Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Carotid baroreflex activation therapy for resistant hypertension

Key Points

  • Arterial baroreceptors are pressure-sensitive nerve endings in the walls of the carotid sinuses and aortic arch that sense the increases and decreases in blood pressure

  • Resistant hypertension is accompanied by sympathetic overactivity and partial attenuation of arterial baroreflex function, caused largely by stiffening of the great vessels in which the baroreceptor nerve endings are embedded

  • Electrical field stimulation of the carotid baroreceptor axons (carotid baroreflex activation therapy) has been shown to mediate acute reductions in sympathetic activity and blood pressure in patients with resistant hypertension

  • In an initial phase III trial on continuous carotid baroreflex activation therapy for resistant hypertension, the prototype implantable device was associated with equivocal efficacy and surgically-induced facial nerve palsy

  • In subsequent phase I and IIa trials with a miniaturized second-generation system, unilateral carotid stimulation produced reductions in blood pressure equivalent to bilateral stimulation, with no major adverse events

  • A new phase III trial for the use of this second-generation system for resistant hypertension has been registered

Abstract

Arterial baroreceptors are mechanosensitive sensory nerve endings in the walls of the carotid sinuses and aortic arch that buffer the increases and decreases in arterial blood pressure. Electrical field stimulation of the carotid sinus, known as carotid baroreflex activation therapy, holds promise as a novel device-based intervention to supplement, but not replace, drug therapy for patients with resistant hypertension. Acute electrical field stimulation of even one carotid sinus can cause a sufficiently large reflex decrease in blood pressure to overcome offsetting reflexes from the contralateral carotid baroreceptors and aortic baroreceptors that are not paced. However, the initial phase III Rheos Pivotal Trial on continuous carotid baroreceptor pacing for resistant hypertension with the first-generation baroreceptor pacemaker yielded equivocal data on efficacy and adverse effects due to facial nerve injury during surgical implantation. A miniaturized second-generation pacing electrode has seemingly overcome the safety issue, and early results with the new device suggest efficacy of unilateral carotid sinus stimulation in heart failure. A phase III trial of this new device for resistant hypertension has been registered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An historical perspective on our understanding of baroreceptor physiology.
Figure 2: Sympathetic neural mechanisms of blood pressure regulation and treatment target of carotid baroreceptor pacing, as well as renal denervation.
Figure 3
Figure 4: The mechanical component of carotid baroreflex deactivation is blocked by local application of catecholamines to the carotid sinus in dogs.
Figure 5: Arterial baroreflex failure.
Figure 6: Chest roentgenogram after implantation showing the Rheos® system (CVRx, Inc., USA) electrodes placed around both carotid sinuses (arrow).
Figure 7: Management of a hypertensive crisis with baroreflex activation therapy.
Figure 8: Responses of ABP, HR, and MSNA to the onset and offset of electrical field stimulation of the carotid sinus with the Rheos® system (CVRx, Inc., USA).
Figure 9: Results from the Rheos® system (CVRx, Inc., USA) trials.

Similar content being viewed by others

References

  1. Mancia, G. & Mark, A. L. Arterial baroreflexes in humans. Comprehensive Physiology [online], (2011).

  2. Martin, E. A. & Victor, R. G. Premise, promise, and potential limitations of invasive devices to treat hypertension. Curr. Cardiol. Rep. 13, 86–92 (2011).

    Article  PubMed  Google Scholar 

  3. Bakris, G. L. Interventional cardiology: Indications for renal denervation: a balanced approach? Nat. Rev. Cardiol. 10, 434–436 (2013).

    Article  PubMed  Google Scholar 

  4. Bohm, M., Linz, D., Urban, D., Mahfoud, F. & Ukena, C. Renal sympathetic denervation: applications in hypertension and beyond. Nat. Rev. Cardiol. 10, 465–476 (2013).

    Article  PubMed  Google Scholar 

  5. Mearns, B. M. Hypertension: further EnligHTNment on renal sympathetic denervation. Nat. Rev. Cardiol. 10, 490 (2013).

    Article  PubMed  Google Scholar 

  6. Wang, Y. Ethnicity and sympathetic tone: predictors of the blood pressure response to renal denervation? Nat. Rev. Cardiol. 11, 638 (2014).

    Article  PubMed  Google Scholar 

  7. Bronk, D. W. & Stella, G. The response to steady pressures of single end organs in the isolated carotid sinus. Am. J. Physiol. 110, 708–714 (1935).

    Article  Google Scholar 

  8. Brown, A. M. Receptors under pressure. An update on baroreceptors. Circ. Res. 46, 1–10 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Heymans, C. & van den Heuvel-Heymans, G. New aspects of blood pressure regulation. Circulation 4, 581–586 (1951).

    Article  CAS  PubMed  Google Scholar 

  10. Hajduczok, G., Chapleau, M. W., Ferlic, R. J., Mao, H. Z. & Abboud, F. M. Gadolinium inhibits mechanoelectrical transduction in rabbit carotid baroreceptors. Implication of stretch-activated channels. J. Clin. Invest. 94, 2392–2396 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, H. I., Chapleau, M. W., McDowell, T. S. & Abboud, F. M. Prostaglandins contribute to activation of baroreceptors in rabbits. Possible paracrine influence of endothelium. Circ. Res. 67, 1394–1404 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Snitsarev, V., Whiteis, C. A., Chapleau, M. W. & Abboud, F. M. Neuronal prostacyclin is an autocrine regulator of arterial baroreceptor activity. Hypertension 46, 540–546 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Aljadhey, H. et al. Comparative effects of non-steroidal anti-inflammatory drugs (NSAIDs) on blood pressure in patients with hypertension. BMC Cardiovasc. Disord. 12, 93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, Z. et al. Nitric oxide as an autocrine regulator of sodium currents in baroreceptor neurons. Neuron 20, 1039–1049 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Andresen, M. C., Doyle, M. W., Jin, Y. H. & Bailey, T. W. Cellular mechanisms of baroreceptor integration at the nucleus tractus solitarius. Ann. N. Y. Acad. Sci. 940, 132–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Reis, D. J. The brain and hypertension: reflections on 35 years of inquiry into the neurobiology of the circulation. Circulation 70, III31–III45 (1984).

    CAS  PubMed  Google Scholar 

  17. Ohta, H., Li, X. & Talman, W. T. Release of glutamate in the nucleus tractus solitarii in response to baroreflex activation in rats. Neuroscience 74, 29–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Ohta, H. & Talman, W. T. Both NMDA and non-NMDA receptors in the NTS participate in the baroreceptor reflex in rats. Am. J. Physiol. 267, R1065–R1070 (1994).

    CAS  PubMed  Google Scholar 

  19. Yin, M., Lee, C. C., Ohta, H. & Talman, W. T. Hemodynamic effects elicited by stimulation of the nucleus tractus solitarii. Hypertension 23, I73–I77 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Lin, L. H. & Talman, W. T. Vesicular glutamate transporters and neuronal nitric oxide synthase colocalize in aortic depressor afferent neurons. J. Chem. Neuroanat. 32, 54–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Talman, W. T. & Dragon, D. N. Transmission of arterial baroreflex signals depends on neuronal nitric oxide synthase. Hypertension 43, 820–824 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Madden, C. J. & Sved, A. F. Rostral ventrolateral medulla C1 neurons and cardiovascular regulation. Cell. Mol. Neurobiol. 23, 739–749 (2003).

    Article  PubMed  Google Scholar 

  23. Bristow, J. D., Honour, A. J., Pickering, T. G. & Sleight, P. Cardiovascular and respiratory changes during sleep in normal and hypertensive subjects. Cardiovasc. Res. 3, 476–485 (1969).

    Article  CAS  PubMed  Google Scholar 

  24. Eckberg, D. L., Drabinsky, M. & Braunwald, E. Defective cardiac parasympathetic control in patients with heart disease. N. Engl. J. Med. 285, 877–883 (1971).

    Article  CAS  PubMed  Google Scholar 

  25. Korner, P. I., West, M. J., Shaw, J. & Uther, J. B. “Steady-state” properties of the baroreceptor-heart rate reflex in essential hypertension in man. Clin. Exp. Pharmacol. Physiol. 1, 65–76 (1974).

    Article  CAS  PubMed  Google Scholar 

  26. Mancia, G. et al. Circulatory reflexes from carotid and extracarotid baroreceptor areas in man. Circ. Res. 41, 309–315 (1977).

    Article  CAS  PubMed  Google Scholar 

  27. Sundlof, G. & Wallin, B. G. Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age. J. Physiol. 274, 621–637 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aksamit, T. R., Floras, J. S., Victor, R. G. & Aylward. P. E. Paroxysmal hypertension due to sinoaortic baroreceptor denervation in humans. Hypertension 9, 309–314 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Heusser, K., Tank, J., Luft, F. C. & Jordan, J. Baroreflex failure. Hypertension 45, 834–839 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Jacobsen, T. N. et al. Relative contributions of cardiopulmonary and sinoaortic baroreflexes in causing sympathetic activation in the human skeletal muscle circulation during orthostatic stress. Circ. Res. 73, 367–378 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Norcliffe-Kaufmann, L., Axelrod, F. & Kaufmann, H. Afferent baroreflex failure in familial dysautonomia. Neurology 75, 1904–1911 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Anderson, S. L. et al. Familial dysautonomia is caused by mutations of the IKAP gene. Am. J. Hum. Genet. 68, 753–758 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abashidze, A., Gold, V., Anavi, Y., Greenspan, H. & Weil, M. Involvement of IKAP in peripheral target innervation and in specific JNK and NGF signaling in developing PNS neurons. PLoS ONE 9, e113428 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanders, J. S., Ferguson, D. W. & Mark, A. L. Arterial baroreflex control of sympathetic nerve activity during elevation of blood pressure in normal man: dominance of aortic baroreflexes. Circulation 77, 279–288 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Sanders, J. S., Mark, A. L. & Ferguson, D. W. Importance of aortic baroreflex in regulation of sympathetic responses during hypotension. Evidence from direct sympathetic nerve recordings in humans. Circulation 79, 83–92 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Kaplan, N. M. & Victor, R. G. Kaplan's Clinical Hypertension, 11th edn (Wolters Kluwer, 2014).

    Google Scholar 

  37. Mancia, G. et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 34, 2159–2219 (2013).

    Article  PubMed  Google Scholar 

  38. Fontil, V. et al. Physician underutilization of effective medications for resistant hypertension at office visits in the United States: NAMCS 2006–2010. J. Gen. Intern. Med. 29, 468–476 (2014).

    Article  PubMed  Google Scholar 

  39. Khanna, R. R., Victor, R. G., Bibbins-Domingo, K., Shapiro, M. F. & Pletcher, M. J. Missed opportunities for treatment of uncontrolled hypertension at physician office visits in the United States, 2005–2009. Arch. Intern. Med. 172, 1344–1345 (2012).

    Article  PubMed  Google Scholar 

  40. Jaffe, M. G., Lee, G. A., Young, J. D., Sidney, S. & Go, A. S. Improved blood pressure control associated with a large-scale hypertension program. JAMA 310, 699–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Egan, B. M., Zhao, Y., Axon, R. N., Brzezinski, W. A. & Ferdinand, K. C. Uncontrolled and apparent treatment resistant hypertension in the United States, 1988 to 2008. Circulation 124, 1046–1058 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Egan, B. M. et al. Prevalence of optimal treatment regimens in patients with apparent treatment-resistant hypertension based on office blood pressure in a community-based practice network. Hypertension 62, 691–697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weitzman, D., Chodick, G., Shalev, V., Grossman, C. & Grossman, E. Prevalence and factors associated with resistant hypertension in a large health maintenance organization in Israel. Hypertension 64, 501–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Calhoun, D. A. et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 51, 1403–1419 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Vongpatanasin, W. Resistant hypertension: a review of diagnosis and management. JAMA 311, 2216–2224 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Vongpatanasin, W., Kario, K., Atlas, S. A. & Victor, R. G. Central sympatholytic drugs. J. Clin. Hypertens. (Greenwich) 13, 658–661 (2011).

    Article  CAS  Google Scholar 

  47. Guyenet, P. G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Harrison, D. G. The immune system in hypertension. Trans. Am. Clin. Climatol. Assoc. 125, 130–138 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Sander, M., Hansen, J. & Victor, R. G. The sympathetic nervous system is involved in the maintenance but not initiation of the hypertension induced by Nω-nitro-L-arginine methyl ester. Hypertension 30, 64–70 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Grimson, K. S., Orgain, E. S. Anderson, B., Broome, R. A. & Longino, F. H. Results of treatment of patients with hypertension by total thoracic and partial to total lumbar sympathectomy, splanchnicectomy and celiac ganglionectomy. Ann. Surg. 129, 850–871 (1949).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Darr, R. et al. Pheochromocytoma—update on disease management. Ther. Adv. Endocrinol. Metab. 3, 11–26 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guyton, A. C. Blood pressure control—special role of the kidneys and body fluids. Science 252, 1813–1816 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Lifton, R. P., Wilson, F. H., Choate, K. A. & Geller, D. S. Salt and blood pressure: new insight from human genetic studies. Cold Spring Harb. Symp. Quant. Biol. 67, 445–450 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Schlaich, M. P. et al. Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and Angiotensin neuromodulation. Hypertension 43, 169–175 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Esler, M. Sympathetic nervous system moves toward center stage in cardiovascular medicine: from Thomas Willis to resistant hypertension. Hypertension 63, e25–e32 (2014).

    Article  PubMed  Google Scholar 

  56. DiBona, G. F. Physiology in perspective: the wisdom of the body. Neural control of the kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R633–R641 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Grassi, G. et al. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension 53, 205–209 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Grassi, G. et al. Marked sympathetic activation and baroreflex dysfunction in true resistant hypertension. Int. J. Cardiol. 177, 1020–1025 (2014).

    Article  PubMed  Google Scholar 

  59. Mancia, G. & Grassi, G. The autonomic nervous system and hypertension. Circ. Res. 114, 1804–1814 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Esler, M. Renal denervation for treatment of drug-resistant hypertension. Trends Cardiovasc. Med. 25, 107–115 (2015).

    Article  PubMed  Google Scholar 

  61. Mancia, G., Ludbrook, J., Ferrari, A., Gregorini, L. & Zanchetti, A. Baroreceptor reflexes in human hypertension. Circ. Res. 43, 170–177 (1978).

    Article  CAS  PubMed  Google Scholar 

  62. Guo, G. B., Thames, M. D. & Abboud, F. M. Arterial baroreflexes in renal hypertensive rabbits. Selectivity and redundancy of baroreceptor influence on heart rate, vascular resistance, and lumbar sympathetic nerve activity. Circ. Res. 53, 223–234 (1983).

    Article  CAS  PubMed  Google Scholar 

  63. Thrasher, T. N. Unloading arterial baroreceptors causes neurogenic hypertension. Am. J. Physiol. Regul. I ntegr. Comp. Physiol. 282, R1044–R1053 (2002).

    Article  CAS  Google Scholar 

  64. Thrasher, T. N. Effects of chronic baroreceptor unloading on blood pressure in the dog. A m. J. Physiol. Regul. Integr. Comp. Physiol. 288, R863–R871 (2005).

    Article  CAS  Google Scholar 

  65. Thrasher, T. N. Arterial baroreceptor input contributes to long-term control of blood pressure. Curr. Hypertens. Rep. 8, 249–254 (2006).

    Article  PubMed  Google Scholar 

  66. Carlsten, A., Folkow, B., Grimby, G., Hamberger, C. A. & Thulesius, O. Cardiovascular effects of direct stimulation of the carotid sinus nerve in man. Acta Physiol. Scand. 44, 138–145 (1958).

    Article  CAS  PubMed  Google Scholar 

  67. Bilgutay, A. M., Bigultay, I. & Lillehei, C. W. In Baroreceptors and Hypertension (ed. Kedzi, P.) 425–437 (Pergamon, 1967).

    Google Scholar 

  68. Bilgutay, A. M. & Lillehei, C. W. Surgical treatment of hypertension with reference to baropacing. Am. J. Cardiol. 17, 663–667 (1966).

    Article  CAS  PubMed  Google Scholar 

  69. Scheffers, I. J., Kroon, A. A. & de Leeuw, P. W. Carotid baroreflex activation: past, present, and future. Curr. Hypertens. Rep. 12, 61–66 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Braunwald, E. & Sobel, B. E. Braunwald NS: treatment of paroxysmal supraventricular trachycardia by electrical stimulation of the carotid-sinus nerves. N. Engl. J. Med. 281, 885–887 (1969).

    Article  CAS  PubMed  Google Scholar 

  71. Braunwald, E., Epstein, S. E., Glick, G., Wechsler, A. S. & Braunwald, N. S. Relief of angina pectoris by electrical stimulation of the carotid-sinus nerves. N. Engl. J. Med. 277, 1278–1283 (1967).

    Article  CAS  PubMed  Google Scholar 

  72. [No authors listed] Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. JAMA 202, 1028–1034 (1967).

  73. Cowley, A. W. Jr, Liard, J. F. & Guyton, A. C. Role of baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circ. Res. 32, 564–576 (1973).

    Article  PubMed  Google Scholar 

  74. Lohmeier, T. E., Irwin, E. D., Rossing, M. A., Serdar, D. J. & Kieval, R. S. Prolonged activation of the baroreflex produces sustained hypotension. Hypertension 43, 306–311 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Tordoir, J. H. et al. An implantable carotid sinus baroreflex activating system: surgical technique and short-term outcome from a multi-center feasibility trial for the treatment of resistant hypertension. Eur. J. Vasc. Endovasc. Surg. 33, 414–421 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Brest, A. N., Wiener, L. & Bachrach, B. Bilateral carotid sinus nerve stimulation in the treatment of hypertension. Am. J. Cardiol. 29, 821–825 (1972).

    Article  CAS  PubMed  Google Scholar 

  77. Parsonnet, V., Rothfeld, E. L., Raman, K. V. & Myers, G. H. Electrical stimulation of the carotid sinus nerve. Surg. Clin. North Am. 49, 589–596 (1969).

    Article  CAS  PubMed  Google Scholar 

  78. Schmidli, J. et al. Acute device-based blood pressure reduction: electrical activation of the carotid baroreflex in patients undergoing elective carotid surgery. Vascular 15, 63–69 (2007).

    Article  PubMed  Google Scholar 

  79. Mohaupt, M. G., Schmidli, J. & Luft, F. C. Management of uncontrollable hypertension with a carotid sinus stimulation device. Hypertension 50, 825–828 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Wustmann, K. et al. Effects of chronic baroreceptor stimulation on the autonomic cardiovascular regulation in patients with drug-resistant arterial hypertension. Hypertension 54, 530–536 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Goldstein, D. S., Bentho, O., Park, M. Y. & Sharabi, Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp. Physiol. 96, 1255–1261 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Vongpatanasin, W., Taylor, J. A. & Victor, R. G. Effects of cocaine on heart rate variability in healthy subjects. Am. J. Cardiol. 93, 385–388 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Heusser, K. et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension 55, 619–626 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Scheffers, I. J. et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J. Am. Coll. Cardiol. 56, 1254–1258 (2010).

    Article  PubMed  Google Scholar 

  85. Bisognano, J. D., Kaufman, C. L., Bach, D. S., Lovett, E. G. & de Leeuw, P. Improved cardiac structure and function with chronic treatment using an implantable device in resistant hypertension: results from European and United States trials of the Rheos system. J. Am. Coll. Cardiol. 57, 1787–1788 (2011).

    Article  PubMed  Google Scholar 

  86. Bisognano, J. D. et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled Rheos Pivotal Trial. J. Am. Coll. Cardiol. 58, 765–773 (2011).

    Article  PubMed  Google Scholar 

  87. Alnima, T., de Leeuw, P. W., Tan, F. E. & Kroon, A. A. Renal responses to long-term carotid baroreflex activation therapy in patients with drug-resistant hypertension. Hypertension 61, 1334–1339 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Bakris, G. L. et al. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow-up in the Rheos Pivotal Trial. J. Am. Soc. Hypertens. 6, 152–158 (2012).

    Article  PubMed  Google Scholar 

  89. Bakris, G., Nadim, M., Haller, H., Lovett, E. & Bisognano, J. Baroreflex activation therapy safely reduces blood pressure for at least five years in a large resistant hypertension cohort [abstract]. J. Am. Soc. Hypertens. 8, e9 (2014).

    Article  Google Scholar 

  90. Patel, H. C. et al. Magnitude of blood pressure reduction in the placebo arms of modern hypertension trials: implications for trials of renal denervation. Hypertension 65, 401–406 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Chapman, N. et al. Effect of spironolactone on blood pressure in subjects with resistant hypertension. Hypertension 49, 839–845 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. de Leeuw, P. W. et al. Bilateral or unilateral stimulation for baroreflex activation therapy. Hypertension 65, 187–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Sagawa, K. & Watanabe, K. Summation of bilateral carotid sinus signals in the barostatic reflex. Am. J. Physiol. 209, 1278–1286 (1965).

    Article  CAS  PubMed  Google Scholar 

  94. Diedrich, A. et al. Lateralization of expression of neural sympathetic activity to the vessels and effects of carotid baroreceptor stimulation. Am. J. Physio l. Heart Circ. Physiol. 296, H1758–H1765 (2009).

    Article  CAS  Google Scholar 

  95. Furlan, R. et al. Effects of unilateral and bilateral carotid baroreflex stimulation on cardiac and neural sympathetic discharge oscillatory patterns. Circulation 108, 717–723 (2003).

    Article  PubMed  Google Scholar 

  96. Tafil-Klawe, M., Raschke, F. & Hildebrandt, G. Functional asymmetry in carotid sinus cardiac reflexes in humans. Eur. J. Appl. Physiol. Occup. Physiol. 60, 402–405 (1990).

    Article  CAS  PubMed  Google Scholar 

  97. Alnima, T., de Leeuw, P. W. & Kroon, A. A. Baroreflex activation therapy for the treatment of drug-resistant hypertension: new developments. Cardiol. Res. Pract. 12, 1–7 (2012).

    Article  Google Scholar 

  98. Hoppe, U. C. et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J. Am. Soc. Hypertens. 6, 270–276 (2012).

    Article  PubMed  Google Scholar 

  99. Borisenko, O., Beige, J., Lovett, E. G., Hoppe, U. C. & Bjessmo, S. Cost-effectiveness of Barostim therapy for the treatment of resistant hypertension in European settings. J. Hypertens. 32, 681–692 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  101. CVRx®. CVRx® rece ives CE mark approva l and introduces new implantable device for hypertension, the Barostim neo [online], (2011).

  102. CVRx®. CVRx® granted CE mar king of the Barostim neo System for conditional MRI compatibility [online], (2014).

  103. CVRx®. CVRx® granted humanitarian device exem ption approval from FDA for Barostim neo legacy hypertension therapy device [online], (2014).

  104. CVRx®. CVRx® receives CE m ark approval of the Barostim neo System for the treatment of heart failure [online], (2014).

  105. Halbach, M., Hickethier, T., Madershahian, N. & Muller-Ehmsen, J. Baroreflex activation therapy: a new treatment option for heart failure with reduced ejection fraction. Expert Rev. Cardiovasc. Ther. 12, 1465–1469 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Madershahian, N. et al. Baroreflex activation therapy in patients with pre-existing implantable cardioverter-defibrillator: compatible, complementary therapies. Europace 16, 861–865 (2014).

    Article  PubMed  Google Scholar 

  107. Gronda, E. et al. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure: a proof-of-concept study. Eur. J. Heart Fail. 16, 977–983 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Barrett, E. J., Wang, H., Upchurch, C. T. & Liu, Z. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. Am. J. Physiol. Endocrinol. Metab. 301, E252–E263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jamerson, K. A., Julius, S., Gudbrandsson, T., Andersson, O. & Brant, D. O. Reflex sympathetic activation induces acute insulin resistance in the human forearm. Hypertension 21, 618–623 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Haenni, A. & Lithell, H. Moxonidine improves insulin sensitivity in insulin-resistant hypertensives. J. Hypertens. Suppl. 17, S29–S35 (1999).

    CAS  PubMed  Google Scholar 

  111. May, M. et al. Limited acute influences of electrical baroreceptor activation on insulin sensitivity and glucose delivery: a randomized, double-blind, crossover clinical study. Diabetes 63, 2833–2837 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Converse, R. L. Jr et al. Sympathetic overactivity in patients with chronic renal failure. N. Engl. J. Med. 327, 1912–1918 (1992).

    Article  PubMed  Google Scholar 

  113. Ligtenberg, G. et al. Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N. Engl. J. Med. 340, 1321–1328 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Wallbach, M. et al. Impact of baroreflex activation therapy on renal function—a pilot study. Am. J. Nephrol. 40, 371–380 (2014).

    Article  PubMed  Google Scholar 

  115. Page, I. H. A syndrome simulating diencephalic stimulation occurring in patients with essential hypertension. Am. J. Med. Sci. 190, 9–14 (1935).

    Article  Google Scholar 

  116. Eisenhofer, G., Sharabi, Y. & Pacak, K. Unexplained symptomatic paroxysmal hypertension in pseudopheochromocytoma: a stress response disorder? Ann. N. Y. Acad. Sci. 1148, 469–478 (2008).

    Article  PubMed  Google Scholar 

  117. Kuchel, O., Buu, N. T., Larochelle, P., Hamet, P. & Genest, J. Jr. Episodic dopamine discharge in paroxysmal hypertension. Page's syndrome revisited. Arch. Intern. Med. 146, 1315–1320 (1986).

    Article  CAS  PubMed  Google Scholar 

  118. Pickering, T. G. & Clemow, L. Paroxysmal hypertension: the role of stress and psychological factors. J. Clin. Hypertens. (Greenwich) 10, 575–581 (2008).

    Article  Google Scholar 

  119. Hering, H. E. Die Karotissinus Reflex auf Herz und Gefasse [German] 1–150 (Steinkopff, 1927).

    Google Scholar 

  120. Koch, E. & Mies, H. Chronischer arterieller hochdruck durch experimentelle dauerausschaltung der blutdruckzügler [German]. Krankheitsforschung 7, 241–256 (1929).

    Google Scholar 

  121. Volhard, F. On the pathogenesis of essential hypertension and hypertrophy [German]. Schweiz Med. Wochenschr. 78, 1189 (1948).

    CAS  PubMed  Google Scholar 

  122. Lown, B. & Levine, S. A. The carotid sinus. Clinical value of its stimulation. Circulation 23, 766–789 (1961).

    Article  CAS  PubMed  Google Scholar 

  123. Solti, F. et al. Baropacing of the carotid sinus nerve for treatment of “intractable” hypertension. Z. Kardiol. 64, 368–374 (1975).

    CAS  PubMed  Google Scholar 

  124. Bristow, J. D., Honour, A. J., Pickering, G. W., Sleight, P. & Smyth, H. S. Diminished baroreflex sensitivity in high blood pressure. Circulation 39, 48–54 (1969).

    Article  CAS  PubMed  Google Scholar 

  125. Lu, Y. et al. The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 64, 885–897 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald G. Victor.

Ethics declarations

Competing interests

R.V. declares that he is an Advisory Board member for Medtronic, Northwind, and TrophyNOD.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Victor, R. Carotid baroreflex activation therapy for resistant hypertension. Nat Rev Cardiol 12, 451–463 (2015). https://doi.org/10.1038/nrcardio.2015.96

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing