med. 4, 929–933 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Menasche, P. et al. Myoblast transplantation for heart failure. Lancet 357, 279–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Fox, I. et al. Treatment of the Crigler–Najjar syndrome type I with hepatocyte transplantation. N. Engl. J. Med. 338, 1422–1426 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Gunsalus, J. R., Brady, D. A., Coulter, S. M., Gray, B. M. & Edge, A. Reduction of serum cholesterol in watanabe rabbits by xenogeneic hepatocellular transplantation. Nature Med. 3, 48–53 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Lagasse, E. et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Med. 6, 1229–1234 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Clarke, D. L. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Zuk, P. A. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Grobstein, C. Inductive epithelio–mesenchymal interaction in cultured organ rudiments of the mouse. Science 118, 52–55 (1953).

    Article  CAS  PubMed  Google Scholar 

  12. Ekblom, P. Formation of basement membranes in the embryonic kidney: an immunohistological study. J. Cell Biol. 91, 1–10 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hammerman, M. R. Growing kidneys. Curr. Opin. Nephrol. Hypertens. 10, 13–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Cascalho, M. & Platt, J. L. The immunological barrier to xenotransplantation. Immunity 14, 437–446 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Dorling, A., Lombardi, G., Binns, R. & Lechler, R. I. Detection of primary direct and indirect human anti-porcine T cell responses using a porcine dendritic cell population. Eur. J. Immunol. 26, 1378–1387 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Gritsch, H. A. et al. The importance of nonimmune factors in reconstitution by discordant xenogeneic hematopoietic cells. Transplantation 57, 906–917 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Bennet, W. et al. Expression of complement regulatory proteins on islets of Langerhans: a comparison between human islets and islets isolated from normal and hDAF transgenic pigs. Transplantation 72, 312–319 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Murray, A. G., Khodadoust, M. M., Pober, J. S. & Bothwell, A. L. M. Porcine aortic endothelial cells activate human T cells: direct presentation of MHC antigens and costimulation by ligands for human CD2 and CD28. Immunity 1, 57–63 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Yamada, K., Sachs, D. H. & DerSimonian, H. Human anti-porcine xenogeneic T cell response. Evidence for allelic specificity of mixed leukocyte reaction and for both direct and indirect pathways of recognition. J. Immunol. 155, 5249–5256 (1995).

    CAS  PubMed  Google Scholar 

  20. Platt, J. L. New directions for organ transplantation. Nature 392 (Suppl.), 11–17 (1998).

    CAS  PubMed  Google Scholar 

  21. Auchincloss, H. Jr & Sachs, D. H. Xenogeneic transplantation. Annu. Rev. Immunol. 16, 433–470 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Marchetti, P. et al. Prolonged survival of discordant porcine islet xenografts. Transplantation 61, 1100–1102 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Deacon, T. et al. Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson's disease. Nature Med. 3, 350–353 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Platt, J. L. Hyperacute xenograft rejection (RG Landes Co., Austin, Texas, 1995).

    Google Scholar 

  25. Galili, U., Clark, M. R., Shohet, S. B., Buehler, J. & Macher, B. A. Evolutionary relationship between the natural anti-Gal antibody and the Gal α1-3Gal epitope in primates. Proc. Natl Acad. Sci. USA 84, 1369–1373 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zaidi, A. et al. Life-supporting pig-to-primate renal xenotransplantation using genetically modified donors. Transplantation 65, 1584–1590 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Lachmann, P. J. The control of homologous lysis. Immunol. Today 12, 312–315 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Hourcade, D., Holers, V. M. & Atkinson, J. P. The regulators of complement activation (RCA) gene cluster. Adv. Immunol. 45, 381–416 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Platt, J. L. et al. Transplantation of discordant xenografts: a review of progress. Immunol. Today 11, 450–456 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Van den Berg, C. W. & Morgan, B. P. Complement-inhibiting activities of human CD59 and analogues from rat, sheep, and pig are not homologously restricted. J. Immunol. 152, 4095–4101 (1994).

    CAS  PubMed  Google Scholar 

  31. Diamond, L. E. et al. Characterization of transgenic pigs expressing functionally active human CD59 on cardiac endothelium. Transplantation 61, 1241–1249 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Saadi, S. & Platt, J. L. Transient perturbation of endothelial integrity induced by natural antibodies and complement. J. Exp. Med. 181, 21–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. McCurry, K. R. et al. Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nature Med. 1, 423–427 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Leventhal, J. R. et al. The immunopathology of cardiac xenograft rejection in the guinea pig-to-rat model. Transplantation 56, 1–8 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Blakely, M. L. et al. Activation of intragraft endothelial and mononuclear cells during discordant xenograft rejection. Transplantation 58, 1059–1066 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Shimizu, A. et al. Acute humoral xenograft rejection: destruction of the microvascular capillary endothelium in pig-to-nonhuman primate renal grafts. Lab. Invest. 80, 815–830 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Sachs, D. H. & Sablinski, T. Tolerance across discordant xenogeneic barriers. Xenotransplantation 2, 234–239 (1995).

    Article  Google Scholar 

  38. Sablinski, T. et al. Long-term discordant xenogeneic (porcine-to-primate) bone marrow engraftment in a monkey treated with porcine-specific growth factors. Transplantation 67, 972–977 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Ierino, F. L. et al. Disseminated intravascular coagulation in association with the delayed rejection of pig-to-baboon renal xenografts. Transplantation 66, 1439–1450 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Onishi, A. et al. Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188–1190 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Polejaeva, I. A. et al. Cloned piglets produced by nuclear transfer from adult somatic cells. Nature 407, 86–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Betthauser, J. et al. Production of cloned pigs from in vitro systems. Nature Biotechnol. 18, 1055–1059 (2000).

    Article  CAS  Google Scholar 

  43. Denning, C. et al. Deletion of the α(1,3) galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nature Biotechnology 19, 559–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Lin, S. S. et al. The role of anti-Galα1-3Gal antibodies in acute vascular rejection and accommodation of xenografts. Transplantation 70, 1667–1674 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Bach, F. H., Winkler, H., Ferran, C., Hancock, W. W. & Robson, S. C. Delayed xenograft rejection. Immunol. Today 17, 379–384 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Chopek, M. W., Simmons, R. L. & Platt, J. L. ABO-incompatible renal transplantation: initial immunopathologic evaluation. Transplant. Proc. 19, 4553–4557 (1987).

    CAS  PubMed  Google Scholar 

  47. Bannett, A. D., McAlack, R. F., Morris, M., Chopek, M. & Platt, J. L. ABO incompatible renal transplantation: a qualitative analysis of native endothelial tissue ABO antigens after transplant. Transplant. Proc. 21, 783–785 (1989).

    CAS  PubMed  Google Scholar 

  48. Lin, Y., Vandeputte, M. & Waer, M. Accommodation and T-independent B cell tolerance in rats with long term surviving hamster heart xenografts. J. Immunol. 160, 369–375 (1998).

    CAS  PubMed  Google Scholar 

  49. Hancock, W. W., Buelow, R., Sayegh, M. H. & Turka, L. A. Antibody-induced transplant arteriosclerosis is prevented by graft expression of anti-oxidant and anti-apoptotic genes. Nature Med. 4, 1392–1396 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Schmoeckel, M. et al. Orthotopic heart transplantation in a transgenic pig-to-primate model. Transplantation 65, 1570–1577 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Sablinski, T. et al. Xenotransplantation of pig kidneys to nonhuman primates: I. Development of the model. Xenotransplantation 2, 264–270 (1995).

    Article  Google Scholar 

  52. Daggett, C. W. et al. Total respiratory support from swine lungs in primate recipients. J. Thorac. Cardiovasc. Surg. 115, 19–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Ramirez, P. et al. Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days. Transplantation 70, 989–998 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Patience, C., Takeuchi, Y. & Weiss, R. A. Infection of human cells by an endogenous retrovirus of pigs. Nature Med. 3, 282–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Patience, C. et al. No evidence of pig DNA or retroviral infection in patients with short-term extracorporeal connection to pig kidneys. Lancet 352, 699–701 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Paradis, K. et al. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. Science 285, 1236–1241 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Andres, G. et al. Cellular mechanisms of adaptation of grafts to antibody. Transpl. Immunol. 4, 1–17 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Dalmasso, A. P., Benson, B. A., Johnson, J. S., Lancto, C. & Abrahamsen, M. S. Resistance against the membrane attack complex of complement induced in porcine endothelial cells with a Gal α(1-3)Gal binding lectin: up-regulation of CD59 expression. J. Immunol. 164, 3764–3773 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Delikouras, A., Hayes, M., Malde, P., Lechler, R. I. & Dorling, A. Nitric oxide-mediated expression of Bcl-2 and Bcl-xl and protection from TNFα–mediated apoptosis in porcine endothelial cells after exposure to low concentrations of xenoreactive natural antibody. Transplantation 71, 599–605 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Bach, F. H. et al. Accommodation of vascularized xenografts: expression of 'protective genes' by donor endothelial cells in a host TH2 cytokine environment. Nature Med. 3, 196–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Soares, M. P. et al. Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nature Med. 4, 1073–1077 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Imai, T. et al. Vascular smooth muscle cell-directed overexpression of heme oxygenase-1 elevates blood pressure through attenuation of nitric oxide-induced vasodilation in mice. Circ. Res. 89, 55–62 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Holzknecht, Z. E. & Platt, J. L. Accommodation and the reversibility of biological systems. Transplantation 71, 594–595 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Magee, J. C. et al. Immunoglobulin prevents complement mediated hyperacute rejection in swine-to-primate xenotransplantation. J. Clin. Invest. 96, 2404–2412 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nagayasu, T. et al. Expression of tissue factor mRNA in cardiac xenografts: clues to the pathogenesis of acute vascular rejection. Transplantation 69, 475–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Parker, W. et al. Transplantation of discordant xenografts: a challenge revisited. Immunol. Today 17, 373–378 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Cooper, D. K. C. et al. Effects of cyclosporine and antibody adsorption on pig cardiac xenograft survival in the baboon. J. Heart Transplant. 7, 238–246 (1988).

    CAS  PubMed  Google Scholar 

  68. Lin, S. S. et al. The role of natural anti-Galα1-3Gal antibodies in hyperacute rejection of pig-to-baboon cardiac xenotransplants. Transpl. Immunol. 5, 212–218 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Leventhal, J. R. et al. Prolongation of cardiac xenograft survival by depletion of complement. Transplantation 55, 857–866 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Pruitt, S. K. et al. The effect of soluble complement receptor type 1 on hyperacute rejection of porcine xenografts. Transplantation 57, 363–370 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Cozzi, E. et al. in Xenotransplantation: The Transplantation of Organs and Tissues Between Species (eds Cooper, D. K. C., Kemp, E., Platt, J. L. & White, D. J. G.) 665–682 (Springer, Berlin, 1997).

    Book  Google Scholar 

  72. Diamond, L. E. et al. A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation 71, 132–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Bracy, J. L., Sachs, D. H. & Iacomini, J. Inhibition of xenoreactive natural antibody production by retroviral gene therapy. Science 281, 1845–1847 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the laboratories of the authors is supported by grants from the National Institutes of Health and by the Von Liebig Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Platt.

Related links

Related links

DATABASES

LocusLink

BCL2

CD55

CD59

E-selectin

HO-1

IL-1α

IL-1β

IL-1R

PAI-1

FURTHER INFORMATION

Jeffrey Platt's lab

Transplantation Society

Glossary

ALLOGENEIC

Of, or relating to, the same species; for example, allogeneic transplants are transplants between individuals of the same species.

ISCHAEMIA

A condition in which the flow of blood to a tissue or organ is less than normal, and which results in injury to that tissue or organ.

ISLETS OF LANGERHANS

The tissue of the pancreas that contains endocrine cells, including the β-cells that secrete insulin.

SUBSTANTIA NIGRA

A part of the brain affected by Parkinson's disease.

XENOGENEIC

Of, or relating to, a foreign species.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cascalho, M., Platt, J. Xenotransplantation and other means of organ replacement. Nat Rev Immunol 1, 154–160 (2001). https://doi.org/10.1038/35100578

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35100578

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing