Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug therapy for atrial fibrillation: where do we go from here?

Key Points

  • Atrial fibrillation (AF) is the most common arrhythmia that requires medical attention.

  • Patients with significant symptoms related to AF may benefit from efforts to restore and maintain normal sinus rhythm using pharmacological agents. Currently available antiarrhythmic agents suffer from limited efficacy and frequent side effects, including the risk of provoking more serious arrhythmias.

  • Two general mechanisms interact to generate and maintain AF: triggering initiators, and changes in properties of atrial tissue that render it fibrillation-prone.

  • One strategy being used in developing new antiarrhythmic agents for AF is block of cardiac ion currents, notably an atrial-specific potassium current termed IKur.

  • An emerging concept is that AF represents a final common pathway for genetic predisposition and environmental stressors such as inflammation, oxidant stress, and activation of the renin–angiotensin and other intracellular signaling systems. Unravelling the molecular pathophysiology of the arrhythmia is defining new targets for pharmacological intervention.

Abstract

Atrial fibrillation, the most common cardiac arrhythmia requiring medical attention, has effects that range from mild symptoms to devastating stroke. Although treatments have evolved since the foxglove plant (later identified as containing digitalis) was first administered to slow the heart rate, satisfactory drug therapy has not been developed. In this review we describe present-day medical options and developments of future therapies to treat atrial fibrillation and maintain normal sinus rhythm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequences of cardiac activation.
Figure 2: Mechanisms in atrial fibrillation and targets for atrial stabilization.
Figure 3: 'AF begets AF'.
Figure 4: Three electrocardiographic rhythm strips recorded in the same patient over a 6-hour period after initiation of an anti-arrhythmic drug to treat atrial fibrillation.

Similar content being viewed by others

References

  1. Go, A. S. et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) study. JAMA 285, 2370–2375 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Benjamin, E. J. et al. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 98, 946–952 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Stewart, S., Murphy, N., Walker, A., McGuire, A. & McMurray, J. J. Cost of an emerging epidemic: an economic analysis of atrial fibrillation in the UK. Heart 90, 286–292 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Packer, D. L. et al. Tachycardia-induced cardiomyopathy: a reversible form of left ventricular dysfunction. Am. J. Cardiol. 57, 563–570 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Scherf, D., Romano, F. J. & Terranova, R. Experimental studies on auricular flutter and auricular fibrillation. Am. Heart J. 36, 241–251 (1948).

    Article  CAS  PubMed  Google Scholar 

  6. Jais, P. et al. A focal source of atrial fibrillation treated by discrete radiofrequency ablation. Circulation 95, 572–576 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Haissaguerre, M. et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–666 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Khan, R. Identifying and understanding the role of pulmonary vein activity in atrial fibrillation. Cardiovasc. Res. 64, 387–394 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Dittrich, H. C. et al. Left atrial diameter in nonvalvular atrial fibrillation: An echocardiographic study. Stroke Prevention in Atrial Fibrillation Investigators. Am. Heart J. 137, 494–499 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Chung, M. K. et al. C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation 104, 2886–2891 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Carnes, C. A. et al. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ. Res. 89, E32–E38 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Aviles, R. J. et al. Inflammation as a risk factor for atrial fibrillation. Circulation 108, 3006–3010 (2003).

    Article  PubMed  Google Scholar 

  13. Shinagawa, K., Shi, Y. F., Tardif, J. C., Leung, T. K. & Nattel, S. Dynamic nature of atrial fibrillation substrate during development and reversal of heart failure in dogs. Circulation 105, 2672–2678 (2002).

    Article  PubMed  Google Scholar 

  14. Verheule, S. et al. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-β1. Circ. Res. 94, 1458–1465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wijffels, M. C., Kirchhof, C. J., Dorland, R. & Allessie, M. A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92, 1954–1968 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Yue, L. et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ. Res. 81, 512–525 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Nattel, S. Ionic determinants of atrial fibrillation and Ca(2+) channel abnormalities: cause, consequence, or innocent bystander? Circ. Res. 85, 473–476 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Yue, L., Melnyk, P., Gaspo, R., Wang, Z. & Nattel, S. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ. Res. 84, 776–784 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Ausma, J. et al. Reverse structural and gap-junctional remodeling after prolonged atrial fibrillation in the goat. Circulation 107, 2051–2058 (2003).

    Article  PubMed  Google Scholar 

  20. Thijssen, V. L. et al. Analysis of altered gene expression during sustained atrial fibrillation in the goat. Cardiovasc. Res. 54, 427–437 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Van der Velden, H. et al. Altered pattern of connexin40 distribution in persistent atrial fibrillation in the goat. J. Cardiovasc. Electrophysiol. 9, 596–607 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Van der Velden, H. M. W. et al. Abnormal expression of the gap junction protein connexin 40 during chronic atrial fibrillation in the goat. Circulation 94, I-593 (1996).

    Article  Google Scholar 

  23. Duytschaever, M., Blaauw, Y. & Allessie, M. Consequences of atrial electrical remodeling for the anti-arrhythmic action of class IC and class III drugs. Cardiovasc. Res. 67, 69–76 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Li, D., Fareh, S., Leung, T. K. & Nattel, S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 100, 87–95 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Roy, D. et al. Amiodarone to prevent recurrence of atrial fibrillation. Canadian Trial of Atrial Fibrillation Investigators. N. Engl. J. Med. 342, 913–920 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Alboni, P. et al. Outpatient treatment of recent-onset atrial fibrillation with the “pill-in-the-pocket” approach. N. Engl. J. Med. 351, 2384–2391 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Cardiac Arrhythmia Suppression Trial (CAST) Investigators. Increased mortality due to encainide or flecainide in a randomized trial of arrhythmia suppression after myocardial infarction. N. Engl. J. Med. 321, 406–412 (1989).

  28. Roden, D. M. Drug-induced prolongation of the QT Interval. N. Engl. J. Med. 350, 1013–1022 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Sanguinetti, M. C., Jiang, C., Curran, M. E. & Keating, M. T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81, 299–307 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Kuhlkamp, V. et al. Use of metoprolol CR/XL to maintain sinus rhythm after conversion from persistent atrial fibrillation: a randomized, double-blind, placebo-controlled study. J. Am. Coll. Cardiol. 36, 139–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. McMurray, J. et al. Antiarrhythmic effect of carvedilol after acute myocardial infarction: results of the Carvedilol Post-Infarct Survival Control in Left Ventricular Dysfunction (CAPRICORN) trial. J. Am. Coll. Cardiol. 45, 525–530 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Van Noord, T. et al. VERDICT: the Verapamil versus Digoxin Cardioversion Trial: A randomized study on the role of calcium lowering for maintenance of sinus rhythm after cardioversion of persistent atrial fibrillation. J. Cardiovasc. Electrophysiol. 12, 766–769 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Q. et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nature Genet. 12, 17–23 (1996).

    Article  PubMed  Google Scholar 

  34. Tamkun, M. M. et al. Molecular cloning and characterization of two voltage-gated K+ channel cDNAs from human ventricle. FASEB J. 5, 331–337 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Snyders, D. J., Tamkun, M. M. & Bennett, P. B. A rapidly-activating and slowly-inactivating potassium channel cloned from human heart. J. Gen. Physiol. 101, 513–543 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Fedida, D. et al. Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circ. Res. 73, 210–216 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Z., Fermini, B. & Nattel, S. Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1. 5 cloned channel currents. Circ. Res. 73, 1061–1076 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Li, G. R., Feng, J., Wang, Z., Fermini, B. & Nattel, S. Adrenergic modulation of ultrarapid delayed rectifier K+ current in human atrial myocytes. Circulation Research 78, 903–915 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Pritchett, E. L. et al. Antiarrhythmic effects of azimilide in atrial fibrillation: efficacy and dose-response. Azimilide Supraventricular Arrhythmia Program 3 (SVA-3) Investigators. J. Am. Coll. Cardiol. 36, 794–802 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Connolly, S. J. et al. Dose-response relations of azimilide in the management of symptomatic, recurrent, atrial fibrillation. Am. J. Cardiol. 88, 974–979 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Camm, A. J. et al. Mortality in patients after a recent myocardial infarction: a randomized, placebo-controlled trial of azimilide using heart rate variability for risk stratification. Circulation 109, 990–996 (2004).

    Article  PubMed  Google Scholar 

  42. Sun, W., Sarma, J. S. & Singh, B. N. Electrophysiological effects of dronedarone (SR33589), a noniodinated benzofuran derivative, in the rabbit heart: comparison with amiodarone. Circulation 100, 2276–2281 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Touboul, P. et al. Dronedarone for prevention of atrial fibrillation: a dose-ranging study. Eur. Heart J. 24, 1481–1487 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Schellekens, S. & Verheugt, F. W. Hotline sessions of the 26th European Congress of Cardiology. Eur. Heart J. 25, 2164–2166 (2004).

    Article  PubMed  Google Scholar 

  45. Touboul, P. [Safety of new anti-arrhythmic drugs]. Arch. Mal Coeur Vaiss. 98, 313–316 (2005).

    CAS  PubMed  Google Scholar 

  46. Doggrell, S. A. & Hancox, J. C. Dronedarone: an amiodarone analogue. Expert. Opin. Investig. Drugs 13, 415–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. New medicines in development [online], <http://www.phrma.org/newmedicines/newmedsdb/drugs.cfm?companycode=Sanofi-aventis%7C925> (2005).

  48. Hohnloser, S. H., Dorian, P., Straub, M., Beckmann, K. & Kowey, P. Safety and efficacy of intravenously administered tedisamil for rapid conversion of recent-onset atrial fibrillation or atrial flutter. J. Am. Coll. Cardiol. 44, 99–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Jost, N. et al. Effect of the antifibrillatory compound tedisamil (KC-8857) on transmembrane currents in mammalian ventricular myocytes. Curr. Med. Chem. 11, 3219–3228 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Martha Kerr. Intravenous Tedisamil rapidly converts atrial fibrillation, but safety questions emerge. Medscape [online], <http://www.medscape.com/viewarticle/456049> (2005).

  51. Fedida, D. et al. The mechanism of atrial antiarrhythmic actioin of RSD1235. J. Cardiovasc. Electrophysiol. 16, 1–12 (2005).

    Article  Google Scholar 

  52. Beatch, G. N. et al. RSD1235 Selectively prolongs atrial refractoriness and terminates AF in dogs with electrically remodelled atria. Pacing Clin. Electrophysiol. 25, 689 (2002).

    Google Scholar 

  53. Roy, D. et al. A randomized, controlled trial of RSD1235, a novel anti-arrhythmic agent, in the treatment of recent onset atrial fibrillation. J. Am. Coll. Cardiol. 44, 2355–2361 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Brookes, L. ACT 1: Atrial Arrhythmia Conversion Trial 1 — a new antiarrhythmic agent. Medscape [online], <http://www.medscape.com/viewarticle/504950> (2005).

    Google Scholar 

  55. Blaauw, Y. et al. “Early” class III drugs for the treatment of atrial fibrillation: efficacy and atrial selectivity of AVE0118 in remodeled atria of the goat. Circulation 110, 1717–1724 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Wirth, K. J. et al. Atrial effects of the novel K(+)-channel-blocker AVE0118 in anesthetized pigs. Cardiovasc. Res. 60, 298–306 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Vos, M. A. Atrial-specific drugs: the way to treat atrial fibrillation? J. Cardiovasc. Electrophysiol. 15, 1451–1452 (2004).

    Article  PubMed  Google Scholar 

  58. Goldstein, R. N., Khrestian, C., Carlsson, L. & Waldo, A. L. Azd7009: a new antiarrhythmic drug with predominant effects on the atria effectively terminates and prevents reinduction of atrial fibrillation and flutter in the sterile pericarditis model. J. Cardiovasc. Electrophysiol. 15, 1444–1450 (2004).

    Article  PubMed  Google Scholar 

  59. Crijns, H. J. G. M. et al. Safety and efficacy of AZD7009 given intravenously to patients for conversion of atrial fibrillation / atrial flutter. Eur. Heart J. 26, 9–20 (2005).

    Google Scholar 

  60. Kaumann, A. J. Do human atrial 5-HT4 receptors mediate arrhythmias? Trends Pharmacol. Sci. 15, 451–455 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Singh, S. Trials of new antiarrhythmic drugs for maintenance of sinus rhythm in patients with atrial fibrillation. J. Interv. Cardiovac. Electrophysiol. 10 (Suppl. 1), 71–76 (2004).

    Article  Google Scholar 

  62. Glaxo SmithKline. Annual Report 2004 (Glaxo SmithKline, 2005).

  63. Nattel, S. & Li, D. Ionic remodeling in the heart: pathophysiological significance and new therapeutic opportunities for atrial fibrillation. Circ. Res. 87, 440–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Dolmetsch, R. E., Xu, K. L. & Lewis, R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392, 933–936 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Yamda, J. et al. Up-regulation of inositol 1,4,5 trisphosphate receptor expression in atrial tissue in patients with chronic atrial fibrillation. J Am. Coll. Cardiol. 37, 1111–1119 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Honjo, H. et al. Pacing-induced spontaneous activity in myocardial sleeves of pulmonary veins after treatment with ryanodine. Circulation 107, 1937–1943 (2003).

    Article  PubMed  Google Scholar 

  67. Vest, J. A. et al. Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation 111, 2025–2032 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Wehrens, X. H. et al. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 304, 292–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Brundel, B. J. et al. Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc. Res. 42, 443–454 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Fareh, S., Benardeau, A. & Nattel, S. Differential efficacy of L- and T-type calcium channel blockers in preventing tachycardia-induced atrial remodeling in dogs. Cardiovasc. Res. 49, 762–770 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Lee, S. H. et al. Effect of verapamil on long-term tachycardia-induced atrial electrical remodeling. Circulation 101, 200–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Fareh, S., Benardeau, A., Thibault, B. & Nattel, S. The T-type Ca(2+) channel blocker mibefradil prevents the development of a substrate for atrial fibrillation by tachycardia-induced atrial remodeling in dogs. Circulation 100, 2191–2197 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Shinagawa, K., Shiroshita-Takeshita, A., Schram, G. & Nattel, S. Effects of antiarrhythmic drugs on fibrillation in the remodeled atrium: insights into the mechanism of the superior efficacy of amiodarone. Circulation 107, 1440–1446 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Shiroshita-Takeshita, A., Schram, G., Lavoie, J. & Nattel, S. Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation 110, 2313–2319 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Pedersen, O. D., Bagger, H., Kober, L. & Torp-Pedersen, C. Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction. Circulation 100, 376–380 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Vermes, E. et al. Enalapril decreases the incidence of atrial fibrillation in patients with left ventricular dysfunction. Insight from the Studies Of Left Ventricular Dysfunction (SOLVD) Trials. Circulation 107, 2926–2931 (2003).

    Article  PubMed  Google Scholar 

  77. Murray, K. T. et al. Inhibition of angiotensin II signaling and recurrence of atrial fibrillation in AFFIRM. Heart Rhythm 1, 669–675 (2004).

    Article  PubMed  Google Scholar 

  78. Madrid, A. H. et al. Use of irbesartan to maintain sinus rhythm in patients with long-lasting persistent atrial fibrillation: a prospective and randomized study. Circulation 106, 331–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Li, D. et al. Effects of Angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation 104, 2608–2614 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Darbar, D., Hardy, A., Ritchie, M. D., Gainer, J. & Roden, D. M. ACE I/D polymorphism modulates response to antiarrhythmic drug therapy in patients with atrial fibrillation. Heart Rhythm 2 (Suppl.), S67 (2005).

    Article  Google Scholar 

  81. Nakano, Y. et al. Matrix metalloproteinase-9 contributes to human atrial remodeling during atrial fibrillation. J. Am. Coll. Cardiol. 43, 818–825 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Gaudino, M. et al. The-174G/C interleukin-6 polymorphism influences postoperative interleukin-6 levels and postoperative atrial fibrillation. Is atrial fibrillation an inflammatory complication? Circulation 108 (Suppl.), II195–II199 (2003).

    PubMed  Google Scholar 

  83. Young-Xu, Y. et al. Usefulness of statin drugs in protecting against atrial fibrillation in patients with coronary artery disease. Am. J. Cardiol. 92, 1379–1383 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Kumagai, K., Nakashima, H. & Saku, K. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Cardiovasc. Res. 62, 105–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Shiroshita-Takeshita, A., Schram, G., Lavoie, J. & Nattel, S. Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation 110, 2313–2319 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Haugan, K. et al. The antiarrhythmic peptide analog ZP123 prevents atrial conduction slowing during metabolic stress. J. Cardiovasc. Electrophysiol. 16, 537–545 (2005).

    Article  PubMed  Google Scholar 

  87. Bode, F., Sachs, F. & Franz, M. R. Tarantula peptide inhibits atrial fibrillation. Nature 409, 35–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Fuster, V. et al. ACC/AHA/ESC Guidelines for the management of patients with atrial fibrillation: executive summary a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines and Policy Conferences (Committee to Develop Guidelines for the Management of Patients With Atrial Fibrillation) developed in collaboration with the North American Society of Pacing and Electrophysiology. Circulation 104, 2118–2150 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Hart, R. G. et al. Stroke with intermittent atrial fibrillation: incidence and predictors during aspirin therapy. Stroke Prevention in Atrial Fibrillation Investigators. J. Am. Coll. Cardiol. 35, 183–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Wolf, P. A., Abbott, R. D. & Kannel, W. B. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 22, 983–988 (1991).

    Article  CAS  PubMed  Google Scholar 

  91. Singer, D. E. Anticoagulation for atrial fibrillation: epidemiology informing a difficult clinical decision. Proc. Assoc. Am. Physicians 108, 29–36 (1996).

    CAS  PubMed  Google Scholar 

  92. Rieder, M. J. et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. 352, 2285–2293 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Gage, B. F. et al. Selecting patients with atrial fibrillation for anticoagulation: stroke risk stratification in patients taking aspirin. Circulation 110, 2287–2292 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Olsson, S. B. Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): randomised controlled trial. Lancet 362, 1691–1698 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Desai, M. NDA 21-686: ximelagatran (H376/95). Briefing document. [online], <http://www.fda.gov/OHRMS/DOCKETS/ac/04/briefing/2004-4069B1_06_FDA-Backgrounder-C-R-MOR.pdf> (2005).

    Google Scholar 

  96. Ostermayer, S. H. et al. Percutaneous left atrial appendage transcatheter occlusion (PLAATO system) to prevent stroke in high-risk patients with non-rheumatic atrial fibrillation: results from the international multi-center feasibility trials. J. Am. Coll. Cardiol. 46, 9–14 (2005).

    Article  PubMed  Google Scholar 

  97. Brignole, M. et al. Assessment of atrioventricular junction ablation and DDDR mode-switching pacemaker versus pharmacological treatment in patients with severely symptomatic paroxysmal atrial fibrillation: a randomized controlled study. Circulation 96, 2617–2624 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Oral, H. et al. Pulmonary Vein isolation for paroxysmal and persistent atrial fibrillation. Circulation 105, 1077–1081 (2002).

    Article  PubMed  Google Scholar 

  99. Pappone, C. et al. Mortality, morbidity, and quality of life after circumferential pulmonary vein ablation for atrial fibrillation: outcomes from a controlled nonrandomized long-term study. J. Am. Coll. Cardiol. 42, 185–197 (2003).

    Article  PubMed  Google Scholar 

  100. Wazni, O. M. et al. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of symptomatic atrial fibrillation: a randomized trial. JAMA 293, 2634–2640 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Hohnloser, S. H., Kuck, K. H. & Lilienthal, J. Rhythm or rate control in atrial fibrillation — Pharmacological Intervention in Atrial Fibrillation (PIAF): a randomised trial. Lancet 356, 1789–1794 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Van, G., I et al. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N. Engl. J. Med. 347, 1834–1840 (2002).

    Article  Google Scholar 

  103. Wyse, D. G. et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N. Engl. J. Med. 347, 1825–1833 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Opolski, G. et al. Rate control vs rhythm control in patients with nonvalvular persistent atrial fibrillation: the results of the Polish How to Treat Chronic Atrial Fibrillation (HOT CAFE) Study. Chest 126, 476–486 (2004).

    Article  PubMed  Google Scholar 

  105. Carlsson, J. et al. Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation: the Strategies of Treatment of Atrial Fibrillation (STAF) study. J. Am. Coll. Cardiol. 41, 1690–1696 (2003).

    Article  PubMed  Google Scholar 

  106. Hagens, V. E. et al. Effect of rate or rhythm control on quality of life in persistent atrial fibrillation. Results from the Rate Control Versus Electrical Cardioversion (RACE) Study. J. Am. Coll. Cardiol. 43, 241–247 (2004).

    Article  PubMed  Google Scholar 

  107. Page, R. L. Clinical practice. Newly diagnosed atrial fibrillation. N. Engl. J. Med. 351, 2408–2416 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Fox, C. S. et al. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA 291, 2851–2855 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Darbar, D. et al. Familial atrial fibrillation is a genetically heterogeneous disorder. J. Am. Coll. Cardiol. 41, 2185–2192 (2003).

    Article  PubMed  Google Scholar 

  110. Ellinor, P. T. & Macrae, C. A. The genetics of atrial fibrillation. J. Cardiovasc. Electrophysiol. 14, 1007–1009 (2003).

    Article  PubMed  Google Scholar 

  111. Yang, Y. et al. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am. J. Hum. Genet. 75, 899–905 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, Y. H. et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299, 251–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Xia, M. et al. A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem. Biophys. Res. Commun. 332, 1012–1019 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Priori, S. G. et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ. Res. 96, 800–807 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Brugada, R. et al. Sudden Death Associated With Short-QT Syndrome Linked to Mutations in HERG. Circulation 109, 30–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Bellocq, C. et al. Mutation in the KCNQ1 gene leading to the short QT interval syndrome. Circulation 109, 2394–2397 (2004).

    Article  PubMed  Google Scholar 

  117. Antzelevitch, C. et al. Brugada Syndrome. Report of the Second Consensus Conference. Endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 111, 659–670 (2005).

    Article  PubMed  Google Scholar 

  118. Mohler, P. J. et al. A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proc. Natl Acad. Sci. USA 101, 9137–9142 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Fatkin, D. et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med. 341, 1715–1724 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Brugada, R. et al. Identification of a genetic locus for familial atrial fibrillation. N. Engl. J. Med. 336, 905–911 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Ellinor, P. T., Shin, J. T., Moore, R. K., Yoerger, D. M. & Macrae, C. A. Locus for atrial fibrillation maps to chromosome 6q14–16. Circulation 107, 2880–2883 (2003).

    Article  PubMed  Google Scholar 

  122. Oberti, C. et al. Genome-wide linkage scan identifies a novel genetic locus on chromosome 5p13 for neonatal atrial fibrillation associated with sudden death and variable cardiomyopathy. Circulation 110, 3753–3759 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rottbauer, W. et al. Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel alpha1 subunit. Dev. Cell 1, 265–275 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Temple, J. et al. Spontaneous and induced atrial fibrillation in minK knockout mice. Circulation 102, 153 (2000).

    Google Scholar 

  125. Temple, J. et al. Atrial fibrillation in KCNE1-null mice. Circ. Res. 97, 62–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Tsai, C. T. et al. Renin–angiotensin system gene polymorphisms and atrial fibrillation. Circulation 109, 1640–1646 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Lai, L. P. et al. Association of the human minK gene 38G allele with atrial fibrillation: evidence of possible genetic control on the pathogenesis of atrial fibrillation. Am Heart J 144, 485–490 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Ehrlich, J. R. et al. Atrial fibrillation-associated minK38G/S polymorphism modulates delayed rectifier current and membrane localization. Cardiovasc. Res. 67, 520–528 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Page.

Ethics declarations

Competing interests

R.L.P. has previously served as consultant to AstraZeneca, Glaxo-SmithKline, Reliant Pharmaceuticals, Cardiome and Procter & Gamble Pharmaceuticals. He is now a consultant to Berlex Laboratories, Sanofi Synthelolab and Alza. D.M.R. has served as consultant to AstraZeneca, Sanofi and Cardiome.

Related links

Related links

DATABASES

Entrez Gene

ACE

Connexin-40

Connexin-43

Conexxin-45

C-reactive protein

Factor II

Factor VII

Factor IX

Factor X

HERG

HMG-CoA reducatse

interleukin-6

KCNA5

KCNE2

KCNJ2

KCNQ1

matrix metalloproteinase-9

TGFβ

FURTHER INFORMATION

The Pharmacogenetics and Pharmacogenomics Knowledge Base

Glossary

ARRHYTHMIA

An abnormal rhythm of the heart. Also referred to as dysrhythmias, arrhythmias can occur in the atria and ventricles. Atrial fibrillation is an arrhythmia of the atria, although it conducts to the ventricles such that the pulse is irregularly irregular.

CARDIAC OUTPUT

The forward delivery of blood from the heart, usually reported in litres per minute.

PULMONARY OEDEMA

A condition in which the lungs become congested and fluid may leak into gas-exchange chambers called alveoli, usually due to left ventricular failure.

CARDIAC REMODELLING

The concept that the properties of the heart change with environmental stressors. In AF, such remodelling may serve to perpetuate the arrhythmia.

ATRIAL FLUTTER

An atrial arrhythmia that can also result in an irregular ventricular response. Unlike atrial fibrillation, this is a regular atrial rhythm that results from electrical reentry encircling the tricuspid valve ring.

CARDIAC ABLATION

Destruction of cardiac tissue, usually percutaneously via a specialized catheter, by applying radiofrequency electrical current.

QT PROLONGATION

The QT interval represents the time for electrical activation and inactivation of the ventricles, the lower chambers of the heart. Prolongation of the QT interval can result in the potentially lethal arrythmia known as Torsades de Pointes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, R., Roden, D. Drug therapy for atrial fibrillation: where do we go from here?. Nat Rev Drug Discov 4, 899–910 (2005). https://doi.org/10.1038/nrd1876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing