Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspectives
  • Published:

History of genetic disease

Thalassaemia: the long road from bedside to genome

Abstract

The evolution of research into inherited haemoglobin disorders posed some fascinating questions for historians of the medical sciences in the twentieth century. Of particular interest is how the study of what initially seemed to be a group of rare genetic anaemias turned out to be the forerunner of a new era of medical science. For, in effect, it was the description of their molecular basis that led to the idea of 'molecular disease', and, later, to 'molecular medicine' — a change of emphasis from the characterization of illness in patients and their organs to a description of its pathology at the level of cells and molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An early clinical study of thalassaemia in Asia.
Figure 2: I. Bianco and E. Silvestroni in their laboratory in Rome.
Figure 3: Family pedigree of thalassaemia.

Similar content being viewed by others

References

  1. Bannerman, R. M. Thalassemia. A Survey of Some Aspects (Grune and Stratton, New York and London, 1961).

    Google Scholar 

  2. Weatherall, D. J. in Blood, Pure and Eloquent (ed. Wintrobe, M. M.) 373–414 (McGraw-Hill, New York, 1980).

    Google Scholar 

  3. Wintrobe, M. M. Hematology, the Blossoming of a Science: A Story of Inspiration and Effort (Lea and Febiger, Philadelphia, 1985).

    Google Scholar 

  4. Weatherall, D. J. & Clegg, J. B. The Thalassaemia Syndromes 4th edn (Blackwell Science, Oxford, 2001).

    Book  Google Scholar 

  5. Bianco, I. in The Thalassaemic Syndromes: A Symposium in Honour of Ezio Silvestroni and Ida Bianco 11–61 (Accademia Nazionale dei Lincei, Rome, 1999).

    Google Scholar 

  6. Perutz, M. F. in The Thalassaemic Syndromes: A Symposium in Honour of Ezio Silvestroni and Ida Bianco 131–136 (Accademia Nazionale dei Lincei, Rome, 1999).

    Google Scholar 

  7. Ranney, H. M. in Disorders of Hemoglobin (eds Steinberg, M. H., Forget, B. G., Higgs, D. R. & Nagel, R. L.) 1–24 (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  8. Cooley, T. B. & Lee, P. A series of cases of splenomegaly in children with anemia and peculiar bone changes. Trans. Am. Pediatr. Soc. 37, 29 (1925).

    Google Scholar 

  9. Whipple, G. H. & Bradford, W. L. Racial or familial anemia of children associated with fundamental disturbances of bone and pigment metabolism (Cooley-Von Jaksch). Am. J. Dis. Child. 44, 336–365 (1932).

    Article  Google Scholar 

  10. Angelini, V. Primi risultati di ricerche ematologiche nei familiari di ammalati di anemia di Cooley. Min. Med. 28, 331–332 (1937).

    Google Scholar 

  11. Caminopetros, J. Recherches sur l'anémia érythroblastique infantile des peuples de la Mediterranée orientale. Etude anthropologique, étiologique et pathogénique. La transmission hereditaire de la maladia. Ann. Méd. 43, 104–125 (1938).

    Google Scholar 

  12. Silvestroni, E. & Bianco, I. Microcitemia e morbo di Cooley. Boll. Atti Acad. Med. Roma 71, 3–4 (1945).

    Google Scholar 

  13. Wintrobe, M. M., Mathews, E., Pollack, R. & Dobyns, B. M. Familial hemopoietic disorder in Italian adolescents and adults resembling Mediterranean disease (thalassemia). JAMA 114, 1530–1538 (1940).

    Google Scholar 

  14. Neel, J. V. & Valentine, W. N. Further studies on the genetics of thalassaemia. Genetics 32, 38–63 (1947).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Haldane, J. B. The rate of mutation of human genes. Proc. VIII Int. Cong. Genetics. Hereditas 35, 267–273 (1949).

    Google Scholar 

  16. Chini, V. & Valeri, C. M. Mediterranean hemopathic syndromes. Blood 4, 989–1013 (1949).

    CAS  PubMed  Google Scholar 

  17. Conley, C. L. in Blood, Pure and Eloquent (ed. Wintrobe, M. M.) 319–317 (McGraw-Hill Book Company, New York, 1980).

    Google Scholar 

  18. Pauling, L., Itano, H. A., Singer, S. J. & Wells, I. G. Sickle-cell anemia, a molecular disease. Science 110, 543–548 (1949).

    Article  CAS  Google Scholar 

  19. Vecchio, F. Sulla resistenza della emoglobina alla denaturazione alcalina in alcune sindromi emopatiche. Pediatria 54, 545–548 (1946).

    Google Scholar 

  20. Kunkel, H. G., Ceppellini, R., Müller-Eberhard, U. & Wolf, J. Observations on the minor basic hemoglobin component in blood of normal individuals and patients with thalassemia. J. Clin. Invest. 36, 1615–1625 (1957).

    Article  CAS  Google Scholar 

  21. Ingram, V. M. Specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature 178, 792–794 (1956).

    Article  CAS  Google Scholar 

  22. Perutz, M. F. et al. Structure of haemoglobin. Nature 185, 416–422 (1960).

    Article  CAS  Google Scholar 

  23. Rich, A. Studies on the hemoglobin of Cooley's anemia and Cooley's trait. Proc. Natl Acad. Sci. USA 38, 187–196 (1952).

    Article  CAS  Google Scholar 

  24. Silvestroni, E. & Bianco, I. Una nova entita nosologica: la malatia microdrepanocitica. Haematologica 29, 453–488 (1946).

    Google Scholar 

  25. Sturgeon, P., Itano, H. A. & Valentine, W. N. Chronic hemolytic anemia associated with thalassemia and sickling trait. Blood 7, 350–357 (1952).

    CAS  PubMed  Google Scholar 

  26. Rigas, D. A., Kohler, R. D. & Osgood, E. E. New hemoglobin possessing a higher electrophoretic mobility than normal adult hemoglobin. Science 121, 372–375 (1955).

    Article  CAS  Google Scholar 

  27. Ager, J. A. & Lehmann, H. Observations on some 'fast' haemoglobins: K, J, N and Bart's. Br. Med. J. 34, 929–931 (1958).

    Article  Google Scholar 

  28. Ramot, B., Sheba, C., Fisher, S., Ager, J. A. & Lehmann, H. Haemoglobin H disease with persistent 'Bart's' in an oriental Jewess and her daughter. Br. Med. J. 5161, 1228–1230 (1959).

    Article  Google Scholar 

  29. Ingram, V. M. & Stretton, A. O. Genetic basis of the thalassemia diseases. Nature 184, 1903–1909 (1959).

    Article  CAS  Google Scholar 

  30. Itano, H. A. & Pauling, L. Thalassaemia and the abnormal haemoglobins. Nature 191, 398–399 (1961).

    Article  CAS  Google Scholar 

  31. Wolstenholme, G. E. & O'Connor, C. M. (eds) The Biochemistry of Human Genetics. Ciba Foundation Symposium (Little, Brown and Co., Boston, 1959).

    Book  Google Scholar 

  32. Fessas, P. Inclusions of hemoglobin in erythroblasts and erythrocytes of thalassemia. Blood 21, 21–32 (1963).

    CAS  PubMed  Google Scholar 

  33. Marks, P. A. & Burka, E. R. Hemoglobins A and F: formation in thalassemia and other hemolytic anemias. Science 144, 552–553 (1964).

    Article  CAS  Google Scholar 

  34. Heywood, J. D., Karon, M. & Weissman, S. Amino acids: incorporation into α and β-chain of hemoglobin by normal and thalassemic reticulocytes. Science 146, 530–531 (1964).

    Article  CAS  Google Scholar 

  35. Weatherall, D. J., Clegg, J. B. & Naughton, M. A. Globin synthesis in thalassemia: an in vitro study. Nature 208, 1061–1065 (1965).

    Article  CAS  Google Scholar 

  36. Clegg, J. B., Naughton, M. A. & Weatherall, D. J. Abnormal human haemoglobins. Separation and characterisation of the α- and β-chains by chromatography, and the determination of two new variants, Hb Chesapeake and Hb J (Bangkok). J. Mol. Biol. 19, 91–108 (1966).

    Article  CAS  Google Scholar 

  37. Dintzis, H. M. Assembly of the peptide chains of hemoglobin. Proc. Natl Acad. Sci. USA 47, 247–250 (1961).

    Article  CAS  Google Scholar 

  38. Clegg, J. B., Weatherall, D. J., Na-Nakorn, S. & Wasi, P. Haemoglobin synthesis in β-thalassaemia. Nature 220, 664–668 (1968).

    Article  CAS  Google Scholar 

  39. Clegg, J. B. & Weatherall, D. J. Haemoglobin synthesis in α-thalassaemia (haemoglobin H disease). Nature 215, 1241–1243 (1967).

    Article  CAS  Google Scholar 

  40. Brimhall, B. et al. Multiple α chain loci for human hemoglobin. Clin. Res. 18, 184–186 (1970).

    Google Scholar 

  41. Lehmann, H. & Carrell, R. W. Differences between α and β chain mutants of human haemoglobin and between α and β thalassaemia. Possible duplication of the α-chain gene. Br. Med. J. 4, 748–750 (1968).

    Article  CAS  Google Scholar 

  42. Wasi, P. The α thalassemia genes. J. Med. Assoc. Thailand. 53, 677–680 (1970).

    CAS  Google Scholar 

  43. Baglioni, C. The fusion of two peptide chains in hemoglobin Lepore and its interpretation as a genetic deletion. Proc. Natl Acad. Sci. USA 48, 1880–1886 (1962).

    Article  CAS  Google Scholar 

  44. Weatherall, D. J. & Clegg, J. B. The α chain termination mutants and their relationship to thalassaemia. Phil. Trans. R. Soc. Lond. B 271, 411–455 (1975).

    Article  CAS  Google Scholar 

  45. Benz, E. J. & Forget, B. G. Defect in messenger RNA for human hemoglobin synthesis in β thalassemia. J. Clin. Invest. 50, 2755–2760 (1971).

    Article  CAS  Google Scholar 

  46. Nienhuis, A. W. & Anderson, W. F. Isolation and translation of hemoglobin messenger RNA from thalassemia, sickle cell anemia, and normal human reticulocytes. J. Clin. Invest. 50, 2458–2462 (1971).

    Article  CAS  Google Scholar 

  47. Kacian, D. L. et al. Decreased globin messenger RNA in thalassemia detected by molecular hybridization. Proc. Natl Acad. Sci. USA 70, 1886–1890 (1973).

    Article  CAS  Google Scholar 

  48. Housman, D., Forget, B. G., Skoultchi, A. & Benz, E. J. Quantitative deficiency of chain specific messenger ribonucleic acids in the thalassemia syndromes. Proc. Natl Acad. Sci. USA 70, 1809–1813 (1973).

    Article  CAS  Google Scholar 

  49. Old, J. M. et al. Characterization of β-globin mRNA in the β thalassemias. Cell 14, 289–298 (1978).

    Article  CAS  Google Scholar 

  50. Chang, J. C. & Kan, Y. W. β thalassemia, a nonsense mutation in man. Proc. Natl Acad. Sci. USA 76, 2886–2889 (1979).

    Article  CAS  Google Scholar 

  51. Weatherall, D. J., Clegg, J. B. & Boon, W. H. The haemoglobin constitution of infants with the haemoglobin Bart's hydrops foetalis syndrome. Br. J. Haemat. 18, 357–367 (1970).

    Article  CAS  Google Scholar 

  52. Ottolenghi, S. et al. The severe form of α thalassaemia is caused by a haemoglobin gene deletion. Nature 251, 389–392 (1974).

    Article  CAS  Google Scholar 

  53. Taylor, J. M. et al. Genetic lesion in homozygous α-thalassaemia (hydrops foetalis). Nature 251, 392–393 (1974).

    Article  CAS  Google Scholar 

  54. Embury, S. H., Lebo, R. V., Dozy, A. M. & Kan, Y. W. Organization of the α-globin genes in the Chinese α-thalassemia syndromes. J. Clin. Invest. 63, 1307–1310 (1979).

    Article  CAS  Google Scholar 

  55. Orkin, S. H. et al. The molecular basis of α-thalassemias: frequent occurrence of dysfunctional α loci among non-Asians with Hb H disease. Cell 17, 33–43 (1979).

    Article  CAS  Google Scholar 

  56. Orkin, S. H., Old, J. M., Weatherall, D. J. & Nathan, D. G. Partial deletion of β-globin gene DNA in certain patients with β-thalassemia. Proc. Natl Acad. Sci. USA 76, 2400–2404 (1979).

    Article  CAS  Google Scholar 

  57. Spritz, R. A. et al. Base substitution in an intervening sequence of a β+ thalassemic human globin gene. Proc. Natl Acad. Sci. USA 78, 2455–2459 (1981).

    Article  CAS  Google Scholar 

  58. Westaway, D. & Williamson, R. An intron nucleotide sequence variant in a cloned β+ thalassaemia globin gene. Nucleic Acids Res. 9, 1777–1788 (1981).

    Article  CAS  Google Scholar 

  59. Antonarakis, S. E., Boehm, C. D., Giardina, P. V. & Kazazian, H. H. Non random association of polymorphic restriction sites in the β-globin gene complex. Proc. Natl Acad. Sci. USA 79, 137–141 (1982).

    Article  CAS  Google Scholar 

  60. Higgs, D. R. et al. Analysis of the human α-globin gene cluster reveals a highly informative genetic locus. Proc. Natl Acad. Sci. USA 83, 5165–5169 (1986).

    Article  CAS  Google Scholar 

  61. Orkin, S. H. et al. Linkage of β-thalassaemia mutations and β-globin gene polymorphisms with DNA polymorphisms in human β-globin gene cluster. Nature 296, 627–631 (1982).

    Article  CAS  Google Scholar 

  62. Weatherall, D. J. & Clegg, J. B. Genetic variability in response to infection. Malaria and after. Genes Immun. 3, 331–337 (2002).

    Article  CAS  Google Scholar 

  63. Wolman, I. J. Transfusion therapy in Cooley's anemia: growth and health as related to long-range hemoglobin levels, a progress report. Ann. NY Acad. Sci. 119, 736–747 (1964).

    Article  CAS  Google Scholar 

  64. Keberle, H. The biochemistry of desferrioxamine and its relation to iron metabolism. Ann. NY Acad. Sci. 119, 758–768 (1964).

    Article  CAS  Google Scholar 

  65. Nathan, D. G. & Gunn, R. B. Thalassemia: the consequences of unbalanced hemoglobin synthesis. Am. J. Med. 41, 815–830 (1966).

    Article  CAS  Google Scholar 

  66. Modell, C. B. & Berdoukas, V. A. The Clinical Approach to Thalassaemia (Grune and Stratton, New York, 1984).

    Google Scholar 

  67. Propper, R. D., Shurin, S. B. & Nathan, D. G. Reassessment of the use of desferrioxamine B in iron overload. N. Eng. J. Med. 294, 1421–1423 (1976).

    Article  CAS  Google Scholar 

  68. Pippard, M. J., Callender, S. T., Letsky, E. A. & Weatherall, D. J. Prevention of iron loading in transfusion-dependent thalassaemia. Lancet 1, 1178–1180 (1978).

    Article  CAS  Google Scholar 

  69. Brittenham, G. M. et al. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N. Eng. J. Med. 331, 567–573 (1994).

    Article  CAS  Google Scholar 

  70. Olivieri, N. F. et al. Survival of medically treated patients with homozygous β thalassemia. N. Eng. J. Med. 331, 574–578 (1994).

    Article  CAS  Google Scholar 

  71. Weatherall, D. J. Phenotype–genotype relationships in monogenic disease: lessons from the thalassaemias. Nature Rev. Genet. 2, 245–255 (2001).

    Article  CAS  Google Scholar 

  72. Kan, Y. W., Golbus, M. S., Klein, P. & Dozy, A. M. Successful application of prenatal diagnosis in a pregnancy at risk for homozygous β-thalassemia. N. Eng. J. Med. 292, 1096 (1975).

    Article  CAS  Google Scholar 

  73. Fairweather, D. V. et al. Antenatal diagnosis of thalassaemia major. Br. Med. J. 1, 350–353 (1978).

    Article  CAS  Google Scholar 

  74. Old, J. M. et al. First-trimester fetal diagnosis for haemoglobinopathies: three cases. Lancet 2, 1413–1416 (1982).

    Article  CAS  Google Scholar 

  75. Thomas, E. D. et al. Marrow transplantation for thalassaemia. Lancet 2, 227–229 (1982).

    Article  CAS  Google Scholar 

  76. Weatherall, D. 2003 William Allan Award address. The thalassemias: the role of molecular genetics in an evolving global health problem. Am. J. Hum. Genet. 74, 385–392 (2004).

    Article  CAS  Google Scholar 

  77. Chernoff, A. I. et al. Studies on hemoglobin E. I. The clinical, hematologic, and genetic characteristics of the hemoglobin E syndromes. J. Lab. Clin. Med. 47, 455–462 (1956).

    CAS  PubMed  Google Scholar 

  78. Weatherall, D. J. The Thalassaemia Syndromes 1st edn (Blackwell Science, Oxford, 1965).

    Google Scholar 

Download references

Acknowledgements

I thank L. Rose for her assistance on this paper and the Leverhulme Trust for support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

sickle-cell anaemia

thalassaemias

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weatherall, D. Thalassaemia: the long road from bedside to genome. Nat Rev Genet 5, 625–631 (2004). https://doi.org/10.1038/nrg1406

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing