Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interventional oncology in multidisciplinary cancer treatment in the 21st century

Key Points

  • Interventional oncology is a new discipline, which uses minimally invasive, image-guided techniques to treat patients with cancer

  • Percutaneous thermal ablation and cryotherapy are the main potentially curative methods of treatment used by interventional radiologists when treating patients with cancer

  • Both interventional oncology and radiation oncology can achieve local cure of malignant tumours

  • Collaboration between radiation oncologists and interventional oncologists would have important benefits for patients with cancer and for both of these disciplines

Abstract

Interventional oncology is an evolving branch of interventional radiology, which relies on rapidly evolving, highly sophisticated treatment tools and precise imaging guidance to target and destroy malignant tumours. The development of this field has important potential benefits for patients and the health-care system, but as a new discipline, interventional oncology has not yet fully established its place in the wider field of oncology; its application does not have a comprehensive evidence base, or a clinical or quality-assurance framework within which to operate. In this regard, radiation oncology, a cornerstone of modern cancer care, has a lot of important information to offer to interventional oncologists. A strong collaboration between radiation oncology and interventional oncology, both of which aim to cure or control tumours or to relieve symptoms with as little collateral damage to normal tissue as possible, will have substantial advantages for both disciplines. A close relationship with radiation oncology will help facilitate the development of a robust quality-assurance framework and accumulation of evidence to support the integration of interventional oncology into multidisciplinary care. Furthermore, collaboration between interventional oncology and radiation oncology fields will have great benefits to practitioners, people affected by cancer, and to the wider field of oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal ablation of hepatic metastasis in a female patient with breast cancer.

Similar content being viewed by others

References

  1. Fairchild, A. et al. Palliative thoracic radiotherapy for lung cancer: a systematic review. J. Clin. Oncol. 26, 4001–4011 (2008).

    Article  PubMed  Google Scholar 

  2. Skladowski, K. et al. Randomized clinical trial on 7-day continuous accelerated irradiation (CAIR) of head and neck cancer—report on 3-year tumor control and normal tissue toxicity. Radiother. Oncol. 55, 101–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Rose, P. et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N. Engl. J. Med. 340, 1144–1153 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Kenny, L., Peters, L., Rodger, A., Barton, M. & Turner, S. Modern radiotherapy for modern surgeons: an update on radiation oncology. ANZ J. Surg. 72, 131–136 (2002).

    Article  PubMed  Google Scholar 

  5. Kenny, L. M., Peters, L. J., Barton, M. & Milross, C. Radiotherapy—a leap forward in cancer care. Cancer Forum 37, 42–46 (2013).

    Google Scholar 

  6. Coles, C. E., Moody, A. M., Wilson, C. B. & Burnet, N. G. Reduction of radiotherapy-induced late complications in early breast cancer: the role of intensity-modulated radiation therapy and partial breast irradiation. Part II—radiotherapy strategies to reduce radiation-induced late effects. Clin. Oncol. 17, 98–110 (2005).

    Article  CAS  Google Scholar 

  7. Bucci, M. K., Bevan, A. & Roach, M. Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA Cancer J. Clin. 55, 117–134 (2005).

    Article  PubMed  Google Scholar 

  8. Delaney, G., Jacob, S., Featherstone, C. & Barton, M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104, 1129–1137 (2005).

    Article  PubMed  Google Scholar 

  9. Jacob, S., Wong, K., Delaney, G. P., Adams, P. & Barton, M. B. Estimation of an optimal utilisation rate for palliative radiotherapy in newly diagnosed cancer patients. Clin. Oncol. (R. Coll. Radiol.) 22, 56–64 (2010).

    Article  CAS  Google Scholar 

  10. Dotter, C. T. & Judkins, M. P. Transluminal treatment of arteriosclerotic obstruction: description of a new technic and a preliminary report of its application. Circulation 30, 654–670 (1964).

    Article  CAS  PubMed  Google Scholar 

  11. Molyneux, A. J. et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 366, 809–817 (2005).

    Article  PubMed  Google Scholar 

  12. Katsanos, K. et al. Systematic review and meta-analysis of thermal ablation versus surgical nephrectomy for small renal tumours. Cardiovasc. Intervent. Radiol. 37, 427–437 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Becker, G. J., Katzen, B. T. & Dake, M. D. Noncoronary angioplasty. Radiology 170, 921–940 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Chabbert, V. et al. Midterm outcomes of thoracic aortic stent-grafts: complications and imaging techniques. J. Endovasc. Ther. 10, 494–504 (2003).

    Article  PubMed  Google Scholar 

  15. García-Pagán, J. C. et al. Early use of TIPS in patients with cirrhosis and variceal bleeding. N. Engl. J. Med. 362, 2370–2379 (2010).

    Article  PubMed  Google Scholar 

  16. Kee, S. T. et al. Superior vena cava syndrome: treatment with catheter-directed thrombolysis and endovascular stent placement. Radiology 206, 187–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Marcy, P. Y. et al. Superior vena cava obstruction: is stenting necessary? Support. Care Cancer 9, 103–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Nicholson, A. A., Ettles, D. F., Arnold, A., Greenstone, M. & Dyet, J. F. Treatment of malignant superior vena cava obstruction: metal stents or radiation therapy. J. Vasc. Interv. Radiol. 8, 781–788 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Rozenblit, A. et al. Endovascular repair of abdominal aortic aneurysm: value of postoperative follow-up with helical CT. AJR Am. J. Roentgenol. 165, 1473–1479 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Struk, D. W., Rankin, R. N., Eliasziw, M. & Vellet, A. D. Safety of outpatient peripheral angioplasty. Radiology 189, 193–196 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Swanson, K. L. et al. Bronchial artery embolization: experience with 54 patients. Chest 121, 789–795 (2002).

    Article  PubMed  Google Scholar 

  22. Uyeda, J. W., LeBedis, C. A., Penn, D. R., Soto, J. A. & Anderson, S. W. Active hemorrhage and vascular injuries in splenic trauma: utility of the arterial phase in multidetector CT. Radiology 270, 99–106 (2014).

    Article  PubMed  Google Scholar 

  23. Farrell, T. A. & Hicks, M. E. A review of radiologically guided percutaneous nephrostomies in 303 patients. J. Vasc. Interv. Radiol. 8, 769–774 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Bettmann, M. A., Perlmutt, L., Finkelstein, J., Meyerovitz, M. F. & Richie, J. P. Percutaneous placement of soft, indwelling ureteral stent. Radiology 157, 817–818 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Lang, E. K. et al. Placement of metallic stents in ureters obstructed by carcinoma of the cervix to maintain renal function in patients undergoing long-term chemotherapy. AJR Am. J. Roentgenol. 171, 1595–1599 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Van Arsdalen, K. N., Pollack, H. M. & Wein, A. J. Ureteral stenting. Semin. Urol. 2, 180–186 (1984).

    CAS  PubMed  Google Scholar 

  27. Ferrucci, J. T., Mueller, P. R. & Harbin, W. P. Percutaneous transhepatic biliary drainage: technique, results and applications. Radiology 135, 1–13 (1980).

    Article  PubMed  Google Scholar 

  28. Mueller, P. R. et al. Biliary stent endoprostheses: analysis of complications in 113 patients. Radiology 156, 637–639 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. Gibson, R. N. et al. Percutaneous transhepatic endoprosthesis for hilar cholangiocarcinoma. Am. J. Surg. 156, 363–367 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Adam, A., Yeung, E., Chetty, N., Roddie, M. & Benjamin, I. S. Self-expandable stainless steel endoprostheses for the treatment of malignant bile duct obstruction. AJR Am. J. Roentgenol. 156, 321–325 (1990).

    Article  Google Scholar 

  31. Laméris, J. S. et al. Malignant biliary obstruction: percutaneous use of self-expandable stents. Radiology 179, 703–707 (1991).

    Article  PubMed  Google Scholar 

  32. McKeown, B. J., Wong, W. L. & Adam, A. True single-stage percutaneous insertion of Wallstent biliary endoprostheses. Minim. Invasive Ther. Allied Technol. 3, 257–260 (1994).

    Article  Google Scholar 

  33. Stoker, J. & Lameris, J. S. Complications of percutaneously inserted biliary Wallstents. J. Vasc. Interv. Radiol. 4, 767–772 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. van Delden, O. M. & Lameris, J. S. Percutaneous biliary drainage and stenting for palliation of malignant bile duct obstruction. Eur. Radiol. 18, 448–456 (2008).

    Article  PubMed  Google Scholar 

  35. Dumonceau, J. M. et al. Biliary stenting: indications, choice of stents and results: European Society of Gastrointestinal Endoscopy (ESGE) clinical guideline. Endoscopy 44, 277–298 (2012).

    Article  PubMed  Google Scholar 

  36. Adam, A. et al. Palliation of inoperable esophageal carcinoma: a prospective randomized trial of laser therapy and stent placement. Radiology 202, 344–348 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Adam, A., Morgan, R., Ellul, J. & Mason, R. C. A new design of the esophageal Wallstent endoprosthesis resistant to distal migration. AJR Am. J. Roentgenol. 170, 1477–1481 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Song, H. Y. et al. Covered, expandable esophageal metallic stent tubes: experiences in 119 patients. Radiology 193, 689–695 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Watkinson, A. F., Ellul, J., Entwisle, K., Mason, R. C. & Adam, A. Esophageal carcinoma: initial results of palliative treatment with covered self-expanding endoprostheses. Radiology 195, 821–827 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Ellul, J., Watkinson, A. F., Khan, R., Adam, A. & Mason, R. C. Self-expandable metal stents for the palliation of dysphagia due to inoperable oesophageal carcinoma. Br. J. Surg. 82, 1678–1681 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Saxon, R. R. et al. Malignant esophageal obstruction and esophagorespiratory fistula: palliation with a polyethylene-covered Z-stent. Radiology 202, 349–354 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Costamagna, G. et al. Prospective evaluation of a new self-expanding plastic stent for inoperable esophageal strictures. Surg. Endosc. 17, 891–895 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. May, A., Hahn, E. G. & Ell, C. Self-expanding metal stents for palliation of malignant obstruction in the upper gastrointestinal tract. J. Clin. Gastroenterol. 22, 261–266 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Cheung, H. Y. & Chung, S. C. Covered metal stent for tumor obstruction of efferent loop recurrence after gastrectomy. Surg. Endosc. 11, 936–938 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Pinto, I. T. Malignant gastric and duodenal stenosis: palliation by peroral implantation of a self-expanding metallic stent. Cardiovasc. Intervent. Radiol. 20, 431–434 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Yates, M. R., Morgan, D. E. & Baron, T. H. Palliation of malignant gastric and small intestinal strictures with self-expanding metal stents. Endoscopy 30, 266–272 (1998).

    Article  PubMed  Google Scholar 

  47. Binkert, C. A., Jost, R., Steiner, A. & Zollikofer, C. L. Benign and malignant stenoses of the stomach and duodenum: treatment with self-expanding metallic endoprostheses. Radiology 199, 335–338 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Ruiz, P. L. et al. New intraluminal bypass tube for management of acutely obstructed left colon. Dis. Colon Rectum 38, 1108–1109 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Rousseau, H. et al. Self-expandable prostheses in the tracheobronchial tree. Radiology 188, 199–203 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Inchingolo, R. et al. Tracheobronchial stenting for malignant airway disease: long-term outcomes from a single-center study. Am. J. Hosp. Palliat. Care 30, 683–689 (2013).

    Article  PubMed  Google Scholar 

  51. Goldberg, S. N., Gazelle, G. S., Compton, C. C., Mueller, P. R. & Tanabe, K. K. Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation. Cancer 88, 2452–2463 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Narayanan, G. Irreversible electroporation for treatment of liver cancer. Gastroenterol. Hepatol. 7, 313–316 (2011).

    Google Scholar 

  53. Lee, E. W. et al. Advanced hepatic ablation technique for creating complete cell death: irreversible electroporation. Radiology 255, 426–433 (2010).

    Article  PubMed  Google Scholar 

  54. Liang, P. et al. Ultrasound guided percutaneous microwave ablation for small renal cancer: initial experience. J. Urol. 180, 844–848 (2008).

    Article  PubMed  Google Scholar 

  55. Cannon, R., Ellis, S., Hayes, D., Narayanan, G. & Martin, R. C. Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J. Surg. Oncol. 107, 544–549 (2013).

    Article  PubMed  Google Scholar 

  56. Brace, C. L. Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Curr. Probl. Diagn. Radiol. 38, 135–143 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Breen, D. J. et al. Percutaneous cryoablation of renal tumours: outcomes from 171 tumours in 147 patients. BJU Int. 112, 758–765 (2013).

    Article  PubMed  Google Scholar 

  58. Olweny, E. O. et al. Radiofrequency ablation versus partial nephrectomy in patients with solitary clinical T1a renal cell carcinoma: comparable oncologic outcomes at a minimum of 5 years of follow-up. Eur. Urol. 61, 1156–1161 (2012).

    Article  PubMed  Google Scholar 

  59. Takaki, H. et al. Radiofrequency ablation versus radical nephrectomy: clinical outcomes for stage T1b renal cell carcinoma. Radiology 270, 292–299 (2014).

    Article  PubMed  Google Scholar 

  60. Ferakis, N., Bouropoulos, C., Granitsas, T., Mylona, S. & Poulias, I. Long-term results after computed-tomography-guided percutaneous radiofrequency ablation for small renal tumors. J. Endourol. 24, 1909–1913 (2010).

    Article  PubMed  Google Scholar 

  61. Psutka, S. P. et al. Long-term oncologic outcomes after radiofrequency ablation for T1 renal cell carcinoma. Eur. Urol. 63, 486–492 (2013).

    Article  PubMed  Google Scholar 

  62. Krokidis, M. et al. Percutaneous radiofrequency ablation of small renal tumours in patients with a single functioning kidney: long-term results. Eur. Radiol. 23, 1933–1939 (2013).

    Article  PubMed  Google Scholar 

  63. Hur, H. et al. Comparative study of resection and radiofrequency ablation in the treatment of solitary colorectal liver metastases. Am. J. Surg. 197, 728–736 (2009).

    Article  PubMed  Google Scholar 

  64. Elias, D. et al. Usefulness of intraoperative radiofrequency thermoablation of liver tumours associated or not with hepatectomy. Eur. J. Surg. Oncol. 26, 763–769 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Pawlik, T. M. et al. Combined resection and radiofrequency ablation for advanced hepatic malignancies: results in 172 patients. Ann. Surg. Oncol. 10, 1059–1069 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Leung, E. Y., Roxburgh, C. S., Leen, E. & Horgan, P. G. Combined resection and radiofrequency ablation for bilobar colorectal cancer liver metastases. Hepatogastroenterology 57, 41–46 (2010).

    PubMed  Google Scholar 

  67. Salem, R. et al. Treatment of unresectable hepatocellular carcinoma with use of 90Y microspheres (TheraSphere): safety, tumor response, and survival. J. Vasc. Interv. Radiol. 16, 1627–1639 (2005).

    Article  PubMed  Google Scholar 

  68. Stubbs, R. S., Cannan, R. J. & Mitchell, A. W. Selective internal radiation therapy (SIRT) with 90Yttrium microspheres for extensive colorectal liver metastases. Hepatogastroenterology 48, 333–337 (2001).

    CAS  PubMed  Google Scholar 

  69. Sharma, R. A. et al. Radioembolization of liver metastases from colorectal cancer using yttrium-90 microspheres with concomitant systemic oxaliplatin, fluorouracil, and leucovorin chemotherapy. J. Clin. Oncol. 25, 1099–1106 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Stuart, K. Chemoembolization in the management of liver tumors. Oncologist 8, 425–437 (2003).

    Article  PubMed  Google Scholar 

  71. de Baere, T. et al. Midterm local efficacy and survival after radiofrequency ablation of lung tumors with minimum follow-up of 1 year: prospective evaluation. Radiology 240, 587–596 (2006).

    Article  PubMed  Google Scholar 

  72. Simon, C. J. et al. Pulmonary radiofrequency ablation: long-term safety and efficacy in 153 patients. Radiology 243, 268–275 (2007).

    Article  PubMed  Google Scholar 

  73. Yasui, K. et al. Thoracic tumors treated with CT-guided radiofrequency ablation: initial experience. Radiology 231, 850–857 (2004).

    Article  PubMed  Google Scholar 

  74. Gadaleta, C. et al. Radiofrequency ablation of 40 lung neoplasms: preliminary results. AJR Am. J. Roentgenol. 183, 361–368 (2004).

    Article  PubMed  Google Scholar 

  75. Wolf, F. J. et al. Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients. Radiology 247, 871–879 (2008).

    Article  PubMed  Google Scholar 

  76. Wang, H. et al. Thoracic masses treated with percutaneous cryotherapy: initial experience with more than 200 procedures. Radiology 235, 289–298 (2005).

    Article  PubMed  Google Scholar 

  77. Rawlins, M. De Testimonio: on the evidence for decisions about the use of therapeutic interventions. Clin. Med. 8, 579–588 (2008).

    Article  Google Scholar 

  78. Lassen, K., Høye A. & Myrmel, T. Randomised trials in surgery: the burden of evidence. Rev. Recent Clin. Trials 7, 244–248 (2012).

    Article  PubMed  Google Scholar 

  79. Scott, I. A. Comparative effectiveness research—the missing link in evidence-informed clinical medicine and health care policy making. Med. J. Aust. 198, 310–312 (2013).

    Article  PubMed  Google Scholar 

  80. Ahmed, M. et al. Combined radiofrequency ablation and adjuvant liposomal chemotherapy: effect of chemotherapeutic agent, nanoparticle size, and circulation time. J. Vasc. Interv. Radiol. 16, 1365–1371 (2005).

    Article  PubMed  Google Scholar 

  81. Jin, Y. et al. Radiofrequency ablation combined with systemic chemotherapy in nasopharyngeal carcinoma liver metastases improves response to treatment and survival outcomes. J. Surg. Oncol. 106, 322–326 (2012).

    Article  PubMed  Google Scholar 

  82. Williamson, J. F. et al. Quality assurance needs for modern image-based radiotherapy: recommendations from 2007 interorganizational symposium on “quality assurance of radiation therapy: challenges of advanced technology”. Int. J. Radiat. Oncol. Biol. Phys. 71 (Suppl.), S2–S12 (2008).

    Article  PubMed  Google Scholar 

  83. The Faculty of Radiation Oncology (FRO), The Royal Australian and New Zealand College of Radiologists (RANZCR), Australian Institute of Radiography (AIR), & The Australasian College of Physical Scientists and Engineers in Medicine (ASPSEM). Radiation Oncology Practice Standards [online], (2011).

  84. Radiation Oncology Practice Standards. Supplementary guide [online], (2011).

  85. Peters, L. J. et al. Critical Impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: results from TROG 02.02. J. Clin. Oncol. 28, 2996–3001 (2010).

    Article  PubMed  Google Scholar 

  86. Crocetti, L., de Baere, T. & Lencioni, R. Quality improvement guidelines for radiofrequency ablation of liver tumours. Cardiovasc. Intervent. Radiol. 33, 11–17 (2010).

    Article  PubMed  Google Scholar 

  87. Rendon, R. A. et al. The uncertainty of radio frequency treatment of renal cell carcinoma: findings at immediate and delayed nephrectomy. J. Urol. 167, 1587–1592 (2002).

    Article  PubMed  Google Scholar 

  88. Loo, B. W. Stereotactic ablative radiotherapy (SABR) for lung cancer: what does the future hold? J. Thorac. Dis. 3, 150–152 (2011).

    PubMed  PubMed Central  Google Scholar 

  89. Haasbeek, C. J., Lagerwaard, F. J., Slotman, B. J. & Senan, S. Outcomes of stereotactic ablative radiotherapy for centrally located early-stage lung cancer. J. Thorac. Oncol. 6, 2036–2043 (2011).

    Article  PubMed  Google Scholar 

  90. Senthi, S., Lagerwaard, F. J., Haasbeek, C. J., Slotman, B. J. & Senan, S. Patterns of disease recurrence after stereotactic ablative radiotherapy for early stage non-small-cell lung cancer: a retrospective analysis. Lancet Oncol. 13, 802–809 (2012).

    Article  PubMed  Google Scholar 

  91. Senthi, S., Haasbeek, C. J., Slotman, B. J. & Suneth, S. Outcomes of stereotactic ablative radiotherapy for central lung tumours: a systematic review. Radiother. Oncol. 106, 276–282 (2013).

    Article  PubMed  Google Scholar 

  92. Dupuy, D. E. Radiofrequency ablation followed by conventional radiotherapy for medically inoperable stage I non-small cell lung cancer. Chest 129, 738–745 (2006).

    Article  PubMed  Google Scholar 

  93. Jain, S. K., Dupuy, D. E., Cardarelli, G. A., Zheng, Z. & DiPetrillo, T. A. Percutaneous radiofrequency ablation of pulmonary malignancies: combined treatment with brachytherapy. AJR Am. J. Roentgenol. 181, 711–755 (2003).

    Article  PubMed  Google Scholar 

  94. Dawson, L. A. & Jaffray, D. A. Advances in image-guided radiation therapy. J. Clin. Oncol. 8, 938–946 (2007).

    Article  Google Scholar 

  95. Zietman, A. Image-targeted oncology: a 21st century specialty waiting to be born. Presented at The Royal College of Radiologists Clinical Oncology Annual Meeting 2013.

  96. RCR. The Royal College of Radiologists [online], (2014).

  97. RANZCR. The Royal Australian and New Zealand College of Radiologists [online], (2014).

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, provided substantial contributions to discussions of content, wrote the article, and reviewed and/or edited the manuscript before submission and after peer review.

Corresponding author

Correspondence to Andreas Adam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, A., Kenny, L. Interventional oncology in multidisciplinary cancer treatment in the 21st century. Nat Rev Clin Oncol 12, 105–113 (2015). https://doi.org/10.1038/nrclinonc.2014.211

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.211

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer