Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic contributions to behavioural diversity at the gene–environment interface

Key Points

  • Animal behaviour and human behaviour have a hereditary component.

  • Natural variation in behaviour has a complex genetic makeup: many genetic variants contribute to the differences in behaviour between individuals.

  • Behavioural genes can have functions that are conserved across different species.

  • Common genetic variants interact with the environment to affect behaviour. Many common genetic variants affect an individual's detection of, response to, or interaction with the environment.

  • Some classes of genes, such as those affecting sensory systems and neuromodulatory pathways, are frequently associated with variation in behaviour.

  • Behavioural variability within a species can be maintained by balancing selection.

Abstract

Recent work on behavioural variation within and between species has furthered our understanding of the genetic architecture of behavioural traits, the identities of relevant genes and the ways in which genetic variants affect neuronal circuits to modify behaviour. Here we review our understanding of the genetics of natural behavioural variation in non-human animals and highlight the implications of these findings for human genetics. We suggest that gene–environment interactions are central to natural genetic variation in behaviour and that genes affecting neuromodulatory pathways and sensory processing are preferred sites of naturally occurring mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies for linkage-based mapping.
Figure 2: Differential gene expression analysis to identify genetic pathways mediating variation in behaviour.
Figure 3: Olfactory receptor gene evolution in primates.

Similar content being viewed by others

References

  1. Konopka, R. J. & Benzer, S. Clock mutants of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 68, 2112–2116 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Xu, Y. et al. Functional consequences of a CKI δ mutation causing familial advanced sleep phase syndrome. Nature 434, 640–644 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Clement, K. et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392, 398–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Peyron, C. et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nature Med. 6, 991–997 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, G. H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–635 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Fanara, J. J., Robinson, K. O., Rollmann, S. M., Anholt, R. R. & Mackay, T. F. Vanaso is a candidate quantitative trait gene for Drosophila olfactory behavior. Genetics 162, 1321–1328 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Flint, J. Analysis of quantitative trait loci that influence animal behavior. J. Neurobiol. 54, 46–77 (2003). This paper contains a systematic description of behavioural QTLs identified in rodent studies.

    Article  CAS  PubMed  Google Scholar 

  11. Gleason, J. M. & Ritchie, M. G. Do quantitative trait loci (QTL) for a courtship song difference between Drosophila simulans and D. sechellia coincide with candidate genes and intraspecific QTL? Genetics 166, 1303–1311 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jordan, K. W., Morgan, T. J. & Mackay, T. F. Quantitative trait loci for locomotor behavior in Drosophila melanogaster. Genetics 174, 271–284 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Churchill, G. A. et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genet. 36, 1133–1137 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Rockman, M. V. & Kruglyak, L. Recombinational landscape and population genomics of Caenorhabditis elegans. PLoS Genet. 5, e1000419 (2009). This paper reports the development of recombinant inbred advanced-intercross lines for C. elegans trait mapping.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Edwards, A. C. & Mackay, T. F. Quantitative trait loci for aggressive behavior in Drosophila melanogaster. Genetics 182, 889–897 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Flint, J., Valdar, W., Shifman, S. & Mott, R. Strategies for mapping and cloning quantitative trait genes in rodents. Nature Rev. Genet. 6, 271–286 (2005). This paper includes an analysis of effect sizes of hundreds of behavioural and physiological QTLs.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, W. C. Construction and use of Caenorhabditis elegans chromosome substitution strains to map a novel p38 component involved in innate immunity. Thesis, Stanford Univ. (2008).

    Google Scholar 

  18. Doroszuk, A., Snoek, L. B., Fradin, E., Riksen, J. & Kammenga, J. A genome-wide library of CB4856/N2 introgression lines of Caenorhabditis elegans. Nucleic Acids Res. 37, e110 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hollocher, H., Ting, C. T., Wu, M. L. & Wu, C. I. Incipient speciation by sexual isolation in Drosophila melanogaster: extensive genetic divergence without reinforcement. Genetics 147, 1191–1201 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mattson, D. L. et al. Chromosome substitution reveals the genetic basis of Dahl salt-sensitive hypertension and renal disease. Am. J. Physiol. Renal Physiol. 295, F837–F842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nadeau, J. H., Singer, J. B., Matin, A. & Lander, E. S. Analysing complex genetic traits with chromosome substitution strains. Nature Genet. 24, 221–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Iakoubova, O. A. et al. Genome-tagged mice (GTM): two sets of genome-wide congenic strains. Genomics 74, 89–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Singer, J. B. et al. Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304, 445–448 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Singer, J. B., Hill, A. E., Nadeau, J. H. & Lander, E. S. Mapping quantitative trait loci for anxiety in chromosome substitution strains of mice. Genetics 169, 855–862 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gale, G. D. et al. A genome-wide panel of congenic mice reveals widespread epistasis of behavior quantitative trait loci. Mol. Psychiatry 14, 631–645 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Shao, H. et al. Genetic architecture of complex traits: large phenotypic effects and pervasive epistasis. Proc. Natl Acad. Sci. USA 105, 19910–19914 (2008). References 24 and 26 describe a systematic analysis of mouse chromosome-substitution strains that argues for large effects of individual QTLs when they are examined in homogeneous rather than heterogeneous strain backgrounds.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Threadgill, D. W. et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269, 230–234 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Dowell, R. D. et al. Genotype to phenotype: a complex problem. Science 328, 469 (2010). Knockouts of yeast genes are examined in the genetic backgrounds of two strains, showing that 5% of all 'essential' genes are essential in one background but not in the other.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meffert, L. M., Hicks, S. K. & Regan, J. L. Nonadditive genetic effects in animal behavior. Am. Nat. 160, S198–S213 (2002).

    Article  PubMed  Google Scholar 

  30. Ruppell, O., Pankiw, T. & Page, R. E. Jr. Pleiotropy, epistasis and new QTL: the genetic architecture of honey bee foraging behavior. J. Hered. 95, 481–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Arizmendi, C., Zuleta, V., Ruiz-Dubreuil, G. & Godoy-Herrera, R. Genetics analysis of larval foraging behavior in Drosophila funebris. Behav. Genet. 38, 525–530 (2008).

    Article  PubMed  Google Scholar 

  32. Bendesky, A., Tsunozaki, M., Rockman, M. V., Kruglyak, L. & Bargmann, C. I. Catecholamine receptor polymorphisms affect decision-making in C. elegans. Nature 472, 313–318 (2011). A C. elegans receptor related to mammalian adrenergic receptors is reported as regulating an exploration–exploitation decision in this paper.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ott, J., Kamatani, Y. & Lathrop, M. Family-based designs for genome-wide association studies. Nature Rev. Genet. 12, 465–474 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Sokolowski, M. B. Foraging strategies of Drosophila melanogaster: a chromosomal analysis. Behav. Genet. 10, 291–302 (1980).

    Article  CAS  PubMed  Google Scholar 

  35. Sokolowski, M. B. et al. Ecological genetics and behaviour of Drosophila melanogaster larvae in nature. Anim. Behav. 34, 403–408 (1986).

    Article  Google Scholar 

  36. de Belle, J. S. & Sokolowski, M. B. Heredity of rover/sitter: alternative foraging strategies of Drosophila melanogaster. Heredity 59, 73–83 (1987).

    Article  Google Scholar 

  37. Osborne, K. A. et al. Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277, 834–836 (1997). This paper discusses the molecular identification of the D. melanogaster for gene as a cGMP-dependent protein kinase.

    Article  CAS  PubMed  Google Scholar 

  38. Renger, J. J., Yao, W. D., Sokolowski, M. B. & Wu, C. F. Neuronal polymorphism among natural alleles of a cGMP-dependent kinase gene, foraging, in Drosophila. J. Neurosci. 19, RC28 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ben-Shahar, Y., Robichon, A., Sokolowski, M. B. & Robinson, G. E. Influence of gene action across different time scales on behavior. Science 296, 741–744 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Ingram, K. K., Oefner, P. & Gordon, D. M. Task-specific expression of the foraging gene in harvester ants. Mol. Ecol. 14, 813–818 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Hong, R. L., Witte, H. & Sommer, R. J. Natural variation in Pristionchus pacificus insect pheromone attraction involves the protein kinase EGL-4. Proc. Natl Acad. Sci. USA 105, 7779–7784 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yalcin, B. et al. Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nature Genet. 36, 1197–1202 (2004). This paper describes the identification of Rgs2 as the causative gene for an emotionality trait in mouse.

    Article  CAS  PubMed  Google Scholar 

  43. Stam, L. F. & Laurie, C. C. Molecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics 144, 1559–1564 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Legare, M. E., Bartlett, F. S., 2nd & Frankel, W. N. A major effect QTL determined by multiple genes in epileptic EL mice. Genome Res. 10, 42–48 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Steinmetz, L. M. et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature 416, 326–330 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Thomson, M. J., Edwards, J. D., Septiningsih, E. M., Harrington, S. E. & McCouch, S. R. Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics 172, 2501–2514 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grafstein-Dunn, E., Young, K. H., Cockett, M. I. & Khawaja, X. Z. Regional distribution of regulators of G-protein signaling (RGS) 1, 2, 13, 14, 16, and GAIP messenger ribonucleic acids by in situ hybridization in rat brain. Mol. Brain Res. 88, 113–123 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Heximer, S. P. et al. Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J. Clin. Invest. 111, 1259 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun, X., Kaltenbronn, K. M., Steinberg, T. H. & Blumer, K. J. RGS2 is a mediator of nitric oxide action on blood pressure and vasoconstrictor signaling. Mol. Pharmacol. 67, 631–639 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Flint, J. The genetic basis of neuroticism. Neurosci. Biobehav. Rev. 28, 307–316 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Willis-Owen, S. A. & Flint, J. Identifying the genetic determinants of emotionality in humans; insights from rodents. Neurosci. Biobehav. Rev. 31, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Morris, J. S. et al. A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383, 812–815 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J. E. & Phelps, E. A. Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20, 937–945 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Kendler, K. S. & Neale, M. C. Endophenotype: a conceptual analysis. Mol. Psychiatry 15, 789–797 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Braff, D. L., Geyer, M. A. & Swerdlow, N. R. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156, 234–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Geyer, M. A., Krebs-Thomson, K., Braff, D. L. & Swerdlow, N. R. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156, 117–154 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Watanabe, A. et al. Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotype. PLoS Biol. 5, e297 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carr, L. G. et al. A quantitative trait locus for alcohol consumption in selectively bred rat lines. Alcohol Clin. Exp. Res. 22, 884–887 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Shirley, R. L., Walter, N. A., Reilly, M. T., Fehr, C. & Buck, K. J. Mpdz is a quantitative trait gene for drug withdrawal seizures. Nature Neurosci. 7, 699–700 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. McGrath, P. T. et al. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature 477, 321–325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McGrath, P. T. et al. Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors. Neuron 61, 692–699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Persson, A. et al. Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans. Nature 458, 1030–1033 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Kim, U. K. et al. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299, 1221–1225 (2003). This paper reports the mapping of a polymorphic sensation of bitter taste in humans, familiar to many from 'taste paper' experiments in science class, to a taste receptor.

    Article  CAS  PubMed  Google Scholar 

  64. Keller, A., Zhuang, H., Chi, Q., Vosshall, L. B. & Matsunami, H. Genetic variation in a human odorant receptor alters odour perception. Nature 449, 468–472 (2007). This study shows that differential olfactory sensitivity to androstenone, an androgen-derived odour, is associated with polymorphism in a specific olfactory receptor in humans.

    Article  CAS  PubMed  Google Scholar 

  65. Hayes, J. E. et al. Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adults. Chem. Senses 36, 311–319 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Wyart, C. et al. Smelling a single component of male sweat alters levels of cortisol in women. J. Neurosci. 27, 1261–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McBride, C. S. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc. Natl Acad. Sci. USA 104, 4996–5001 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, X. et al. Pseudogenization of a sweet-receptor gene accounts for cats' indifference toward sugar. PLoS Genet. 1, 27–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Collin, S. P. & Trezise, A. E. The origins of colour vision in vertebrates. Clin. Exp. Optom 87, 217–223 (2004).

    Article  PubMed  Google Scholar 

  70. Jacobs, G. H. Evolution of colour vision in mammals. Phil. Trans. R. Soc. B 364, 2957–2967 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hiwatashi, T. et al. An explicit signature of balancing selection for color-vision variation in new world monkeys. Mol. Biol. Evol. 27, 453–464 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Yoshizawa, M., Goricki, S., Soares, D. & Jeffery, W. R. Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr. Biol. 20, 1631–1636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Akey, J. M. Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res. 19, 711–722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Clark, A. G. et al. Inferring nonneutral evolution from human–chimp–mouse orthologous gene trios. Science 302, 1960–1963 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Nielsen, R. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stephens, D. W. & Kerbs, J. R. Foraging Theory (Princeton Univ. Press, 1987).

    Google Scholar 

  77. Goubault, M. N., Outreman, Y., Poinsot, D. & Cortesero, A. M. Patch exploitation strategies of parasitic wasps under intraspecific competition. Behav. Ecol. 16, 693–701 (2005).

    Article  Google Scholar 

  78. Shtonda, B. B. & Avery, L. Dietary choice behavior in Caenorhabditis elegans. J. Exp. Biol. 209, 89–102 (2006).

    Article  PubMed  Google Scholar 

  79. Wragg, R. T. et al. Tyramine and octopamine independently inhibit serotonin-stimulated aversive behaviors in Caenorhabditis elegans through two novel amine receptors. J. Neurosci. 27, 13402–13412 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Roeder, T. Tyramine and octopamine: ruling behavior and metabolism. Annu. Rev. Entomol. 50, 447–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, S., Lee, A. Y., Bowens, N. M., Huber, R. & Kravitz, E. A. Fighting fruit flies: a model system for the study of aggression. Proc. Natl Acad. Sci. USA 99, 5664–5668 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dierick, H. A. & Greenspan, R. J. Molecular analysis of flies selected for aggressive behavior. Nature Genet. 38, 1023–1031 (2006). This paper reports the identification of the Cyp6a20 gene as a regulator of D. melanogaster aggression through transcriptional profiling of highly aggressive strains.

    Article  CAS  PubMed  Google Scholar 

  84. Edwards, A. C., Rollmann, S. M., Morgan, T. J. & Mackay, T. F. Quantitative genomics of aggressive behavior in Drosophila melanogaster. PLoS Genet. 2, e154 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Edwards, A. C. et al. A transcriptional network associated with natural variation in Drosophila aggressive behavior. Genome Biol. 10, R76 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, L., Dankert, H., Perona, P. & Anderson, D. J. A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. Proc. Natl Acad. Sci. USA 105, 5657–5663 (2008). This study demonstrates that genetic variation and social experience converge on Cyp6a20 to regulate aggression in male D. melanogaster.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kendler, K. S. et al. Stressful life events, genetic liability, and onset of an episode of major depression in women. Am. J. Psychiatry 152, 833–842 (1995). This paper discusses the exemplary use of human twin studies to understand genotype–environment interactions in major depression.

    Article  CAS  PubMed  Google Scholar 

  88. de Bono, M. & Bargmann, C. I. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94, 679–689 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Reddy, K. C., Andersen, E. C., Kruglyak, L. & Kim, D. H. A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 323, 382–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Weber, K. P. et al. Whole genome sequencing highlights genetic changes associated with laboratory domestication of C. elegans. PLoS ONE 5, e13922 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Macosko, E. Z. et al. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171–1175 (2009). This study demonstrates that variation in the C. elegans neuropeptide receptor gene npr-1 alters sensory processing in a gap junction circuit to regulate aggregation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lim, M. M. & Young, L. J. Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Horm. Behav. 50, 506–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Shapiro, L. E. & Dewsbury, D. A. Differences in affiliative behavior, pair bonding, and vaginal cytology in two species of vole (Microtus ochrogaster and M. montanus). J. Comp. Psychol. 104, 268–274 (1990).

    Article  PubMed  Google Scholar 

  94. Winslow, J. T., Hastings, N., Carter, C. S., Harbaugh, C. R. & Insel, T. R. A role for central vasopressin in pair bonding in monogamous prairie voles. Nature 365, 545–548 (1993).

    Article  CAS  PubMed  Google Scholar 

  95. Young, L. J., Nilsen, R., Waymire, K. G., MacGregor, G. R. & Insel, T. R. Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 400, 766–768 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Insel, T. R., Wang, Z. X. & Ferris, C. F. Patterns of brain vasopressin receptor distribution associated with social organization in microtine rodents. J. Neurosci. 14, 5381–5392 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lim, M. M. et al. Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature 429, 754–757 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Stern, D. L. & Orgogozo, V. Is genetic evolution predictable? Science 323, 746–751 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Insel, T. R., Gelhard, R. & Shapiro, L. E. The comparative distribution of forebrain receptors for neurohypophyseal peptides in monogamous and polygamous mice. Neuroscience 43, 623–630 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Insel, T. R. & Shapiro, L. E. Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc. Natl Acad. Sci. USA 89, 5981–5985 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marder, E., Calabrese, R. L., Nusbaum, M. P. & Trimmer, B. Distribution and partial characterization of FMRFamide-like peptides in the stomatogastric nervous systems of the rock crab, Cancer borealis, and the spiny lobster, Panulirus interruptus. J. Comp. Neurol. 259, 150–163 (1987).

    Article  CAS  PubMed  Google Scholar 

  102. Verley, D. R., Doan, V., Trieu, Q., Messinger, D. I. & Birmingham, J. T. Characteristic differences in modulation of stomatogastric musculature by a neuropeptide in three species of Cancer crabs. J. Comp. Physiol. A 194, 879–886 (2008).

    Article  CAS  Google Scholar 

  103. Clarke, H., Flint, J., Attwood, A. S. & Munafo, M. R. Association of the 5- HTTLPR genotype and unipolar depression: a meta-analysis. Psychol. Med. 40, 1767–1778 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Kohli, M. A. et al. The neuronal transporter gene SLC6A15 confers risk to major depression. Neuron 70, 252–265 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Munafo, M. R., Yalcin, B., Willis-Owen, S. A. & Flint, J. Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: meta-analysis and new data. Biol. Psychiatry 63, 197–206 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Barnett, J. H., Scoriels, L. & Munafo, M. R. Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol. Psychiatry 64, 137–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Green, A. E. et al. Using genetic data in cognitive neuroscience: from growing pains to genuine insights. Nature Rev. Neurosci. 9, 710–720 (2008).

    Article  CAS  Google Scholar 

  108. Vacic, V. et al. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 471, 499–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bevilacqua, L. et al. A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature 468, 1061–1066 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ressler, K. J. et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 470, 492–497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Charlesworth, B. & Charlesworth, D. Elements of Evolutionary Genetics (Roberts and Company Publishers, 2010).

    Google Scholar 

  112. Wolf, M., van Doorn, G. S., Leimar, O. & Weissing, F. J. Life-history trade-offs favour the evolution of animal personalities. Nature 447, 581–584 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Giles, N. & Huntingford, F. A. Predation risk and inter-population variation in antipredator behaviour in the three-spined stickleback, Gasterosteus aculeatus L. Anim. Behav. 32, 264–275 (1984).

    Article  Google Scholar 

  114. Sokolowski, M. B., Pereira, H. S. & Hughes, K. Evolution of foraging behavior in Drosophila by density-dependent selection. Proc. Natl Acad. Sci. USA 94, 7373–7377 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fitzpatrick, M. J., Feder, E., Rowe, L. & Sokolowski, M. B. Maintaining a behaviour polymorphism by frequency-dependent selection on a single gene. Nature 447, 210–212 (2007). This study shows that two alleles of the for gene are maintained in D. melanogaster larvae by balancing selection that is based on allele frequency in the population.

    Article  CAS  PubMed  Google Scholar 

  116. Goulding, E. H. et al. A robust automated system elucidates mouse home cage behavioral structure. Proc. Natl Acad. Sci. USA 105, 20575–20582 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Branson, K., Robie, A. A., Bender, J., Perona, P. & Dickinson, M. H. High-throughput ethomics in large groups of Drosophila. Nature Methods 6, 451–457 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Albrecht, D. R. & Bargmann, C. I. High-content behavioral analysis of Caenorhabditis elegans in precise spatiotemporal chemical environments. Nature Methods 8, 599–605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Crabbe, J. C., Wahlsten, D. & Dudek, B. C. Genetics of mouse behavior: interactions with laboratory environment. Science 284, 1670–1672 (1999). This paper reports cautionary results demonstrating the sensitivity of behavioural analysis to small differences in testing conditions.

    Article  CAS  PubMed  Google Scholar 

  120. Flint, J. Mapping quantitative traits and strategies to find quantitative trait genes. Methods 53, 163–174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Maye, A., Hsieh, C. H., Sugihara, G. & Brembs, B. Order in spontaneous behavior. PLoS ONE 2, e443 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tandon, R., Keshavan, M. S. & Nasrallah, H. A. Schizophrenia, “just the facts” what we know in 2008. 2. Epidemiology and etiology. Schizophr. Res. 102, 1–18 (2008).

    Article  PubMed  Google Scholar 

  123. Bailey, A. et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol. Med. 25, 63–77 (1995).

    Article  CAS  PubMed  Google Scholar 

  124. Hallmayer, J. et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry 4 Jul 2011 (doi: 10.1001/archgenpsychiatry.2011.76).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kendler, K. S., Pedersen, N. L., Neale, M. C. & Mathe, A. A. A pilot Swedish twin study of affective illness including hospital- and population-ascertained subsamples: results of model fitting. Behav. Genet. 25, 217–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. McGuffin, P. et al. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch. Gen. Psychiatry 60, 497–502 (2003).

    Article  PubMed  Google Scholar 

  127. Kieseppa, T., Partonen, T., Haukka, J., Kaprio, J. & Lonnqvist, J. High concordance of bipolar I disorder in a nationwide sample of twins. Am. J. Psychiatry 161, 1814–1821 (2004).

    Article  PubMed  Google Scholar 

  128. Hettema, J. M., Neale, M. C. & Kendler, K. S. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am. J. Psychiatry 158, 1568–1578 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Sullivan, P. F., Neale, M. C. & Kendler, K. S. Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry 157, 1552–1562 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Kendler, K. S., Gatz, M., Gardner, C. O. & Pedersen, N. L. A Swedish national twin study of lifetime major depression. Am. J. Psychiatry 163, 109–114 (2006).

    Article  PubMed  Google Scholar 

  131. O'Donovan, M. C. et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genet. 40, 1053–1055 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

    CAS  PubMed  Google Scholar 

  133. Shi, J. et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460, 753–757 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Stefansson, H. et al. Common variants conferring risk of schizophrenia. Nature 460, 744–747 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Wray, N. R. & Visscher, P. M. Narrowing the boundaries of the genetic architecture of schizophrenia. Schizophr. Bull. 36, 14–23 (2010).

    Article  PubMed  Google Scholar 

  136. Karayiorgou, M. et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc. Natl Acad. Sci. USA 92, 7612–7616 (1995). This foundational study shows the importance of a rare de novo copy number variant (CNV) in conferring susceptibility to schizophrenia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Stefansson, H. et al. Large recurrent microdeletions associated with schizophrenia. Nature 455, 232–236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xu, B. et al. Strong association of de novo copy number mutations with sporadic schizophrenia. Nature Genet. 40, 880–885 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Levy, D. et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 70, 886–897 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. O'Roak, B. J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genet. 43, 585–589 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chubb, J. E., Bradshaw, N. J., Soares, D. C., Porteous, D. J. & Millar, J. K. The DISC locus in psychiatric illness. Mol. Psychiatry 13, 36–64 (2008). This paper reports the identification of a single gene in a Scottish family that increases risk for both schizophrenia and bipolar disorder.

    Article  CAS  PubMed  Google Scholar 

  144. Williams, H. J. et al. Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Hum. Mol. Genet. 20, 387–391 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Long, A. D., Mullaney, S. L., Mackay, T. F. & Langley, C. H. Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster. Genetics 144, 1497–1510 (1996). This study describes the development of the quantitative complementation test as a tool for QTL validation.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Mackay, T. F. Quantitative trait loci in Drosophila. Nature Rev. Genet. 2, 11–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Toma, D. P., White, K. P., Hirsch, J. & Greenspan, R. J. Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nature Genet. 31, 349–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Sambandan, D., Carbone, M. A., Anholt, R. R. & Mackay, T. F. Phenotypic plasticity and genotype by environment interaction for olfactory behavior in Drosophila melanogaster. Genetics 179, 1079–1088 (2008).

    CAS  PubMed  Google Scholar 

  149. Ayroles, J. F. et al. Systems genetics of complex traits in Drosophila melanogaster. Nature Genet. 41, 299–307 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Matsui, A., Go, Y. & Niimura, Y. Degeneration of olfactory receptor gene repertories in primates: no direct link to full trichromatic vision. Mol. Biol. Evol. 27, 1192–1200 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. McGrath, S. Flavell and E. Glater for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia I. Bargmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

The Drosophila Genetic Reference Panel (DGRP)

Mouse Genome Informatics

Glossary

Plasticity

The ability of nervous systems to change molecularly, physiologically or anatomically based on experience.

Evolvability

The ability of organisms to respond to selective pressures with adaptive genetic changes. By analogy, a gene's propensity to acquire adaptive mutations under selective pressures. Among other properties, evolvability is affected by the mutation rate, directed mutation, the degree of pleiotropy and epistasis and system robustness.

Balancing selection

Selection that maintains trait variation. Two alleles can be balanced if a heterozygote is more successful than either homozygote, if each of the two alleles is better-adapted to one of two alternative environments or if each allele promotes a different, but equally successful, survival strategy in the same environment.

Ethological approach

The study of animal behaviours motivated by their observation in nature.

Genetic architecture

The number, frequency, effect size, dominance relationship and interactions of genetic variants that affect a trait in populations of a species.

Linkage-based mapping

A genetic mapping technique that uses pedigree information and genetic markers to link a trait to a genomic location.

QTL mapping

QTL mapping of progeny from an intercross measures the correlation between trait values and DNA markers across the genome and infers the number of loci that affect the trait, their location and the contribution of each locus to the total trait variance.

Genetic association

A population-based mapping technique that measures the correlation between a DNA polymorphism and a trait.

Recombinant inbred lines

(RILs). Strains that are derived from crosses between two or more parental strains, followed by recombination of chromosomes and inbreeding to homozygosity. Typically, RILs are carefully genotyped at many loci. A panel of RILs can be a stable resource for QTL mapping.

Emotionality

A set of fear- and anxiety-related behaviours, such as avoidance of exposed areas and inhibition of movement after foot shock.

Introgression strains

Strains into which defined DNA segments have been introduced from a different strain background through backcrossing. The introduced segments can be full chromosomes, as in chromosome substitution strains (CSSs) or smaller chromosomal intervals, as in congenics.

lod

Logarithm of the odds ratio. A term that indicates the likelihood that a genomic region is linked to the trait being measured. A genome-wide lod threshold is set to correct for multiple comparisons.

Quantitative complementation test

A variant of the classical genetic complementation test that measures the interaction between genetic mutations and two naturally occurring alleles to determine whether the natural alleles are allelic to the mutants.

RMG neurons

Caenorhabditis elegans neurons that are essential for aggregation and are linked by electrical synapses to multiple classes of sensory neurons that detect oxygen, pheromones, noxious cues and nutrients.

Stomatogastric ganglion

A part of the crustacean nervous system that coordinates digestive tract movements. It consists of 30 defined neurons and has been extensively used to study neural circuit dynamics, connections and modulation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendesky, A., Bargmann, C. Genetic contributions to behavioural diversity at the gene–environment interface. Nat Rev Genet 12, 809–820 (2011). https://doi.org/10.1038/nrg3065

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3065

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing